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P E R M U T I N G T H E E L E M E N T S O F A F I N I T E 
S O L V A B L E G R O U P ! 

BY 

G E R A L D H. CLIFF A N D A K B A R H. R H E M T U L L A 

ABSTRACT. The main result in this note is the following 

THEOREM. Let G be a finite solvable group. There exists a per­
mutation a of the set G such that {g • <x(g); geG} = G if and only if 
the Sylow 2-subgroup of G is non-cyclic or trivial 

§1. Introduction. Let G be a finite group, a a permutation of the set G and 
Q- ={& ' or(g); £ G G}. We say a covers G if Q. = G. In conversation with the 
second author D. Solitar has raised the problem of deciding which finite groups 
can be covered by suitable cr. If G has a non-trivial Sylow 2-subgroup that is 
cyclic then no permutation of G can cover G (Lemma 5). We conjecture that 
G can be covered in all other cases and prove this for solvable groups. Of 
course if the order of G is odd then the identity permutation covers G. In 
general, however, a group may be covered by some permutation but not by any 
automorphism of G. We do not know of any non-abelian simple group that can 
be covered by an automorphism. The explicit statement of the main result is as 
follows. 

THEOREM. Let G be a finite solvable group. If the Sylow 2-subgroup of G is 
trivial or non-cyclic, then there exists a permutation cr of the set G such that 
{g * o"(g); g£G}=G. If the Sylow 2-subgroup of G is non-trivial cyclic, then 
{g * cr(g); g e G} 7^ G for any permutation a of G. 

§2. Proofs. We begin with a few observations and the proof of the main 
result for some special cases. 

LEMMA 1. If a permutation a covers G then there exists a permutation cr' of G 
that covers G and cr'(e) = e. 

Proof. Define a(g) = a(g) • (cr(e))"1. Then 

G - {g • cr(g) ; g G G} - {g • o-(g) • Me) ) " 1 ; geG}. 

CONVENTION. If a covers G then we shall assume a(e) = e. 
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cr(ar) = > 
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LEMMA 2. If H<G and both H and G/H can be covered then so can G. 

Proof. H = {e, h2,..., hr} = CŒ, a a permutation of H. G/H = {He, 
Hg2,..., HgJ = C^, u a permutation of G/H. Define a permutation p of G as 
follows: p(hgt) = (a(h)yi7T(gi) where heH and irigt) is the coset representative 
of ir(H&). Then Cp ={hgi • (a(h))8V(gi)} = { M k ) • g i7r( g i )}- G. 

LEMMA 3. The following groups can be covered, (i) C 2 x C 2 ; (ii) C 2 x C 2 x C 2 ; 
(iii) C2"

XC2, n>\ where Cr is the cyclic group of order r. 

Proof, (i) Let G =(a)x(b) where (a) and (b) are cyclic of order two. Take a 
to be the automotphism: o~(a) = b, cr(b) —ab. Then CŒ={e • e, a • b, b • ab, 
ab • a} = G. 

(ii) Let G ={a)x(b)x(c) where (a), <b>, (c) are cyclic of order two. Then 
the automorphism cr given by a(a) = 6, cr(b) = c, cr(c) = ac covers G. 

(iii) Let G = (a)x(b) where (a) is cyclic of order 2n, n> 1, and (b) is cyclic 
of order two. Write c to denote a2"-1 and consider the map cr of G given by: 
cr(e) = e, 

[ar~xcb\ r = l,...,2n-2. 
1c; r = 2 n - 2 + l , . . . , 2 n _ 1 . 

; r = 2 n _ 1 + l , . . . , 3 - 2 n - 2 - l . * 

b; r = 3 - 2 n _ 2 , . . . , 2 n - l . 

r = l , . . . , 2 n _ 2 - l . * 

r = 2 n - 2 , . . . , 2 n _ 1 - l . 

r = 2 n _ 1 . 

*; r = 2 n _ 1 + l , . . . , 3 - 2 r i - 2 . 

*b; r = 3 - 2 n " 2 + l , . . . , 2 n . 

It is straightforward to verify that cr is a permutation of G and CCT = G. Note 
that unlike cases (i) and (ii), no automorphism T of G can cover G. For 
T(C) = ria2""1) = (r(a))2n ' = c, and hence cr(c) = e = e - r(e). 

LEMMA 4. Let G=(a,b) be a non-abelian 2-group such that A=(a) is 
normal in G and b2eA. Then G can be covered. 

Proof. From the hypotheses, (a) is cyclic of order 2n, n > 1, and ab = a"1 or 
a~ ± 1 . Define a permutation cr of G as follows: 

r)_[ar; r = 0 , 2 , . . . , 2 n ~ 1 - 2 , 2 n _ 1 + l, 2 n _ 1 + 3 , . . . , 2n -1. 

U r b ; r = l , 3 , . . . , 2 n _ 1 - l , 2 n _ 1 , 2 n _ 1 + 2 , . . . , 2n - 2 . 

r,x fa2n" ,-1- r; r = 0,2, . . . , 2 n ~ 1 - 2 , 2 n _ 1 + l , 2n~1 + 3 , . . . , 2 n - 1 . 
la2" ' ^ b ; r = l , 3 , . . . , 2 n ~ 1 - l , 2 n ~ \ 2 n _ 1 + 2 , . . . , 2 n - 2 . 

cr(arb) = < 

* These two lines do not occur if n = 2. 
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Once again, it can easily be verified that a is a permutation of G and Q. = G. 
Note again that no automorphism r of G can cover G since r(a2n~1) = a2n~\ 

LEMMA 5. If G is a group of even order and the Sylow 2-subgroup of G is 
cyclic, then no permutation of G can cover G. 

Proof. In any abelian group A of even order containing a unique element t 
or order two, the product rLeA a of a ^ the elements of A equals t. Under the 
hypothesis of the Lemma, Burnside's Theorem [1, Theorem 7.6.1] implies that 
G' is of odd order and GIG' is of even order containing a unique element of 
order two. Thus U^G gi G' but (U^G gY^G'. Thus Q ^ G for any permuta­
tion a of G. 

LEMMA 6. Every non-cyclic 2-group G can be covered. 

Proof. Assume, by way of induction, that every non-cyclic 2-group of order 
less than \G\ can be covered. By Lemma 2 we can assume that for every 
proper, non-trivial normal subgroup H of G either H or G/H is cyclic. The 
only abelian groups G with this property are the ones in the class C2^C2^<C2 

or C2~ x C2 and Lemma 3 provides the result. 
In the non-abelian case, G/G2 is not cyclic, where G2 = (g2', geG). There­

fore G2 is cyclic. Similarly Z(G) is cyclic. We claim that Z(G)<G2; if not, 
Z(G)G2 cannot be cyclic, so G/Z(G)G2 is cyclic, generated by the image of 
some geG. Then G = (g, Z(G), G2) = (g, Z(G)), since G2 is the Frattini sub­
group of G. But then G is abelian, which is not so. 

Let A be a maximal cyclic subgroup of G containing G2. Then G/A is either 
cyclic of order two or elementary abelian of order four. In the former case use 
Lemma 4 to obtain the result. The latter case does not occur. To see this, 
suppose that GjA is elementary abelian of order four. Then G ={a, b, c), with 
b2, c2, and (be)2 in A =(a) . A cannot be central, since Z(G)<G2 and A is 
maximal cyclic. Now (a2, b) and (a2,c) must be cyclic, since the corresponding 
factor groups are not. Therefore precisely one of b, c, be centralizes a, say b, 
and ac =at where t is the unique involution of (a). If bc9^b, then beZ(G)< 
A. If bc ^ b, then bc = bt, since (c, a2) is cyclic, so (ab)eZ(G)<A, and be A. 
This contradiction completes the proof. 

Proof of the theorem. The second part is covered by Lemma 5. To show the 
first part, let G be a minimal counterexample and let S be a Sylow 2-subgroup 
of G. By hypothesis S is non-cyclic and by minimality of G and Lemma 2, G 
has no normal subgroup of odd order. Let A be the maximal normal 2-
subgroup of G and let B/A be the maximal normal subgroup of G/A of odd 
order. Then by the Schur-Zassenhaus Theorem [1, Theorem 6.2.1], B is the 
split extension of A by K where |K| is odd. A is not cyclic since G has no 
normal subgroup of odd order. Thus by Lemmas 6 and 2, B can T)e covered. 
Hence B^G. Now the Sylow 2-subgroup of GIB must be non-trivial cyclic for 
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otherwise, by our choice of G, G/B and hence G can be covered. By 
Burnside's Theorem, G/B has a normal 2-complement. Since G/B has no 
normal subgroup of odd order, G/B is a cyclic 2-group. Thus G has the 
following proper invariant series: (e)<A<AK<G with A a non-cyclic 2-
group, B = AK, K a subgroup of odd order, G/B a cyclic 2-group and 
S = (A, x) where S is the Sylow 2-subgroup of G. Now by the conjugacy part of 
the Schur-Zassenhaus Theorem, Kx = Ka for some a G A. Let c = xa~1. Then 
S=<A,c> and K C = K 

Since S is non-cyclic, it can be covered by a permutation r. Every element 
g G G can be represented uniquely in the form g = sk for some s eS, keK; and 
every seS can be represented uniquely in the form s = ac\ aeA, 0 < i < m 
where m is the index of A in S. Define a permutation a of G as follows: for 
g = sk~x, seS, keK then a(g) = kr(s)kcn where r(s)GAcn , 0 < n < m . 

We now show that <x is one-to-one. Suppose that o-(s1k71)~°"(s2'c21)- Then 
fc1(a1c

r)fcïr = fc2(^2Cs)fe2S where r(s1) = a1c r, T(s2) = a2c
s; 0 < r < s < m . Thus 

fc1a1fc1c
r = k2a2k2c

s. From this it follows that s = r and k\ = k\. But |K| is odd, 
thus k1 = k2 and so a! = a2 and Sxfc^1 = s2k2

l. 
To see that the map g —» gcr(g) is one-to-one, suppose that s1kï1a(s1kï1) = 

s2k21cr(s2fc21). Then s ^ ^ ^ = s2a2k2c
s where cr(s1) = a1c r, cr(s2) = a2cs, 0 < 

r<s<m. Thus kï r= k2
s and s ^ ^ — s2a2c

s or S1T(S1) = S2T(S2). Since r covers 
S, Si = s2 and hence r = s and k1 = k2. Thus cr covers G. This completes the 
proof. 
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