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PERMUTING THE ELEMENTS OF A FINITE
SOLVABLE GROUPY

BY
GERALD H. CLIFF AND AKBAR H. RHEMTULLA

ABSTRACT. The main result in this note is the following

THEOREM. Let G be a finite solvable group. There exists a per-
mutation o of the set G such that {g - 0(g); g€ G}=G if and only if
the Sylow 2-subgroup of G is non-cyclic or trivial.

§1. Introduction. Let G be a finite group, o a permutation of the set G and
C, ={g - a(g); g€ G}. We say o covers G if C, = G. In conversation with the
second author D. Solitar has raised the problem of deciding which finite groups
can be covered by suitable ¢. If G has a non-trivial Sylow 2-subgroup that is
cyclic then no permutation of G can cover G (Lemma 5). We conjecture that
G can be covered in all other cases and prove this for solvable groups. Of
course if the order of G is odd then the identity permutation covers G. In
general, however, a group may be covered by some permutation but not by any
automorphism of G. We do not know of any non-abelian simple group that can
be covered by an automorphism. The explicit statement of the main result is as
follows.

TueoREM. Let G be a finite solvable group. If the Sylow 2-subgroup of G is
trivial or non-cyclic, then there exists a permutation o of the set G such that
{g - o(g); g€ G}=G. If the Sylow 2-subgroup of G is non-trivial cyclic, then
{g - o(g); g€ G}# G for any permutation o of G.

§2. Proofs. We begin with a few observations and the proof of the main
result for some special cases.

LemMa 1. If a permutation o covers G then there exists a permutation o’ of G
that covers G and o'(e) =e.

Proof. Define ¢'(g) =0o(g) - (o(e))"". Then

G={g-a(g); geGl={g - o(g) - (o(e))'; ge G}.
CoNveNTION. If o covers G then we shall assume o(e)=e.
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Lemma 2. If H<IG and both H and G/H can be covered then so can G.

Proof. H={e, h,,...,h}=C,, o a permutation of H. G/H={He,
Hg,, ..., Hg}=C,, w a permutation of G/H. Define a permutation p of G as
follows: p(hg;) = (o (h))*w(g) where h e H and m(g,) is the coset representative
of w(Hg;). Then C, ={hg; - (U'(h))giﬂ'(gi)}z{ho'(h) -gm(g)=G.

LemMma 3. The following groups can be covered. (i) C, X C,; (i) C, X C, X Cs;
(iii) C,-XC,, n>1 where C, is the cyclic group of order r.

Proof. (i) Let G =(a)x(b) where (a) and (b) are cyclic of order two. Take o
to be the automotphism: o(a)=b, o(b)=ab. Then C,={e-e, a-b, b - ab,
ab-a}=G.

(i) Let G =(a)x(b)x{c) where {(a), (b), {(c) are cyclic of order two. Then
the automorphism ¢ given by a(a)=b, o(b)=c, o(c)=ac covers G.

(iii) Let G ={a)x(b) where {a) is cyclic of order 2", n>1, and (b) is cyclic
of order two. Write ¢ to denote a>" ' and consider the map o of G given by:

a(e)=e,
(a"'cb; r=1,...,2" 2
a"'c; r=2""72+1,...,2" .
og(a")=+<
a'c; r=2""'+1,...,3-2"2—1. *
La"ch; r=3-2"2...,2"—1.
(a'b r=1,...,2"?—-1. *
a’; r=2""2...,2"'—1.
o(a’b)=1<b; r=2"""
a r=2""'+1,...,3:2"2
La"'b; r=3-2""241,...,2"

It is straightforward to verify that ¢ is a permutation of G and C, = G. Note
that unlike cases (i) and (ii), no automorphism 7 of G can cover G. For
T(c)=7(@* N =(r(a))* '=c, and hence cr(c)=e=¢e - 7(e).

LemMa 4. Let G ={a,b) be a non-abelian 2-group such that A ={a) is
normal in G and b*>e A. Then G can be covered.

Proof. From the hypotheses, {a) is cyclic of order 2", n>1, and a” =a™ ' or

2"

a>" '+1. Define a permutation o of G as follows:
a"; r=0,2,...,2"'=2 27741, 2"t 43, .., 2" 1.
a'b; r=1,3,...,2" '=1,2", 2" +2, ..., 2" =2,

a® Ty r=0,2,...,271=2, 27 41, 27 43, 20— 1.
a® by r=1,3,...,2" =1, 2", 2 42, 2" -2

(r(a')={

a(a'b) ={

* These two lines do not occur if n=2.
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Once again, it can easily be verified that o is a permutation of G and C, =G.
Note again that no automorphism 7 of G can cover G since 7(a®" ')=a>" .

LemMma 5. If G is a group of even order and the Sylow 2-subgroup of G is
cyclic, then no permutation of G can cover G.

Proof. In any abelian group A of even order containing a unique element ¢
or order two, the product [[,. . a of all the elements of A equals t. Under the
hypothesis of the Lemma, Burnside’s Theorem [1, Theorem 7.6.1] implies that
G' is of odd order and G/G' is of even order containing a unique element of
order two. Thus [I,.c g¢ G’ but ([],. g)>°€ G'. Thus C, # G for any permuta-
tion o of G.

Lemma 6. Every non-cyclic 2-group G can be covered.

Proof. Assume, by way of induction, that every non-cyclic 2-group of order
less than |G| can be covered. By Lemma 2 we can assume that for every
proper, non-trivial normal subgroup H of G either H or G/H is cyclic. The
only abelian groups G with this property are the ones in the class C, X C, X C,
or C,» XC, and Lemma 3 provides the result.

In the non-abelian case, G/G? is not cyclic, where G>={(g>; ge G). There-
fore G? is cyclic. Similarly Z(G) is cyclic. We claim that Z(G)= G?; if not,
Z(G)G? cannot be cyclic, so G/Z(G)G? is cyclic, generated by the image of
some ge G. Then G =(g, Z(G), G*)=(g, Z(G)), since G* is the Frattini sub-
group of G. But then G is abelian, which is not so.

Let A be a maximal cyclic subgroup of G containing G>. Then G/A is either
cyclic of order two or elementary abelian of order four. In the former case use
Lemma 4 to obtain the result. The latter case does not occur. To see this,
suppose that G/A is elementary abelian of order four. Then G =<{a, b, ¢), with
b2, ¢?, and (bc)? in A ={a). A cannot be central, since Z(G)=<G? and A is
maximal cyclic. Now {a®, b) and {a>, c) must be cyclic, since the corresponding
factor groups are not. Therefore precisely one of b, ¢, bc centralizes a, say b,
and a° = at where ¢ is the unique involution of (a). If b°# b, then be Z(G) =
A. If b¢ #b, then b° = bt, since {c, a®) is cyclic, so (ab)e Z(G)=<A, and be A.
This contradiction completes the proof.

Proof of the theorem. The second part is covered by Lemma 5. To show the
first part, let G be a minimal counterexample and let S be a Sylow 2-subgroup
of G. By hypothesis S is non-cyclic and by minimality of G and Lemma 2, G
has no normal subgroup of odd order. Let A be the maximal normal 2-
subgroup of G and let B/A be the maximal normal subgroup of G/A of odd
order. Then by the Schur-Zassenhaus Theorem [1, Theorem 6.2.1], B is the
split extension of A by K where |K| is odd. A is not cyclic since G has no
normal subgroup of odd order. Thus by Lemmas 6 and 2, B can be covered.
Hence B # G. Now the Sylow 2-subgroup of G/B must be non-trivial cyclic for
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otherwise, by our choice of G, G/B and hence G can be covered. By
Burnside’s Theorem, G/B has a normal 2-complement. Since G/B has no
normal subgroup of odd order, G/B is a cyclic 2-group. Thus G has the
following proper invariant series: (¢) <A <AK<G with A a non-cyclic 2-
group, B=AK, K a subgroup of odd order, G/B a cyclic 2-group and
S =(A, x) where S is the Sylow 2-subgroup of G. Now by the conjugacy part of
the Schur-Zassenhaus Theorem, K* = K for some a € A. Let ¢ =xa~'. Then
S=(A,c) and K =K.

Since S is non-cyclic, it can be covered by a permutation 7. Every element
g € G can be represented uniquely in the form g = sk for some s € S, k € K; and
every s€S can be represented uniquely in the form s=ac’, ac A, 0=i<m
where m is the index of A in S. Define a permutation o of G as follows: for
g=sk™', se8S, keK then o(g)=kr(s)k<" where 7(s)e Ac", 0=n<m.

We now show that ¢ is one-to-one. Suppose that o(s;k; ') = o (s,k>"). Then
ki(a;ck{ =k,(arc*)kS where 7(s;)=a,c", 7(s,)=a,c®; 0=r=s<m. Thus
kia k,c" = k,a,k,c*. From this it follows that s =r and k?= k3. But |K| is odd,
thus k; =k, and so a,=a, and s,k7'=s,k5".

To see that the map g — go(g) is one-to-one, suppose that s, k;'o(s,k;") =
s,k>'o(s,k5"). Then s,a,k,c” =s,a,k,c® where o(s,)=a,c’, o(s,)=a,c®, 0=
r=<s<m. Thus k{ =k5 and s,a,c" =s,a,c® or s,7(s;) =s,7(s,). Since T covers
S, s;=s, and hence r=s and k,=k,. Thus o covers G. This completes the
proof.
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