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Transitions in Fluid Flows

Order in the chaos:
the emergence of fluid flow patterns

One of the most fascinating phenomena in fluid dynamics is that flows can
spontaneously reorganize their macro-scale behaviour when external conditions
are changed. Such transitions are at the heart of pattern formation in fluids as
intensively studied since the early twentieth century. The overall problem is the
determination of the different (statistical) equilibrium flow patterns versus the
applied forcing and external geometry of the flow. The complicating factor here
is that, due to the non-linearity of the underlying processes, multiple flow patterns
can exist under the same external conditions.

The study of transition phenomena in flows of liquids and gases is fundamen-
tal to many engineering processes, in particular those associated with mass and
heat transfer, and hence of great practical interest. Transitions can lead to different
momentum regimes (e.g., drag, torque) and heat transfer regimes. These transitions
can suddenly (compared to changes in the forcing) lead to different operating con-
ditions. Isothermal flows may undergo qualitative changes in separation behaviour
and turbulence intensity; mean flows in turbulent buoyancy-driven convection can
change their overall pattern; and plasma flows in a Tokamak reactor suddenly show
strong oscillatory behaviour (Crawford and Knobloch, 1991; Dijkstra et al., 2014).

Transitions in environmental flows, for example in weather and climate, are
at the moment much studied in connection with climate change. For example, a
reorganization of the large-scale Atlantic Ocean circulation may lead to a sub-
stantial change in the meridional heat transport affecting land temperatures over
a large part of the globe (Rahmstorf, 2000). Critical conditions in such flows, at
which they may undergo a large qualitative change, are associated with what is now
often referred to as a ‘tipping’ point (Gladwell, 2000). Sub-components of the cli-
mate system with potential transition behaviour are indicated by ‘tipping elements’

1

https://doi.org/10.1017/9781108863148.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108863148.002


2 1 Transitions in Fluid Flows

(Lenton et al., 2008). From a practical point of view, one would like to determine
these critical conditions and understand how to avoid undesirable transitions.

The fluid flow transitions are also interesting from a complex systems science
point of view (Thurner et al., 2018). Due to variations in forcing of the flow,
the micro-scale fluid particles organize in particular ways so as to give different
macroscopic patterns and hence are an example of emerging behaviour. Subse-
quent transitions when the forcing of the flow is increased lead to more complicated
behaviour and eventually to turbulent flows. Understanding the (staged) transition
to turbulence is one of the central problems of classical physics which is, despite
much progress over the last decades, still unsolved (Eckert, 2019).

In this first chapter, we will describe canonical fluid dynamical systems which
have been used to study flow transitions. The attractive aspects of these flows
is that they are easily accessible experimentally and that there are mathematical
equations accurately describing their behaviour. After presenting those equa-
tions in general form in Section 1.1, the following sections will deal with four
typical flow configurations: the Lid-Driven Cavity flow (Section 1.2), the Taylor–
Couette flow (Section 1.3), the Rayleigh–Bénard–Marangoni flow (Section 1.4),
and the Differentially Heated Cavity flow (Section 1.5). For each case, we will
shortly describe typical experimental results and present the specific mathematical
equations describing the canonical experimental configuration.

1.1 General Fluid Dynamics Equations

The main set of equations in fluid dynamics describes the conservation of mass,
momentum, and thermal energy, and contains an equation of state relating density,
pressure, and temperature. We will consider here the case of a Newtonian fluid with
constant heat capacity Cp, dynamic viscosity µ, and thermal conductivity k, which
is relevant to understanding the results in many experiments.

Conservation of mass is expressed by the continuity equation,

∂ρ

∂t
= ∇ · (ρu), (1.1)

where ρ is density and u the velocity vector. The Navier–Stokes equations describe
the conservation of momentum. They are written as

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p+ µ∇2u+

1

3
µ∇(∇ · u)+ f, (1.2)

where p is the pressure and f represents a body force. One has to interpret the maths
shown in Equation (1.2) component-wise.

Thermal energy conservation is expressed as an equation for the temperature T
given by
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1.2 Lid-Driven Cavity Flow 3

ρCp

(
∂T

∂t
+ u · ∇T

)
= k∇2T + QT , (1.3)

where QT is a heat source or heat sink.
These equations are supplemented by a general equation of state,

ρ = ρ(p, T);

for example, the ideal-gas law p = ρRT , where R is the universal gas constant.
This leads to six equations for the six unknowns: three components of the velocity,
the temperature, the density, and the pressure. In addition to these main equations,
there may be equations for so-called tracers, for example chemical components
(e.g., salinity in the ocean) and moisture (e.g., in the atmosphere). These add-
itional equations usually have the same form as Equation (1.3), that is, they are
of the convection–diffusion type. Also, electromagnetic forces may be involved,
for example for studying plasma flows, leading to the addition of Maxwell’s equa-
tions. All equations have to be supplied with appropriate boundary conditions and
an initial condition.

1.2 Lid-Driven Cavity Flow

Due to its simple geometry, the incompressible flow in lid-driven cavities plays
an important role in fundamental fluid mechanics and serves often as a numerical
benchmark problem. Batchelor (1956) already pointed out that lid-driven cavity
flows exhibit almost all the phenomena that can possibly occur in incompressible
flows: eddies, secondary flows, complex flow patterns, chaotic particle motions,
and turbulence.

1.2.1 Experimental Results

A typical experimental configuration, used by, for example, Koseff and Street
(1984), is shown in Fig. 1.1a. The liquid is contained in a three-dimensional cav-
ity characterized by two aspect ratios: that of the length L to depth D, Ax = L/D;
and that of the width B to depth, Ay = B/D. The density of the liquid is con-
stant ρ, its constant kinematic viscosity is ν = µ/ρ, and the liquid is sheared at
its top by a constant velocity U . To realize this, a belt-drive support structure was
used in Koseff and Street (1984) in which the belt speed was constant up to 0.5
per cent.

A typical flow observed along the symmetry plane of the cavity (e.g., for Ax = 1
and Ay = 3 and for a Reynolds number Re = UL/ν = 3,300 in Koseff and Street
(1984)) is sketched in Fig. 1.1b. Overall, a one-cell flow structure is seen, with
surface flow into the direction of the surface velocity, and smaller vortices appear
in the corner regions at the bottom. The flow may not be stationary; for example,
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Figure 1.1 (a) Geometry of the lid-driven cavity flow of dimensions, L, B, and
D, with a moving lid in the x-direction on the top having velocity U . (b) Typical
flow observed in the lid-driven cavity (based on the results of Koseff and Street
(1984)).

fluctuations in the vertical velocity were measured for Re = 3,300 (Koseff and
Street, 1984), with a dominant frequency of about 0.01 Hz. In the streamwise
(y-)direction, so-called Taylor–Görtler vortices were found and about eight pairs of
vortices were found for Ay = 3. An example of this flow structure can be found in
Freitas and colleagues (1985) and in Fig. 12 of Kuhlmann and Romanò (2019). The
structure of the Taylor–Görtler vortices and the secondary corner vortices depend
strongly on the geometry of the container.

For this same configuration (Ax = 1, Ay = 3), Aidun and colleagues (1991)
found a stationary flow for values of Re up to Rec = 875± 50 and oscillatory flow
for higher values of Re, in agreement with the results in Koseff and Street (1984)
for Re = 3,300. For very large values of Re (e.g., Koseff and Street (1984) use
Re = 10,000), irregular (turbulent) flows are found. An experimental regime dia-
gram, mapping out the value of Rec versus the parameters Ax and Ay and showing
secondary flow types for higher values of Re, does not appear to be available in the
literature.

This short summary of the experimental result on the lid-driven cavity flow
already leads to intriguing fluid dynamical questions. For example, why is there
a critical value of Re marking the transition from steady to oscillatory flows? Many
other issues, for example the spatial structure of the corner flows and the depend-
ence of the Taylor–Görtler vortices on Ay, have led to a number of fundamental
theoretical studies (Kuhlmann and Romanò, 2019).
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1.2 Lid-Driven Cavity Flow 5

1.2.2 Governing Equations

Following the experimental setup used in Koseff and Street (1984), we consider
the flow of a constant density Newtonian fluid in a three-dimensional cavity with
length L, width B, and height D (Fig. 1.1a). The fluid motion has velocity vector
u = (u, v, w)T and is driven by a moving lid on the top with constant velocity U
into the positive x-direction.

The governing equations for this problem are the incompressible Navier–Stokes
equations given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −

1

ρ

∂p

∂x
+ ν∇2u+ fx, (1.4a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −

1

ρ

∂p

∂y
+ ν∇2v + fy, (1.4b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −

1

ρ

∂p

∂z
+ ν∇2w+ fz, (1.4c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.4d)

with fx= fy= 0 and fz=− g, where g is the gravitational acceleration. See example
Ex. 1.1

The boundary conditions are given by no-slip conditions on all the walls,
formulated as

x = 0, L : u = v = w = 0, (1.5a)

y = 0, B : u = v = w = 0, (1.5b)

z = 0: u = v = w = 0, (1.5c)

z = D : u = U , v = w = 0. (1.5d)

As we will see in Chapter 10, for a given geometry and boundary conditions,
the Reynolds number Re = UL/ν is determining the flow completely. There
is no elementary non-trivial analytical solution known for the Lid-Driven Cavity
flow.

Additional Material

l A relatively recent and extensive review of experimental results on the
Lid-Driven Cavity flow can be found in Kuhlmann and Romanò (2019).
They discuss also experimental results for extended configurations, for
example where two walls of the cavity move with a (different) constant
velocity.
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Figure 1.2 (a) Sketch of the Taylor–Couette flow configuration. (b) Observed
pattern of Taylor vortices for four different values of the inner rotation rate ωi,
which increases from left to right (source: https://advlabs.aapt.org/wiki/Taylor-
Couette_Flow), with ωo = 0.

1.3 Taylor–Couette Flow

The flow between concentric cylinders, or Taylor–Couette flow, is one of the canon-
ical pattern formation flows, sometimes referred to as the ‘Hydrogen Atom’ or
‘Drosophila’ of fluid dynamics. It shows a staged transition to turbulence, for
example as the rotation rate of the inner cylinder is increased, with a very rich
behaviour.

1.3.1 Experimental Results

A typical experimental configuration (Fig. 1.2a) consists of two rotating cylinders
enclosing a fluid. The inner cylinder of radius ri rotates with angular velocity ωi,
and the outer one (radius ro) with angular frequency ωo. The cylinders have a finite
length L, hence the geometry is characterized by the aspect ratio 0 = L/d, d =
ro − ri, and the radius ratio η = ri/ro. The fluid has a constant density ρ and
constant kinematic viscosity ν, and in this way the flow is characterized by the two
Reynolds numbers

Rei =
riωid

ν
, Reo =

roωod

ν
. (1.6)

The first experiments were carried out by Taylor (1923) for the case ωo = 0,
hence with only the inner cylinder rotating. For small values of ωi a parallel flow
exists, which can be determined analytically (see Subsection 1.3.2). As this flow
was already observed experimentally by Couette (1890), it was named the Cou-
ette flow. Taylor observed that when ωi exceeds a critical value, instability sets in
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1.3 Taylor–Couette Flow 7

and rows of cellular vortices develop. This is the so-called Taylor vortex flow, of
which an example is shown in the ‘Taylor vortices’ panel of Fig. 1.2b. When ωi

is increased to higher values, the cell rows start to move in a wavy fashion after
a transition to time dependence (two middle ‘Wavy vortices’ panels of Fig. 1.2b).
For higher values of ωi, the Taylor cells break down and a turbulent statistical
equilibrium flow is established (‘Turbulence’ panel of Fig. 1.2b).

A theoretical analysis in the case of ωo = 0 and 0 → ∞ (i.e., infinitely long
cylinders) to explain the first transition from the Couette flow to the Taylor vortex
flow was already done by Taylor (1923). The critical value of Rec

i for η = 0.8
is given by Rec

i = 94.7, and for η = 0.9 it is Rec
i = 131.6 (Recktenwald et al.,

1993). Often, another parameter is used to characterize this critical condition for
transition, the Taylor number Ta:

Ta = 4Re2
i

1− η

1+ η
, (1.7)

with Tac = 3, 986 for η = 0.8. The critical values agree well with experiments
in very long cylinders (Chandrasekhar, 1961; Drazin and Reid, 2004; Chossat and
Iooss, 2012). Snyder (1968) has given a semi-empirical equation for the critical
condition from collected experimental data.

Detailed work on the Taylor vortex flows (which appear after the first transi-
tion) has been done by Mullin and coworkers (Mullin and Blohm, 2001; Mullin
et al., 2017). For η = 0.833, the regime diagram is given in Fig. 1.3, as based on
Andereck and colleagues (1986). The complexity of the different flow regimes is
striking, given the simplicity of the geometry and forcing, and there are still some
unexplored regimes.

1.3.2 Governing Equations

For the configuration in Fig. 1.2a, the incompressible Navier–Stokes equations
are conveniently written in cylindrical coordinates (r, θ , z) and the velocity vector
(radial, azimuthal, and axial) as u = (u, v, w)T . The resulting equations are given
by

∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z
−
v2

r
=

ν(
1

r

∂

∂r
(r
∂u

∂r
)+

1

r2

∂2u

∂θ2
−

u

r2
−

2

r2

∂v

∂θ
+
∂2u

∂z2
)−

1

ρ

∂p

∂r
−fr, (1.8a)

∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+ w

∂v

∂z
+

uv

r
=

ν(
1

r

∂

∂r
(r
∂v

∂r
)+

1

r2

∂2v

∂θ2
−
v

r2
+

2

r2

∂u

∂θ
+
∂2v

∂z2
)−

1

ρ

1

r

∂p

∂θ
−fθ , (1.8b)
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Figure 1.3 Regime diagram for the different flows as observed in Taylor–Couette
flow experiments as from Andereck and colleagues (1986) for the case η = 0.833
and 0 = 30; here R = Re. (Published with permission from Cambridge
University Press.)

∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂z
=

ν(
1

r

∂

∂r
(r
∂w

∂r
)+

1

r2

∂2w

∂θ2
+
∂2w

∂z2
)−

1

ρ

∂p

∂z
−fz, (1.8c)

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0, (1.8d)

with fr = fθ = 0 and fz = −g.
The boundary conditions are given by

r = ri : u = w = 0, v = ωiri, (1.9a)

r = ro : u = w = 0, v = ωoro, (1.9b)

z = 0, L : u = v = w = 0. (1.9c)

Periodic conditions apply in the θ direction, that is, u(r, 0, z, t) = u(r, 2π , z, t) with
similar conditions for the other velocity components and the pressure.

An analytical solution (ū, v̄, w̄, p̄) of the equations, the Couette flow (Couette,
1890), exists for infinitely long cylinders (L→∞) and is given by
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ū = w̄ = 0 , v̄ = ar +
b

r
, p̄ = −ρgz+ pd(r), (1.10a)

a =
ωor2

o − ωir2
i

r2
o − r2

i

, b =
(ωi − ωo)r2

or2
i

r2
o − r2

i

, (1.10b)

where pd(r) = ρ
∫ r

ri
v̄2/r dr. There are also analytical solutions (in Bessel function

series form) for ωo = 0 in finite-length containers (Wendl, 1999). See example
Ex. 1.2

Additional Material

l An extensive review of experimental results on the Taylor–Couette flow
can be found in Koschmieder (1993) and Grossmann and colleagues
(2016). There is a very accessible Scholarpedia paper on the Taylor–
Couette flow by Richard Lueptow, see www.scholarpedia.org/article/
Taylor-Couette_flow, where also many other sources (videos, webpages)
on the experimental results are provided.

l Since 1979, an international workshop, the ICTW (International
Couette–Taylor Workshop), is organized bi-annually; see https://pof.tnw
.utwente.nl/ictw/history.html.

1.4 Rayleigh–Bénard–Marangoni Flow

The Rayleigh–Bénard–Marangoni problem is another classic in fluid dynamics. A
liquid layer heated from below shows a fascinating and rich set of flow patterns
once a critical vertical temperature gradient is exceeded (Koschmieder, 1993).

1.4.1 Experimental Results

First experiments were carried out by Bénard (1901), with a circular container
being filled with a viscous liquid such as silicone oil (Fig. 1.4a) with constant heat
capacity Cp, dynamic viscosity µ, and thermal conductivity k. Air was situated
above the upper surface of the liquid, and the temperature far from the air–liquid
interface was nearly constant. This creates a temperature difference,1T = TB−TA,
between the bottom of the container and the surface of the liquid.

When the initially motionless liquid is heated from below, the liquid remains
motionless below a critical value of 1T , say 1Tc. In this case, the heat transfer
through the layer is only by heat conduction. When the temperature difference
slightly exceeds 1Tc, the liquid is set into motion and after a while the flow
organizes itself into steady (often hexagonal) cellular patterns (Fig. 1.4b).

For the liquid, a linear equation of state,

ρ = ρ0(1− αT (T − T0)), (1.11)
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Figure 1.4 (a) Sketch of the model set-up and boundary conditions of the
Rayleigh–Bénard–Marangoni problem. (b) Example of a flow pattern consist-
ing of hexagons arising in a liquid heated from below (Matsson, 2008); see
https://peer.asee.org/a-student-project-on-rayleigh-benard-convection.

is usually an adequate approximation, where αT is the thermal compressibility coef-
ficient, T0 a reference temperature, and ρ0 a reference density. In situations with an
air–liquid interface, such as in Fig. 1.4a, the surface tension σ depends on the
temperature. For many liquids, including water, a relation of the form

σ = σ0(1− γT (T − T0)) (1.12)

holds, where σ0 is a reference surface tension. In this case, the surface tension
decreases with increasing temperature, and γT is a constant. Surface tension gra-
dients give rise to shear stresses (this is the Marangoni effect), with flows directed
from low to high surface tension (Marangoni, 1865). When the upper surface is a
rigid lid, as holds for many experiments performed, no Marangoni effects occur.
See example Ex. 1.3

For experiments in rectangular containers, with length L, width B, and height D,
the flow is characterized by the two aspect ratios Ax = L/D and Ay = B/D, and
four other parameters, namely the Rayleigh number Ra, the Prandtl number Pr, the
Marangoni number Ma, and the Biot number Bi, defined by

Ra =
αT g1TD3

νκ
; Pr =

ν

κ
; Ma =

σ0γT1TD

ρ0νκ
; Bi =

hD

k
,

where h is a (constant) surface heat transfer coefficient, ν = µ/ρ0 is the kinematic
viscosity, and κ = k/(ρ0Cp) the thermal diffusivity.

For pure Rayleigh–Bénard convection, when the upper surface is a rigid wall, the
parameters Bi and Ma do not appear; an experimentally determined regime diagram
in the Pr−Ra space is shown in Fig. 1.5a. The critical value of Ra in this case (with
rigid bottom wall and Ax, Ay →∞) is Rac = 1707.8. In this case, roll cells appear
above criticality; a sketch of such a flow pattern is shown in Fig. 1.5b. The Ra range
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Figure 1.5 (a) Regime diagram in the Pr − Ra space for pure Rayleigh–Bénard
convection (Krishnamurti, 1973), where P = Pr and R = Ra. (Published with
permission from Cambridge University Press.) (b) Sketch of a pattern of roll cells
in a rectangular container.

of steady roll cells is much larger for larger Pr liquids and disappears from liquids
like mercury having a very small Pr. When Ra is increased, time dependence also
occurs and finally the flow becomes turbulent.

For pure Bénard–Marangoni convection, we have Ra= 0 and the critical
Marangoni number Mac depends on Bi; for Bi= 0 and again Ax, Ay→∞, its value
is 79.6. There is no experimentally determined regime diagram of pure Bénard–
Marangoni flows, since buoyancy effects are difficult to eliminate. It could, in
principle, be done in space, but is practically difficult to carry out.

1.4.2 Governing Equations

In deriving the governing equations from the general equations in Section 1.1, often
the Boussinesq approximation is made, which (in short) assumes that density vari-
ations are so small compared to the reference density ρ0 that they only have to be
taken into account in the volume (in this case buoyancy) force. The equations then
become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −

1

ρ0

∂p

∂x
+ ν∇2u+ fx, (1.13a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −

1

ρ0

∂p

∂y
+ ν∇2v + fy, (1.13b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −

1

ρ0

∂p

∂z
+ ν∇2w+ fz, (1.13c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.13d)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= κ∇2T , (1.13e)
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with fx = fy = 0 and fz = −ρg/ρ0 = −g(1 − αT (T − T0)). In these equations,
(x, y, z) are the Cartesian coordinates of a point in the liquid layer, t denotes time,
(u, v, w) is the velocity vector, p denotes pressure, and T is the temperature.

The lower boundary of the liquid (Fig. 1.4a) is considered to be a very good
conducting boundary on which the temperature is constant TB, and no-slip condi-
tions apply. On the lateral walls (at x = 0, L and y = 0, B), no-flux and no-slip
conditions are prescribed. Let the non-deforming gas–liquid interface be located at
z = D; then the general boundary conditions become

x = 0, L : u = v = w =
∂T

∂x
= 0, (1.14a)

y = 0, B : u = v = w =
∂T

∂y
= 0, (1.14b)

z = 0: T = TB ; u = v = w = 0, (1.14c)

z = D : µ
∂u

∂z
=
∂σ

∂x
; µ

∂v

∂z
=
∂σ

∂y
; w = 0 ; k

∂T

∂z
= h(TA − T), (1.14d)

where TA is the temperature of the gas just above the interface. The first two equa-
tions in (1.14d) represent the Marangoni effect, and the last equation is the surface
heat transfer condition. See example Ex. 1.4

For ū = v̄ = w̄ = 0, there is a steady state given by

T̄(z) = TB − βz; β =
h(TB − TA)

k + hD
, (1.15)

where β is the vertical temperature gradient over the layer. The corresponding pres-
sure distribution is readily determined from (1.13), and if one chooses T0 = TA,
this gives

p̄(z) = p0 + ρ0g

(
(αT (TB − TA)− 1)z−

αTβ

2
z2

)
. (1.16)

This motionless solution is characterized by only conductive heat transfer and is
easily realized in laboratory experiments. Note that such a motionless solution
exists for all values of the vertical temperature difference, 1T = βD.

If the upper surface is a rigid surface and kept at a constant temperature TA, there
are no Marangoni effects and the surface temperature is kept constant (h→∞ in
(1.14)). In this case of pure Rayleigh–Bénard convection, the boundary conditions
(1.14d) are replaced by

z = D : u = v = w = 0, T = TA. (1.17)

The analytic solution for temperature (1.15) in this case still holds, but the limit
h→∞ has to be taken for which β → (TB − TA)/D.
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1.5 Differentially Heated Cavity Flow 13

Additional Material

l An extensive overview of experimental work on the Rayleigh–Bénard–
Marangoni flows is given in Koschmieder (1993) and Getling (1998).

l The Bénard Centenary Review (Mutabazi et al., 2010) contains many
very interesting papers on Bénard’s experiments and their extensions;
also included is a great scientific biography of Henri Bénard by José
Eduardo Wesfreid (pages 9–37).

1.5 Differentially Heated Cavity Flow

Because of its engineering importance, the flow in a cavity of which two opposite
vertical sidewalls have different temperatures has been studied extensively. The
main aim of these studies was to determine the heat transport from the heated wall
towards the cooler wall.

1.5.1 Experimental Results

The first experiments with air in containers of different aspect ratios were per-
formed by Eckert and Carlson (1961). As in the Rayleigh–Bénard problem, the
flow is characterized by two aspect ratios Ax = L/D and Ay = B/D, the Ray-
leigh number Ra, and the Prandtl number Pr. Eckert and Carlson (1961) used the
Grashof number Gr = Ra/Pr and showed that the flow is stationary up to a critical
value (Grc) and unsteady thereafter.

Elder (1965) performed experiments in a container with Ay >> Ax (such that the
flow is approximately two-dimensional) while varying D/L over the range [1, 60]
for a liquid with Pr = 103. A sketch of the experimental configuration is shown
in Fig. 1.6a. The value of Ra in Elder (1965) is based on the length L and given
by

Ra =
αT g1TL3

νκ
. (1.18)

For small values of Ra there is a wall-to-wall flow, the liquid descending along
the cold wall and moving upward along the warm wall. Flow profiles for different
values of Ra (Fig. 1.6b) show that secondary flows develop for higher Ra. The
wavelength of these flows decreases with increasing values of Ra.

In an extensive series of experiments, Jannot and Mazeas (1973) determined
(for the same configuration as in Elder (1965)) the Ra boundary between station-
ary and non-stationary regimes, namely the onset of time dependence in the flow.
However, there does not appear to be a full experimental regime diagram of this
flow. Variations of the configuration were introduced by Hart (1971), including
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14 1 Transitions in Fluid Flows

(a) (b)

Figure 1.6 (a) Sketch of the experimental set-up used in Elder (1965). (b) Sketch
of flows visualized (Elder, 1965) for different values of Ra (for L = 2 cm and
D = 38 cm) with Ra increasing from right to left, showing the appearance of
secondary flows with larger Ra. (Published with permission from Cambridge
University Press.)

the effects of angular rotation (for their geophysical relevance), and by Imberger
(1974), studying flows for very large Ax.

1.5.2 Governing Equations

The equations describing the Differentially Heated Cavity flow are the same as for
the pure Rayleigh–Bénard problem (1.13) and are not repeated here; also, a lin-
ear equation of state is assumed to be adequate. The vertical sidewalls at x = 0
and x = L, which have a different temperature, are considered to be extremely
good conducting boundaries on which the temperature is constant, and no-slip
conditions apply. On the other walls (at z = 0, D and y = 0, B) no-flux and no-
slip conditions are prescribed. The boundary conditions then become (Fig. 1.6a)
See example Ex. 1.5

x = 0: u = v = w = T − (TL +1T) = 0, (1.19a)

x = L : u = v = w = T − TL = 0, (1.19b)

y = 0, B : u = v = w =
∂T

∂y
= 0, (1.19c)

z = 0, D : u = v = w =
∂T

∂z
= 0. (1.19d)
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1.6 Summary 15

There is no elementary analytical solution for the differentially heated cavity prob-
lem, as even small temperature differences 1T will cause a non-trivial flow in the
cavity.

Additional Material

l An extensive, although already a bit dated, review on experimental work
regarding the Differentially Heated Cavity flow can be found in Paolucci
(1994). Variants of this flow, which also show very interesting behaviour,
are laterally heated/cooled containers which are inclined with respect to
gravity (Saury et al., 2012).

1.6 Summary

l Fluid flows can undergo staged transitions when parameters, for
example those related to the forcing of the flow, are varied. For large
forcing (with respect to viscous and diffusive processes), turbulent
flows result.

l We have focused on four classical flows: the Lid-Driven Cavity flow,
the Taylor–Couette flow, the Rayleigh–Bénard–Marangoni flow, and
the Differentially Heated Cavity flow. These flows have been studied
extensively in laboratory experiments.

l For the Taylor–Couette flow and the Rayleigh–Bénard–Marangoni
flow analytical parallel flow solutions exist. These become unstable
at specific values of Reynolds and Rayleigh/Marangoni numbers,
respectively, and non-parallel patterned flows (Taylor vortices and
hexagonal/roll cell patterns) result.

l For even higher values of these parameters, a transition to time
dependence occurs, resulting, for example, in wavy Taylor vortices
in the Taylor–Couette flow.

l For the Lid-Driven Cavity flow and the Differentially Heated Cavity
flow, no such parallel steady flow solutions exists, but the non-
parallel steady flows also become unstable at specific values of the
Reynolds and Rayleigh numbers, respectively.

l For each of the classical flows, the fluid dynamical equations
and boundary conditions describe the dominant balances of mass,
momentum, and heat in unprecedented detail.
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1.7 Exercises

Exercise 1.1 Consider the two-dimensional Lid-Driven Cavity flow in Cartesian coordin-
ates (x, z) in a container of length L and height D. In this case, the stream function ψ can
be introduced through

u =
∂ψ

∂z
; w = −

∂ψ

∂x

We can, furthermore, non-dimensionalize the equations through scales L for length, U for
velocity, and L/U for time.

a. Show that the governing equations can be written as

∂ζ

∂t
+ u · ∇ζ = Re−1

∇
2ζ

ζ = −∇2ψ ,

where ζ = ∂w/∂x−∂u/∂z is the vertical component of the vorticity vector and Re = UL/ν.

b. Formulate the boundary conditions for ψ .

Exercise 1.2 Consider the Taylor–Couette flow in the case ωi = ω and ωo = 0. A steady
solution can be found of the form ū = w̄ = 0 and v̄ = v̄(r, z).

a. Show that the governing equations for v̄ become

1

r

∂

∂r
(r
∂v̄

∂r
)+

∂2v̄

∂z2 −
v̄

r2 = 0

with boundary conditions r = ri : v̄ = ωri; r = ro : v̄ = 0; and z = 0, L : v̄ = 0.

b. Argue that when the vertical direction is unbounded, L→∞, that v̄ = v̄(r).

c. Determine v̄(r) and p̄(r, z) and compare with (1.10).

Exercise 1.3 Consider a fluid particle in a motionless liquid under a vertical tempera-
ture gradient in the Rayleigh–Bénard–Marangoni experiment. Assume that the particle is
moved upwards adiabatically.

First, consider the case that the surface tension is constant and the particle is far from
the air–liquid surface.
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a. Sketch and determine the forces on the particle just after the perturbation.

b. Argue that the perturbation motion is amplified if some critical value of the Rayleigh
number Ra is exceeded.

Next, consider the case that gravity is absent, but surface tension is a monotonically
decreasing function of temperature and the particle is moved to the surface.

c. Sketch and determine the forces on the particle just after the perturbation.

d. Argue that the perturbation motion is amplified if some critical value of the Marangoni
Ma is exceeded.

Exercise 1.4 Consider the pure Rayleigh–Bénard problem as in Section 1.4.2 and the case
of an upper rigid surface with a fixed temperature TA.

a. When Ra < Rac, the liquid is motionless. Determine the equations for the temperature
field and the pressure field.

b. Argue that the temperature T̄ and pressure p̄ are only functions of z.

c. Use the boundary conditions to determine the basic state solution (T̄ , p̄) and compare to
the solution given in Section 1.4.2.

Exercise 1.5 Consider the two-dimensional Differentially Heated Cavity flow in a Car-
tesian coordinate system (x, z). Make the equations non-dimensionless, by using scales
gαT1TD3/(νL) for velocity, D for length, and νL/(gαT D21T) for time, and define a
dimensionless temperature ϑ by ϑ = (T − TL)/1T. Furthermore, introduce a stream
function ψ such that

u =
∂ψ

∂z
; w = −

∂ψ

∂x
.

a. Show that the dimensionless equations are given by

GrA2
(
∂ζ

∂t
+ u

∂ζ

∂x
+ w

∂ζ

∂z

)
= A∇2ζ +

∂θ

∂x
,

∇
2ψ = −ζ ,

GrPrA

(
∂ϑ

∂t
+ u

∂ϑ

∂x
+ w

∂ϑ

∂z

)
= ∇

2ϑ ,

where ζ is the vertical component of the vorticity vector. The boundary conditions are

x = 0: ψ =
∂ψ

∂x
= ϑ = 0,

x = 1/A : ψ =
∂ψ

∂x
= ϑ − 1 = 0,
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z = 0, 1 : ψ =
∂ψ

∂z
=
∂ϑ

∂z
= 0,

where A = 1/Ax = D/L and Pr = ν/κ . Give an expression for the Grashof number Gr in
this case.

Next, we try to find asymptotic solutions in the limit A→ 0 of the form

ϑ = ϑ0 + Aϑ1 + A2ϑ2 · · · ; ψ = ψ0 + Aψ1 + A2ψ2 · · ·

b. Show that

ψ ∼ K1

(
z4

24
−

z3

12
+

z2

24

)
,

ϑ ∼ K1x+ K2 + K2
1 GrPrA2

(
z5

120
−

z4

48
+

z3

72

)
with constants K1 and K2.

c. Describe a procedure for how the constants K1 and K2 can be determined.
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