STRUCTURE OF CERTAIN PERIODIC RINGS

ΒY

HAZAR ABU-KHUZAM AND ADIL YAQUB

ABSTRACT. Let *R* be a periodic ring, *N* the set of nilpotents, and *D* the set of right zero divisors of *R*. Suppose that (*i*) *N* is commutative, and (*ii*) every *x* in *R* can be *uniquely* written in the form x = e + a, where $e^2 = e$ and $a \in N$. Then *N* is an ideal in *R* and *R*/*N* is a Boolean ring. If (*i*) is satisfied but (*ii*) is now assumed to hold merely for those elements $x \in D$, and if $1 \in R$, then *N* is still an ideal in *R* and *R*/*N* is a subdirect sum of fields. It is further shown that if (*i*) is satisfied but (*ii*) is replaced by: "every right zero divisor is either nilpotent or idempotent," and if $1 \in R$, then *N* is still an ideal in *R* and *R*/*N* is either a Boolean ring or a field.

Throughout, N denotes the set of nilpotents and D denotes the set of right zero divisors of R. The ring R is called *periodic* if for every x in R, there exist distinct positive integers m = m(x), n = n(x) such that $x^m = x^n$. A Boolean ring is trivially a periodic ring with commuting nilpotents and, of course, every x in R can be *uniquely* written as a sum of an idempotent and a nilpotent. That these properties are *not* confined just to Boolean rings can be seen by considering the ring of integers, modulo 4. In Theorem 1 below, we show that a periodic ring R with the above properties, while not necessarily Boolean, is the next best thing to being Boolean in the sense that its factor ring R/N is indeed Boolean (and hence a subdirect sum of copies of GF(2)). Next, we consider a periodic ring R with identity 1 and with commuting nilpotents such that every right zero divisor x can be *uniquely* written in the form x = e + a, where $e^2 = e$ and $a \in N$. Here again N turns out to be an ideal in R but R/N is now a subdirect sum of (not necessarily identical) fields. On the other hand, if we replace the last hypothesis above by "every right zero divisor is either nilpotent or idempotent," then N is still an ideal in R and R/N is now necessarily a Boolean ring or a field.

We begin this note with the following

THEOREM 1. Let *R* be a periodic ring (not necessarily with identity). Suppose that (i) *N* is commutative, and (ii) every *x* in *R* can be uniquely written in the form $x = e_0 + a_0$, where $e_0^2 = e_0$ and $a_0 \in N$. Then *N* is an ideal in *R*, and *R*/*N* is Boolean (and hence a subdirect sum of copies of GF(2)). In fact, *R* is commutative.

PROOF. Let $e^2 = e \in R$, $x \in R$, and let f = e + ex - exe. Then $f^2 = f$. Moreover, since

$$f = e + (ex - exe); ex - exe \in N;$$

Received by the editors August 18, 1983 and, in revised form, July 10, 1984. AMS Subject Classification (1980): Primary 16A38, Secondary 16A70. © Canadian Mathematical Society 1983.

1985] and

$$f = f + 0,$$

it follows from (*ii*) that ex - exe = 0, and hence ex = exe. Similarly, xe = exe, and thus

(1) All idempotents of R are central.

Combining (1) with hypotheses (*ii*) and (*i*), we see that R is commutative and hence N is an ideal in R. Let $x \in R$. By (*ii*),

$$x = e_0 + a_0;$$
 $e_0^2 = e_0,$ $a_0 \in N,$

and hence x + N is idempotent. Thus, R/N is Boolean.

THEOREM 2. Let R be a periodic ring with identity 1. Suppose that (i) N is commutative, (ii) every $x \in D$ can be uniquely written in the form x = e + a, where $e^2 = e$ and $a \in N$. Then N is an ideal in R and R/N is isomorphic to a subdirect sum of fields.

PROOF. Let $e^2 = e \in R$, $x \in R$, and let f = e + ex - exe. If f = 1, then ex = exe. Now, suppose $f \neq 1$. Then, $f^2 = f$, $f \neq 1$, and hence $f \in D$. Since

$$f = e + a$$
, where $a = ex - exe \in N$;

and

$$f = f + 0,$$

it follows from (*ii*) that a = 0 (since $f \in D$), and thus ex = exe. Similarly, xe = exe, and hence

(2) All idempotents are central.

Let $x \in R$. Since R is periodic, $x^m = x^n$ for some integers $m > n \ge 1$, and hence $x^{(m-n)n}$ is idempotent. Therefore, by (2), for all y in R,

(3)
$$[x^{(m-n)n}, y] = 0$$

where [u, v] = uv - vu. A well known Theorem of Herstein [2] asserts that (3) implies that the commutator ideal of *R* is nil and hence the nilpotents *N* of *R* form an ideal in *R*. Also, since $x^m = x^n$, for some polynomial $g(\lambda) \in \mathbb{Z}[\lambda]$,

$$(x^{m-n+1} - x)^n = (x^{m-n+1} - x)x^{n-1}g(x) = 0$$

and hence $x^{m-n+1} - x \in N$, $m > n \ge 1$. Thus,

(4)
$$(x + N)^{m-n+1} = x + N; m - n + 1 > 1, x \in R.$$

By a well known theorem of Jacobson [3], (4) implies that R/N is a subdirect sum of fields.

THEOREM 3. Let R be a periodic ring with identity 1. Suppose that (i) N is commutative, and (ii) every x in D is either idempotent or nilpotent. Then N is an ideal of R, and R/N is either Boolean or a field.

PROOF. Suppose $x \in R$, $x \notin D$. Since R is periodic, let $x^m = x^n$, $m > n \ge 1$. Then $(x^{m-n} - 1)x^n = 0$. Since $x \notin D$, $x^{m-n} - 1 = 0$, and hence by (*ii*),

121

(5) For every x in R, x is nilpotent or idempotent or a unit.

CLAIM A. If $a \in N$ and e is an idempotent, then $ae \in N$ and $ea \in N$.

PROOF. Since N is commutative, we have

(6) N is a subring of R.

Let $a \in N$ and $e^2 = e$. Then $ae - eae \in N$, and hence by (i) we have (ae - eae)a = a(ae - eae). So

(7) $aea - eaea = a^2e - aeae.$

Multiplying (7) by *e* from left and right we get $ea^2e = eaeae$. So $(eae)^2 = eaeeae = ea^2e$. Hence we have shown that

(8)
$$(eae)^2 = ea^2e$$
 for every $a \in N$,

and every idempotent e in R.

If $(eae)^{2^k} = ea^{2^k}e$, then $(eae)^{2^{k+1}} = (ea^{2^k}e)^2 = ea^{2^{k+1}}e$ (by (8)). The above induction shows that

(9)
$$(eae)^{2^n} = ea^{2^n}e$$

for all positive integers n.

Since $a \in N$, (9) implies that $eae \in N$. But $ae - eae \in N$, and hence, by (6), we get $ae \in N$. Similarly, $ea \in N$. This proves Claim A.

CLAIM B. Let $a \in N$ and x be a unit in R. Then $ax \in N$ and $xa \in N$.

PROOF. Suppose $ax \notin N$. Then

$$ax \neq xa.$$

Also, ax is not a unit in R (since a is nilpotent and x is invertible). So ax is idempotent, by (5), and hence axax = ax. So

(11)
$$axa = a$$
 (since x is invertible).

Now, $1 + x \notin N$, since $a(1 + x) \neq (x + 1)a$ and N is commutative. If $(1 + x)^2 = 1 + x$, then $x^2 = -x$. So x = -1, which contradicts (10). Hence (1 + x) is not idempotent, and since $1 + x \notin N$, we get from (5) that

(12) 1 + x is a unit in *R*.

Since $ax \notin N$, it follows that $a(1 + x) = a + ax \notin N$. Clearly, by (12), a(1 + x) is not a unit in R, and hence a(1 + x) is idempotent, by (5). Thus, $(a + ax)^2 = a + ax$. So $a^2 + a^2x + axa + (ax)^2 = a + ax$. Using (11) and $(ax)^2 = ax$ we get $a^2(1 + x) = 0$. Then (12) implies that

$$a^2 = 0.$$

Since $a \in N$ and $x^{-1}ax \in N$, therefore, by (i) and (11), $a(x^{-1}ax) = (x^{-1}ax)a = x^{-1}(axa) = x^{-1}a$. Hence

(14)
$$ax^{-1}ax = x^{-1}a.$$

Multiplying (14) by *a* from the left, and using (13) we get $ax^{-1}a = 0$. Then (14) implies that $x^{-1}a = 0$. Hence a = 0, which contradicts (10). Therefore, $ax \in N$. Similarly, $xa \in N$ and Claim B is proved.

122

Now we can complete the proof of Theorem 3. Clearly, since N is commutative, the product of two nilpotent elements is nilpotent. So it follows from (5) and Claims A and B that N is an ideal of R.

Let x + N be any nonzero right zero divisor in R/N. Then $(y + N) \cdot (x + N) = N$, $x \notin N, y \notin N$. Thus yx + N = N, and hence

(15)
$$yx \in N, \quad x \notin N, \quad y \notin N.$$

Note that x is not a unit; otherwise, $y \in N$ (see (15)). Thus, by (5) x is idempotent and hence $(x + N)^2 = x^2 + N = x + N$. This shows that

(16) Every right zero divisor of R/N is idempotent.

Moreover, by (5), we see that

(17) Every x + N in R/N is idempotent or a unit in R/N.

CLAIM C. If R/N has an idempotent different from N and 1 + N, then R/N is Boolean.

PROOF. Let $(f + N)^2 = f + N$; $f \notin N$; $f - 1 \notin N$. Suppose u + N is not idempotent. Then, by (17), u + N is a unit in R/N and, of course, $u + N \neq 1 + N$. Note that (f + N)(u + N) is not a unit in R/N; otherwise, f + N would be a unit in R/N. Hence, by (17),

(18)
$$(f+N)(u+N)$$
 is idempotent.

Now, since R/N is periodic and has no nonzero nilpotents, by a well known theorem of Herstein [1], R/N is commutative. Combining this with (18), we see that

$$(f + N)(u + N) = \{(f + N)(u + N)\}^2 = fu^2 + N$$

and hence $f(u - u^2) + N = N$. But u + N is a unit and hence f(1 - u) + N = N. Thus, (1 - u) + N is a right zero divisor (since $f \notin N$), and hence by (16), (1 - u)+ N is idempotent. Thus, $u^2 + N = u + N$ and hence u + N = 1 + N, a contradiction. This contradiction proves Claim C. Combining (17), Claim C, and the fact that R/Nis commutative, the theorem follows.

In conclusion, we would like to express our indebtedness and gratitude to the referee for his helpful comments and valuable suggestions.

REFERENCES

1. I. N. Herstein, A note on rings with central nilpotent elements, Proc. A.M.S., 5 (1954), p. 620.

2. I. N. Herstein, A commutativity theorem, J. Algebra, 38 (1976), pp. 238-241.

3. N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. of Math., 46 (1945), pp. 695-707.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF PETROLEUM AND MINERALS DHAHRAN, SAUDI ARABIA DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SANTA BARBARA, CA 93106

1985]