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A five lemma for free products of groups
with amalgamations

J. L Dyer

This paper explores a five-lemma situation in the context of a

free product of a family of groups with amalgamated subgroups

(that is, a colimit of an appropriate diagram in the category of

groups). In particular, for two families {A }, {B } of groups

with amalgamated subgroups {A . } , {B } and free products A, B
otp cip

we assume the existence of homomorphisms A •*• B whose

restrictions A „ -*• B „ are isomorphisms and which induce an
aB aB

isomorphism A •*• B between the products. We show that the usual

five-lemma conclusion is false, in that the morphisms A •*• B

are in general neither monic nor epic. However, if all B Q -»• B

are monic, A •*• B is always epic; and if A •*• A is monic,

for all a , then A -*• B is an isomorphism,
a a

A frequent situation in homological algebra and its applications is a

commutative diagram

0 <• A' •• A • A" • 0

j/' \f If"
0 >• B' • B • B" • 0

of exact sequences in which it is assumed that both /' and f" are

isomorphisms and concluded that / is also. We consider in this paper an

analogous situation for products of groups with amalgamations. The
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conclusions are generalizations of similar ones of E.M. Brown [2, p.

and are of interest in topological situations involving applications of

suitable generalizations of the classical van Kampen theorem (cf. R. Brown

[3, Theorem 8.U.2, p. 282]).

As the results herein are purely group theoretic but seem most

smoothly expressed in the language of categories, we begin by reviewing

briefly certain definitions and results of category theory. We then

summarize our results, and proceed to establish them in the ensuing

sections.

1. Notation and statement of results

We assume that the notions of category, functor and natural

transformation are familiar. The reader is referred to MitchelI (16,

Chapter II], especially § § 1 , 2 and 12) for more detail.

The category of all groups and homomorphisms will be denoted by G .

A full subcategory B of a category A is a subcategory such that

for every pair of objects A, B € B , every A-morphism from A to B is

in B .

An amalgam scheme E* = Z^(I) is a category of the following type:

J is a set. The objects of Z^ are: all one-element subsets of I ,

all two-element subsets of I , and an object * . The morphisms of Z^

are the identities and the following:

{a, 6} - {a} , {a} + * ,

{a, 3} -»• * = {a, g} •* {a} * * = {a, 6> + (6> •* * ; a, B € I .

We denote by Z the full subcategory generated by all objects except

* , and by Z the full subcategory generated by * and all

{a, 6} € I* .

An amalgam is a covariant functor F : Z -*• G .

A colimit for F is a functor i% : Z^ •* G which extends F and

which satisfies the universal mapping property: if H is any extension

of F to Zj there exists a unique natural transformation n : F„ •*• H

such that
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I iden |
•+ F

commutes, where the vertical arrows are inclusions.

PROPOSITION 1. If n : F •* G is a natural transformation of

amalgams, there is a unique extension of T\ to a natural transformation

THEOREM 2 (see also [7]). Every amalgam has a colimit, unique up

to natural equivalence.

We shall write F = F({a, 6}) , F = F({a}) for all {a} ,

{a, £5} f £ ; and *F = F^*) where FA is a colimit of F . The group

*F may be constructed as the largest quotient group of the free product

|| F of the groups F , such that

aB a -U-J a ccB B A r a

Let n : F •*• G be a natural transformation of amalgams

F, G : Z(J) -»• G . Denote by F , G the restrictions of F, G to 1

and let n : F •+ G be the induced natural transformation.
0 0 0

The situation with which we deal is the following: suppose n is a

natural equivalence. What can be said about n ? Restated in

group-theoretic terms, the question reads thusly:

*F

X

Suppose *n and all of the r| are isomorphisms. What can be said
otp

about the n ? We note that *F is the smallest subgroup of *F which

contains Imff -»• *F) for all a C J .

We shall henceforth assume that F o •*• F is monic. Observe that in
ctp ct
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this case our terminology agrees with that of Hanna Neumann [9] and B.H.

Neumann [7]. The colimit *F is in [7] the group P* , called there the

canonic group (of the amalgam) and the generalized free product of the F

with amalgamated subgroups F „ is *F , provided *F satisfies some

additional conditions (see §4 below).

We shall show that in general n is neither monic (§2) nor epic

(§3). If Ga •+ *G is monic for all a € I , r\ is epic (§4). If

F •+ *F is monic for all a € I , then G •*• *G is also monie and n
a a a

is an isomorphism (§4). Finally (§5) we restate a theorem of Neumann ([7]

or [93) which guarantees that F •* *F is monic, deduce the theorem of

E.M. Brown as a corollary and then prove a monicity theorem of our own.

2.

EXAMPLE, n need not be monic
a

In the light of existing examples of amalgams F : 11(1) •*• G in which

card(J) = 3 and F •* *F is not monic (of. [7] or [S]) it is not

surprising that n should fail to be monic. We shall present a

particularly economical example of this behaviour (of. §5). It utilizes a

2-generator, 1-relator group found by Baumslag and Solitar [/] which is

non-hopfian, in other words, is isomorphic to a proper factor group of

itself.

We use (g : r> to denote the group generated by the set of elements

g subject to the relations r [cf. Magnus et al. [5]), and

[x, y] = x y xy , the commutator of x and y .

Let I = {l, 2, 3} , and define the amalgams F, G : E •+ G as

follows:
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= (a, t : a = [a2, *]) , Gx = (b, u : b = [b
2, u]} ,

Fz = <t2> ,

F3 = <*3> .

G2 =

G3 =

for i, 3 £ I , i f j . We note that t and ta [a, t]2 are of

infinite order modulo the commutator subgroup of Gx and therefore are of

infinite order in Gj . The monomorphisms F. . -*• F. and G. . •* G. are
%3 ^ *̂e7 -̂

defined by

^ i = 2, 3 ,

*i<7- * • * i = 1 , j = 2 , M^. * {M^ t = l,2, 3 ,

•to:"1 [a, t]2 i = i , j = 3 ,

and so the colimits F^, G^ : E* -»• 6 may be defined as follows:

*F = (a, t : a = [a2, t], a = [a, t]2) =

wz, c, t : a = [a, t], a = [a2, t], a = a2)

J, t : a = [e2, t]) ,= (a, t : a = [e2, t], e

*G =(b, u : b = [b2, u}) .

The morphisms are determined by the functoriality of F^ and Gt

together with the maps Fi -*• *F , G\ -*• *G respectively:

cra ->• a2 rb •*• b

t *-u •+ u .

Define the transformation n by

rii(a) = b2 m ( t ) = M .

We note that r| i is epic, for i> = [b2, w] € Imrix , and that

nifa^la, t}2) = 1 while ^"""[a, t]2 ?1 (of. [5, pp. 260-261] or [7]).

Finally, the induced map *r\ : *P ->• *G is an isomorphism as *r\{t) = u ,
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and r\i([a, t]) = [bz, u] = b implies *n(c) = *n([a, t]) = b

3.

EXAMPLE, n need not be epic.

Once again I = {l, 2, 3} . Let A c B be two simple groups (for

example let B be the alternating group on 6 symbols and A the

subgroup fixing the first symbol). Define the amalgams F, G : Z -*• G as

follows:

Fi = it) x A ,

F2 = (t2> ,

Ui

Gl = iu) x B ,

G2 = (u2) ,

F3 = <*3> , G3 = <W3> ,

F. . = F.. = (t..\ , G. . = G .. = (u. .)
13 3^ \ I'd! '13 31- \ 1-3!

where i, 3 d I , i i- 3 . The homomorphisms F. . •* F. and G. . ->• G.
1*3 1* 7*3 7s

are defined by the following:

\ i = 2, 3 ,

* . . - » - < £ x. 1 i = 1 , 3 = 2 , ui.

t x a i = 1 , j = 3 ,

where 1 # a 6 4 . The colimit groups are easily seen to be

*F = < •& , *G = (u> ,

and the homomorphisms are the obvious ones. Let 9 : (£> •* (u) be

defined by 9(t) = u , and let I : A -*• B be the inclusion. The

transformation n defined by Hi = 6 x j and isomorphisms elsewhere

induces the isomorphism *r\ : *F •* *G sending t to u , but Imrij is

clearly the proper subgroup (u) x A of Gi = (u) x B .

i = 2, 3 ,

= 1 , j = 3 »

4. The main theorems

We shall prove

T H E O R E M 3 . If G ->• *G is monia for each a i l , then

H : F •*• G is epic.
a a a e

We first define the generalized free product of the F with
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amalgamated subgroups F „ = F. in the sense of B.H. Neumann [7] or Hanna
ap pa

Neumann [9] which we denote by g.f.p.<F : F^) or g.f.p.F . Our first

two lemmas reduce the theorem to the case in which g.f.p.F exists. We

then use a theorem of Hanna Neumann [9], stated below, to conclude that

g.f.p.G exists. Finally we exploit the properties of a normal form for

elements of such g.f.p.'s to conclude that r| is epic.

Homomorphisms will henceforth be labelled in accordance with the

diagram below.

£ i.
aB . „ _a__^ 4FaB ia

n

+ G
a@ «7a6 a ja " #

DEFINITION. *F is g.f.p.F if the following conditions are

satisfied:

V a € J , i is monic
' a

V ot, 3 £ I , Imli J n Im (% J = ImrC v J .

We note that these conditions are independent (of. [S]).

For the following two lemmas, it is assumed that j is monic,

a 6 I .

LEMMA 4. We may assume n and i monio.

Proof. Let K = Kern . Observe that Imfi J n K = 1 for the
a a v a(°,J a

composition j .r\ „ is monic, and that K c Kerfi ) . Thus we have a
afi aB a — ^ aJ

factorization
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rap .a

Jid J
%

F

a&

n

/K-

such that Fa •* Fa/K-a is epic. Therefore r\ is epic if and only if

Fa/%a •* <?a
 i s epic. Also F /K -*• G is monic and the lower right

square commutes so F /K -*• *F is monic.
a a

LEMMA 5. We may assume further that *F = g.f .p.F .

Proof. By Lemma it, we need ensure the intersection property. Set

F'ae = Im^J n Im^^

and define F' -*• F and G' •+• G as the inverses of i restricted to
ag a a6 a a

F' and j restricted to G' respectively. These definitions are
otp a ap

sensible as i. , j are monic, F' c Imfi ) by construction and
a a a(3 — v a'

THEOREM 6 (Hanna Neumann [9]). Set Ua = (uim(i ) \ £ Fa . Then

g.f.p.<£/ : ̂ a B ) exists if and only if g.f.p.yF : F ) exists.

PROPOSITION 7. If g.f.p.F exists,, then so does g.f.p.G .

Proof. The group V = (Uglmf,; „)) is isomorphic to U , with

isomorphism the restriction of ri to U Therefore g.f.p.^K : G )

exists, which implies that g.f.p.G exists.

COROLLARY 8. If Fa -* *F is monic, for all a i l , then so is

G •* *G .a
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NORMAL FORM THEOREM 9 ( H a n n a N e u m a n n [ J O ] ) . Suppose *F = g . f . p . F ,

and let U = \U g Im(i i .}) £ *F . For each a i l choose a system Sa

of right aoset representatives of i (u ) in Jm(i ) such that 1 d Sa

[that is, Im(i ) is the disjoint union of i ( u ) - s , e € S \ . For

each a € J choose a system T of right coset representatives of

i (U } in U such that 1 € Ta . Then each element of *F may be

written as

where u i U > t . i Ta^' , s . € Sa^' , t . +\ , and s . = 1 implies

a(i) #a(i+l) . Distinct symbols represent distinct elements.

Proof of Theorem 3. We may assume *F = g.f.p.F , *G = g.f.p.G .

Set V = (li glm^' j } J £ *G . Choose right coset representative S

and T in *F as described in Theorem 9 above. We have that ri(^) = V ,

X\i [u ) = j [V } so T\{T ) is a system of right coset representatives of

(v ) in V . Since n Im [i ) £ Im (j ) we may obtain a system of

ight coset representatives of j [v ) in Im (j ) of the form

u Ja . Assume that x € X° , and let j/ = n"1(a:) € *F . We may

write

as in the normal form theorem. Then r\(y) = x = i"|(wo)n(*i) ••• i(s ) and

we have obtained two distinct normal form symbols for the same element of

*G . Therefore Xa = 0 and so

or n is epic.
a
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THEOREM 10. Assume that i : F •* *F is monio for all a € I .

Then n is an isomorphism.

Proof. Since 3 n = T\i , it is clear that r| is monic. By-

Corollary 8, j is monic for all a € J , hence r\ is also epic and so

is an isomorphism.

5. Existence of the g.f.p.

It seems clear that one now wishes necessary and sufficient

conditions that the homomorphi sms i : F •*• *F be monic. A summary of

results concerning the existence of the g.f.p. may be found in Neumann

[SJ. In particular we have

THEOREM 11 {of. Neumann [7]). If card(j) < 2 , then the g.f.p.

of any amalgam F : X(T) -»• G exists.

This theorem and our Theorem 10 imply the result of E.M. Brown [2,

Proposition 12.5. p. ^85] cited in the introduction.

We now require a definition.

DEFINITION. Let F : Z{I) •* G be an amalgam. The graph of F

consists of vertices a for each a € I , vertices {a, 3) for each

{a, (3} c J such that F „ / {l} , and arrows beginning at {a, 3) and
afcs

terminating at a , for each {a, (3} in the graph.

THEOREM 12. If the amalgam F : Z •* G has a simply connected

graph, then F •*• *F is monic.

We shall omit the proof of this theorem, remarking only that one may

first reduce to the case of an amalgam with connected, simply connected

graph and finitely many vertices. There remains an amalgam whose graph is

a finite tree, and one proceeds by pulling off branches.

I have learned that this result was announced by A. Karrass and

D. Solitar and will appear in the Transactions of the American

Mathematical Society [4]. (The colimit *F of an amalgam with simply

connected graph is in [4] called a tree product.)
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We remark finally that Corollary 13 below follows easily from Theorem

12 (by Corollary 8) and that Theorem ll* below may be deduced rather

naturally from Theorem 11 via Theorem 12.

COROLLARY 13. Given the amalgam F : 1(1) ->• G , let I' be some

collection of 2-element subsets of I . Define the functor

F' : E(l) •+ G by: F' = F on the full subcategory of 1(1) generated by

the objects of 1(1) not in I' , and F' = {l} , {a, 6} € I' . Assume
ap

*F' = *F and that the graph of F' is simply connected. Then F ->• *F

is monic for all a € I .

THEOREM 14 (B.H. Neumann [7] or Hanna Neumann [9]). Assume

F : 1(1) -*• G is an amalgam for which there exists H € G and isomorphisms

H -*• F . for all a, M I such that

H->-Fa+F=II + F->-F

for all a, &, y € I . Then g.f.p.F exists.
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