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1. I n t r o d u c t i o n . In 1946 Montgomery and Samelson (11) introduced a 
generalization of the notion of a difïerentiable group action with one type of 
orbi t besides fixed points. Such an object is essentially a locally trivial fibering 
except on a certain singular set over which fibres are pinched to points. In 
recent years there has been a fair amoun t of research on these MS-fiberings 
and similar singular fiberings. This paper is another effort in this direction. 
F o r a fairly complete bibliography of the l i terature, the reader should consult 
the references, and in particular, (5). 

Le t / : Mn —•» Sv, with Mn a closed connected ^-manifold and Sv the uni t 
^-sphere with s tandard difïerentiable s tructure, be the projection map of a 
smooth MS-fibering with finite non-empty singular set. I t is known t h a t 
(n, p) = (2m, m + 1), where m = 2, 4 or 8 and t h a t the fibre must be a 
homotopy 1-sphere, 3-sphere or 7-sphere (13). 

In (2) it was proved t ha t the rath Bett i number bm(M2m) determines the 
number of singular points. In the case where bm(M2m) = 0, it is known t h a t / 
is topologically a suspension of a Hopf-type fibering 5 2 m _ 1 —» Sm. Examples 
where the Bett i number is non-vanishing may be obtained by smoothly 
plumbing (away from the singular set) suspensions of Hopf-type fiberings (2). 
T h e total spaces of these MS-fiberings all have the oriented homotopy type of 
a connected sum of \bm(M2m) copies of Sm X Sm. T h e main result of this 
paper is t h a t this is the only possible kind of total space, thus classifying all 
MS-fiberings over spheres with finite singular set. In the cases m = 4 and 
m = 8, our classification is actually up to homeomorphism, and it seems reason­
able to th ink t h a t this is t rue for m = 2. We believe t ha t use of results in (7) 
may give the classification up to diffeomorphism, a t least for m = 4 and m = 8. 

Our results have direct application to transformation groups, as do the 
results of ( 1 ; 2; 3) ; an example is the following result. 

T H E O R E M . Let (Mn, G) be a smooth action of the compact connected Lie group G 
with orbit space Sp and one type of orbit other than isolated fixed points. We can 
then prove the following: 

(i) (11, p) = (2m, m + 1) with m = 2 and G = SO (2) or m = 4 and 
G = S p ( l ) ; 
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(ii) The number of fixed points is equal to the Euler characteristic of M2m and 
is 2(& + 1) for some k ^ 0; 

(iii) The G-space M2m has the oriented homotopy type of the connected sum 

[ E * # ( s w x s w ) ] # s 2 w , 

and if m = 4, then M2m is homeomorphically this sum; 
(iv) / / k = 0, then (Mn, G) is topologically one or the other of the suspended 

actions (S4, SO(2)) or (S8, Sp(l)) . 

2. Preliminaries. Let Mn and Np be closed connected C°°-manifolds, 
n > p. A map / : Mn —> Np is the projection map of a smooth MS-fibering with 
finite singular set A if / is a locally trivial C°°-nbering on Mn — A and / is a 
homeomorphism on the finite non-empty set A. In particular, the local product 
maps are to be diffeomorphisms. The usual example has been the suspension of 
a Hopf map 52 m _ 1 —> Sm for m = 2, 4, 8. The singular set in either of these 
cases is just a set of two points. The m a p / is of less than maximal rank on the 
singular set. 

A C°°-manifold Mn, possibly with boundary, is m-parallelizable if its tangent 
bundle is trivial on the m-skeleton of Mn provided with some piecewise linear 
structure. Clearly, every orientable manifold is 1-parallelizable. It was proved 
in (8) that if M2m is m-parallelizable and (m — 1)-connected, m even and m ^ 4 
with index I(M2m) — 0, then M2m is cobordant to an m-connected manifold. 

In (9) Milnor classified 2m-manifolds, m even, according as to whether the 
usual quadratic form is of Type I or of Type II. It isproved that an (m — 1)-
connected 2m-manifold M2m is of Type 11 if and only if the mth Stiefel-Whitney 
class Wm(M2m) is zero. It follows that any simply connected ̂ .-manifold of Type II 
is a spin manifold (10). 

THEOREM (Milnor). A simply connected ^.-manifold MA of Type II and index 
I(MA) = 0 has the oriented homotopy type of the connected sum of ^b2(M

A) 
copies of S2 X S2. 

A similar result is proved for (m — 1)-connected 2w-manifolds, m ^ 2, 
by Wall (14). However, it is necessary to bring into play the additional in­
variant X2(Mm), where X(Mm) is the obstruction to the triviality of the stable 
tangent bundle of Mm. In (6) Kervaire proved that 

Pm(M*m) = ± am(2m - l)\X(M±m), 

where the left side is the mth Pontryagin class of MAm and am = 1 for m even, 
am = 2 for m odd. 

THEOREM (Wall). If MAm is of Type II and (2m — 1)-connected with 
I(Mm) = X2(M4m) = 0 for m = 2, 4, then Mm is homeomorphic to the con­
nected sum of \blm{Mm) copies of S2m X S2m. 

https://doi.org/10.4153/CJM-1969-163-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-163-9


FIBERINGS 1491 

3. Statement of the Main Theorem. Le t / : M2m -^Sm+1, m = 2, 4, 8, be 
a smooth MS-fibering with finite non-empty singular set. We have seen that 
this is no restriction on the dimension of the base or total space. 

MAIN THEOREM. The total space M2m has the oriented homotopy type of the 
connected sum [ £ * # (Sm X Sm)] # S2m, where the Euler characteristic e{M2m) = 
2(k + 1), k ^ 0. If m = 4 or 8, ikf2m is homeomorphic to this space. 

T o prove this theorem we first show t h a t M2m mus t be (m — 1)-connected. 
Then the following two propositions hold. 

PROPOSITION 1. M2m is of Type II with I(M2m) = 0 and bm(M2m) = 2& 
for some k ^ 0. 

P R O P O S I T I O N 2. 77ze tangent bundle r(M2m) is m-parallelizable. 

As an immediate consequence of Proposition 1, the fact t ha t e(M2m) = 
2 + bm(M2m) (see 2) , and Milnor 's classification theorem stated above, we have 
the following result. 

COROLLARY 3. The total space Mé has the oriented homotopy type of 
E * # (S2 X S2)] #S\ where e(M*) = 2{k + 1). 

In addition, MA mus t be a spin manifold. Indeed, any spin manifold MA 

of index zero occurs as the total space of an MS-fibering over a sphere up to 
homotopy type, as can be seen by plumbing techniques. 

In the case m = 4 or m = 8 , m-parallelizability implies t h a t M2m is cobordant 
to S2m, and hence t h a t X2 = 0 by Kervaire 's equation, s tated above. T h e 
classification of Wall then yields the following result. 

COROLLARY 4. The total space M2m, m = 4 or m = 8, is homeomorphic to 
[ E * # (Sm X Sm)]#S2m, where e(M2m) = 2(k + 1). 

Clearly, Corollaries 3 and 4 yield the desired theorem. 

4. Proof t h a t M2m is (m — 1 ) - c o n n e c t e d . W e first consider the case 
m = 2 by showing t h a t M2m is simply connected. T h e gist of the argument in 
this case was suggested to us by J . G. Timourian (oral communicat ion) . 

I t follows from the local s t ructure theory (13) t h a t the fibre of/: ilf4—>53is 
diffeomorphically a circle. T h u s the fibre homotopy sequence yields 

->Z-^7n(ilf4 - ^ ) - > 7 n ( 5 3 -f(A))-^ 
\\ M 

7Tl(ikf4) ->7Tl (S 3 ) « 0 

where the vertical isomorphisms follow from dimension considerations. W e 
therefore see t h a t the fundamental group of MA is cyclic. 

Suppose t h a t 7n(ikf4) has torsion. Then there is a g-to-1 cover Af4 of MA for 
some prime q. Let q denote this covering map and g the composition / O p. 
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I t is easy to see t h a t g is a proper singular fibering in the sense of Timour ian 
(13). As such, g may be factored into a smooth MS-fibering / ' followed by 
a covering map p' also of index q. Clearly, 

/ ' 
MA >K* 

M* 

Kz mus t be homeomorphic to S3 and thus it follows t h a t p is a homeomorphism, 
a contradict ion. Therefore, in(M4) is torsion-free and is a free abelian group of 
rank a t most one. 

Suppose t h a t 7n(ikT4) ^ 0. Then we can always find a 2-to-l cover of M4. 
Applying the a rgument above we again obtain a contradict ion. T h u s the proof 
of simple connect ivi ty in the case m = 2 is complete. 

T h e cases m = 4 and m = 8 are similar, thus we will give details only for the 
case m = 4. 

By Timour ian ' s local s t ructure theory (13), the fibre is a homotopy 3-sphere. 
Then the fibre-homotopy sequence implies t h a t M8 is 2-connected, while the 
Hurewicz isomorphism theorem implies t h a t irz(M8) = Hz(M8\ Z ) . W e com­
plete the proof by showing t h a t Hz(M8\ Z) is torsion-free and bz(M8) = 0. 

By torsion dual i ty , there is torsion in dimension 3 if and only if there is 
torsion in dimension 4. Let t ing F denote a field, it follows, as in (2), t h a t 

(1) e(M*; F) = b,(Ms; F) + 2 = #(A), 

where #(A) is the number of singular points . I t follows from the universal 
coefficient theorem t h a t if there is torsion in dimension 4, there is a pr ime p 
such t h a t b^iM8; Zp) 9e 0. Then , from the above equat ion and the fact t h a t 
b±(M8) S b±(Ms; Zv) for any pr ime p, we obtain a contradict ion. T h u s 
H^(M8; Z) is torsion-free. 

I t remains to show t h a t b%(M8) = 0. However, from (2, pp . 182-183), we 
have 

(2) bz{M8) = b2(M
8), 

which yields the result since M8 is a l ready 2-connected. 
No te t h a t in the case m = 8 we would use 

(3) b^M1*) = b2(M
1Q) 

from (2, p . 183), instead of (2) above. 
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5. Proof of Proposition 1. We will need the following result. 

LEMMA 5. Let f: M2m -> Sm+\ m = 2, 4, 8, be a smooth MS-fibering with 
finite non-empty singular set A and i: M2m — A —» M2m the inclusion map. Then 
i*: HQ(M2m; Z2) -* HQ(M2m - A;Z2) is an isomorphism for a ^ 2m - 2. 

Proof. It is easy to see that i*: 7rç(ikf2w — ̂ 4) —> 7r?(if
2w) is an isomorphism 

for g ^ 2m - 2. By Whitehead's theorem, **: Hq(M
2m - A) -> Hq(M

2m) is an 
isomorphism for g ^ 2m — 2. From the diagram 

0 -> Ext (#a_! (M2™), Z2) -> #* ( if2W ; Z2) -> Horn (Hq (M
2m), Z2) -» 0 

0 -> Ext (i7ff_! (M2TO - 4 ), Z2) -> if* (M2™ - ,4 ; Z2) -> Horn (if, (M2m - A ), Z2) -» 0 

the desired conclusion follows via the 5-lemma. 

In order to show that M2m is of Type II, it is enough to show that 
Wm(M2m) = 0 since M2m is (m - l)-connected. Since Sm+1 - f(A) C Rm+\ 
we have the tangent bundle isomorphism r(Sm+1 — f(A)) ~ dm+1, where 
6m+1 denotes the trivial (m + 1)-plane bundle. However,/: M2m - A -+Sm+1-
f(A), the restriction of / , is of maximal rank so that the tangent bundle 
T(M2m - A) splits off a trivial (m + 1)-plane bundle, i.e., r{M2m - A) ~ 
^ - i 0 6F+1 for some bundle T" 1 . Thus Wm(r(M2m - A)) = W^™-1) = 0. 
By the naturality of Stiefel-Whitney classes, we therefore have 

Wm(r(M2m - A)) = Wm(i*r(M2m)) = i*(Wm(M2m)) = 0. 

Now Lemma 5 yields Wm{M2m) = 0 since m ^ 2m - 2 for m = 2, 4, 8. 
It follows that I(M2m) = 0 (mod 8) and that I(M2m) = bm(M2m) (mod 2) 

since M2m is of Type II (9). Therefore, bm(M2m) = 2k for some k ^ 0. 
It remains to show that Mm has vanishing index. In order to prove this, we 

will need the following well-known result, which we state without proof. 

LEMMA 6. Let Wm be a compact connected (2m — 1)-connected \m-manifold 
with boundary the union of homotopy (4m — 1)-spheres dDu i = 1, 2, . . . , n, 
which bound smooth manifolds Dt homeomorphic to ^m-disks. Let the diffeo-
morphisms f\: dDi^W4m be the attaching maps and W*m the identification 
space. Then 

(4) I(Wm) = I(W*m). 

The local structure theory (13) tells us that the MS-fibering/: M2m -» Sm+1 

is topologically the cone of a Hopf-type map S2m~1 —» Sm, m = 2, 4, 8. Letting 
§{A) = n, we obtain the smooth fibering 

/ : W2m ( = M2m - U int D?m) -> Um+1 ( = Sm+1 - U int Di 
\ i=l / \ i=l 
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given by restriction of / , where Di2m fibers over Dim+1 as a cone of a Hopf-type 
map. Since the fibre of / is a homotopy 1-sphere, 3-sphere, or 7-sphere Tm~1, the 
equation 

I(W2m) = I(Um+1) -I(Tm-1) 

yields I(W2m) = 0. Lemma 6 now implies that I(W2m) = I(M2m), and the 
proof is complete. 

Remark. We know of no reference for the above index formula as such. 
However, the case of a fibering of manifolds without boundary is a well-
known result of Chern-Hirzebruch-Serre (4). The proof in the boundary-free 
case may be modified easily to obtain the above formula. 

6. Proof of Proposition 2. It is well known that smooth fiberings may be 
smoothly triangulated; see for instance (12). Thus we may suppose that the 
fibering/: W2m —* Um+1 of § 5 is simplicial. Moreover, the triangulations may be 
chosen so that the m-skeleton Km fibers over the 1-skeleton L of Um+1. Since 
the tangent bundle restricted to L1 is trivial, it follows that its restriction to 
Km is £w © 6m, by the maximal rank of / . For q < m, the isomorphism 
HQ(Km;G) ~ Ha(M2m;G) implies that the only existing obstruction to the 
triviality of £ro © 0m lies in Hm(Km; irm-i(SO(2m))). It follows from (6, p. 773) 
that this obstruction will vanish for m = 4, m = 8 if Pm/2(im © Qm) is zero. 
However, the Pontryagin classes are stable invariants and Pm/2 (£m) is the square 
of the Euler class of £m. The maximality of the rank of/ implies that £m splits 
off a trivial line bundle, and therefore the Euler class vanishes. For the case 
m = 2, we apply the above maximality argument and note that the pertinent 
obstruction is the Euler class of £2. This completes the proof of Proposition 2. 

REFERENCES 

1. P. L. Antonelli, Structure theory for Montgomery-Samelson fiberings between manifolds. I, 
Can. J. Math. 21 (1969), 170-179. 

2. Structure theory for Montgomery-Samelson fiberings between manifolds. II . Can. J. 
Math. 21 (1969), 180-186. 

3. Montgomery-Samelson singular fiberings of spheres, Proc. Amer. Math. Soc. 22 
(1969), 247-250. 

4. S. S. Chern, F. Hirzebruch, J.-P. Serre, On the index of a fibered manifold, Proc. Amer. 
Math. Soc. 8 (1957), 578-596. 

5. P. T. Church and J. G. Timourian, Fibre bundles with singularities, J. Math. Mech. 18 
(1968), 71-90. 

6. M. A. Kervaire, A note on obstructions and characteristic classes, Amer. J. Math. 81 (1959), 
773-784. 

7. M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 
504-537. 

8. J. Milnor, A procedure for killing homotopy groups for differentiable manifolds, Proc. Sympos. 
Pure Math., Vol. I l l , pp. 39-55 (Amer. Math. Soc , Providence, R.I., 1961). 

9. On simply connected ^-manifolds, Symposium Internacional de Topologia Algebrica 
(International Symposium on Algebraic Topology), pp. 122-128 (Universidad Nacional 
Autonoma de Mexico and UNESCO, Mexico City, 1958). 

https://doi.org/10.4153/CJM-1969-163-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-163-9


FIBERINGS 1495 

10. Remarks concerning spin manifolds, pp. 55-62 of Differential and Combinatorial 
Topology: A Symposium in Honor of Marston Morse, edited by S. S. Cairns (Princeton 
Univ. Press, Princeton, N.J. , 1965). 

11. D. Montgomery and H. Samelson, Fiberings with singularities, Duke Math. J. 13 (1946), 
51-56. 

12. H. Putz, Triangulation of fibre bundles, Can. J. Math. 19 (1967), 499-513. 
13. J. G. Timourian, Fiber bundles with discrete singular set, J. Math. Mech. 18 (1968), 61-70. 
14. C. T. C. Wall, Classification of (n — \)-connected 2n-manifolds, Ann. of Math. (2) 75 (1962), 

163-189. 

The University of Tennessee, 
Knoxville, Tennessee 

https://doi.org/10.4153/CJM-1969-163-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-163-9

