STRUCTURE OF CERTAIN PERIODIC RINGS

BY
HAZAR ABU-KHUZAM AND ADIL YAQUB

Abstract

Let R be a periodic ring, N the set of nilpotents, and D the set of right zero divisors of R. Suppose that (i) N is commutative, and (ii) every x in R can be uniquely written in the form $x=e+a$, where $e^{2}=$ e and $a \in N$. Then N is an ideal in R and R / N is a Boolean ring. If (i) is satisfied but (ii) is now assumed to hold merely for those elements $x \in D$, and if $I \in R$, then N is still an ideal in R and R / N is a subdirect sum of fields. It is further shown that if (i) is satisfied but (ii) is replaced by: "every right zero divisor is either nilpotent or idempotent," and if $1 \in R$, then N is still an ideal in R and R / N is either a Boolean ring or a field.

Throughout, N denotes the set of nilpotents and D denotes the set of right zero divisors of R. The ring R is called periodic if for every x in R, there exist distinct positive integers $m=m(x), n=n(x)$ such that $x^{m}=x^{n}$. A Boolean ring is trivially a periodic ring with commuting nilpotents and, of course, every x in R can be uniquely written as a sum of an idempotent and a nilpotent. That these properties are not confined just to Boolean rings can be seen by considering the ring of integers, modulo 4. In Theorem 1 below, we show that a periodic ring R with the above properties, while not necessarily Boolean, is the next best thing to being Boolean in the sense that its factor ring R / N is indeed Boolean (and hence a subdirect sum of copies of GF(2)). Next, we consider a periodic ring R with identity 1 and with commuting nilpotents such that every right zero divisor x can be uniquely written in the form $x=e+a$, where $e^{2}=e$ and $a \in N$. Here again N turns out to be an ideal in R but R / N is now a subdirect sum of (not necessarily identical) fields. On the other hand, if we replace the last hypothesis above by "every right zero divisor is either nilpotent or idempotent," then N is still an ideal in R and R / N is now necessarily a Boolean ring or a field.

We begin this note with the following
Theorem 1. Let R be a periodic ring (not necessarily with identity). Suppose that (i) N is commutative, and (ii) every x in R can be uniquely written in the form $x=e_{0}+$ a_{0}, where $e_{0}^{2}=e_{0}$ and $a_{0} \in N$. Then N is an ideal in R, and R / N is Boolean (and hence a subdirect sum of copies of $\mathrm{GF}(2)$). In fact, R is commutative.

Proof. Let $e^{2}=e \in R, x \in R$, and let $f=e+e x-e x e$. Then $f^{2}=f$. Moreover, since

$$
f=e+(e x-e x e) ; \quad e x-e x e \in N ;
$$

and

$$
f=f+0
$$

it follows from (ii) that $e x-e x e=0$, and hence $e x=e x e$. Similarly, $x e=e x e$, and thus
(1) All idempotents of R are central.

Combining (1) with hypotheses (ii) and (i), we see that R is commutative and hence N is an ideal in R. Let $x \in R$. By (ii),

$$
x=e_{0}+a_{0} ; \quad e_{0}^{2}=e_{0}, \quad a_{0} \in N
$$

and hence $x+N$ is idempotent. Thus, R / N is Boolean.
Theorem 2. Let R be a periodic ring with identity 1 . Suppose that (i) N is commutative, (ii) every $x \in D$ can be uniquely written in the form $x=e+a$, where $e^{2}=$ e and $a \in N$. Then N is an ideal in R and R / N is isomorphic to a subdirect sum of fields.

Proof. Let $e^{2}=e \in R, x \in R$, and let $f=e+e x-e x e$. If $f=1$, then $e x=e x e$. Now, suppose $f \neq 1$. Then, $f^{2}=f, f \neq 1$, and hence $f \in D$. Since

$$
f=e+a, \quad \text { where } a=e x-e x e \in N
$$

and

$$
f=f+0
$$

it follows from (ii) that $a=0$ (since $f \in D$), and thus $e x=e x e$. Similarly, $x e=e x e$, and hence
(2) All idempotents are central.

Let $x \in R$. Since R is periodic, $x^{m}=x^{n}$ for some integers $m>n \geqq 1$, and hence $x^{(m-n) n}$ is idempotent. Therefore, by (2), for all y in R,

$$
\begin{equation*}
\left[x^{(m-n) n}, y\right]=0 \tag{3}
\end{equation*}
$$

where $[u, v]=u v-v u$. A well known Theorem of Herstein [2] asserts that (3) implies that the commutator ideal of R is nil and hence the nilpotents N of R form an ideal in R. Also, since $x^{m}=x^{n}$, for some polynomial $g(\lambda) \in \mathbb{Z}[\lambda]$,

$$
\left(x^{m-n+1}-x\right)^{n}=\left(x^{m-n+1}-x\right) x^{n-1} g(x)=0
$$

and hence $x^{m-n+1}-x \in N, m>n \geqq 1$. Thus,

$$
\begin{equation*}
(x+N)^{m-n+1}=x+N ; m-n+1>1, \quad x \in R \tag{4}
\end{equation*}
$$

By a well known theorem of Jacobson [3], (4) implies that R / N is a subdirect sum of fields.

Theorem 3. Let R be a periodic ring with identity 1. Suppose that (i) N is commutative, and (ii) every x in D is either idempotent or nilpotent. Then N is an ideal of R, and R / N is either Boolean or a field.

Proof. Suppose $x \in R, x \notin D$. Since R is periodic, let $x^{m}=x^{n}, m>n \geqq 1$. Then $\left(x^{m-n}-1\right) x^{n}=0$. Since $x \notin D, x^{m-n}-1=0$, and hence by (ii),
(5) For every x in R, x is nilpotent or idempotent or a unit.

Claim A. If $a \in N$ and e is an idempotent, then $a e \in N$ and $e a \in N$.
Proof. Since N is commutative, we have
(6) N is a subring of R.

Let $a \in N$ and $e^{2}=e$. Then $a e-e a e \in N$, and hence by (i) we have ($\left.a e-e a e\right) a$ $=a(a e-e a e)$. So

$$
\begin{equation*}
a e a-e a e a=a^{2} e-a e a e \tag{7}
\end{equation*}
$$

Multiplying (7) by e from left and right we get $e a^{2} e=e a e a e$. So $(e a e)^{2}=$ eaeeae $=e a^{2} e$. Hence we have shown that

$$
\begin{equation*}
(e a e)^{2}=e a^{2} e \text { for every } a \in N, \tag{8}
\end{equation*}
$$

and every idempotent e in R.
If $(e a e)^{2^{k}}=e a^{2^{k}} e$, then $(e a e)^{2^{k+1}}=\left(e a^{2^{k}} e\right)^{2}=e a^{2^{k+1}} e$ (by (8)). The above induction shows that

$$
\begin{equation*}
(e a e)^{2^{n}}=e a^{2 n} e \tag{9}
\end{equation*}
$$

for all positive integers n.
Since $a \in N$, (9) implies that $e a e \in N$. But $a e-e a e \in N$, and hence, by (6), we get $a e \in N$. Similarly, $e a \in N$. This proves Claim A.

Claim B. Let $a \in N$ and x be a unit in R. Then $a x \in N$ and $x a \in N$.
Proof. Suppose $a x \notin N$. Then

$$
\begin{equation*}
a x \neq x a . \tag{10}
\end{equation*}
$$

Also, $a x$ is not a unit in R (since a is nilpotent and x is invertible). So $a x$ is idempotent, by (5), and hence $\operatorname{axax}=a x$. So

$$
\begin{equation*}
a x a=a \text { (since } x \text { is invertible). } \tag{11}
\end{equation*}
$$

Now, $1+x \notin N$, since $a(1+x) \neq(x+1) a$ and N is commutative. If $(1+x)^{2}=$ $1+x$, then $x^{2}=-x$. So $x=-1$, which contradicts (10). Hence $(1+x)$ is not idempotent, and since $1+x \notin N$, we get from (5) that
(12) $1+x$ is a unit in R.

Since $a x \notin N$, it follows that $a(1+x)=a+a x \notin N$. Clearly, by (12), $a(1+x)$ is not a unit in R, and hence $a(1+x)$ is idempotent, by (5). Thus, $(a+a x)^{2}=a+$ $a x$. So $a^{2}+a^{2} x+a x a+(a x)^{2}=a+a x$. Using (11) and $(a x)^{2}=a x$ we get $a^{2}(1+x)=0$. Then (12) implies that

$$
\begin{equation*}
a^{2}=0 \tag{13}
\end{equation*}
$$

Since $a \in N$ and $x^{-1} a x \in N$, therefore, by (i) and (11), $a\left(x^{-1} a x\right)=\left(x^{-1} a x\right) a=$ $x^{-1}(a x a)=x^{-1} a$. Hence

$$
\begin{equation*}
a x^{-1} a x=x^{-1} a \tag{14}
\end{equation*}
$$

Multiplying (14) by a from the left, and using (13) we get $a x^{-1} a=0$. Then (14) implies that $x^{-1} a=0$. Hence $a=0$, which contradicts (10). Therefore, $a x \in N$. Similarly, $x a \in N$ and Claim B is proved.

Now we can complete the proof of Theorem 3. Clearly, since N is commutative, the product of two nilpotent elements is nilpotent. So it follows from (5) and Claims A and B that N is an ideal of R.

Let $x+N$ be any nonzero right zero divisor in R / N. Then $(y+N) \cdot(x+N)=N$, $x \notin N, y \notin N$. Thus $y x+N=N$, and hence

$$
\begin{equation*}
y x \in N, \quad x \notin N, \quad y \notin N . \tag{15}
\end{equation*}
$$

Note that x is not a unit; otherwise, $y \in N$ (see (15)). Thus, by (5) x is idempotent and hence $(x+N)^{2}=x^{2}+N=x+N$. This shows that
(16) Every right zero divisor of R / N is idempotent.

Moreover, by (5), we see that
(17) Every $x+N$ in R / N is idempotent or a unit in R / N.

Claim C. If R / N has an idempotent different from N and $1+N$, then R / N is Boolean.

Proof. Let $(f+N)^{2}=f+N ; f \notin N ; f-1 \notin N$. Suppose $u+N$ is not idempotent. Then, by (17), $u+N$ is a unit in R / N and, of course, $u+N \neq 1+N$. Note that $(f+N)(u+N)$ is not a unit in R / N; otherwise, $f+N$ would be a unit in R / N. Hence, by (17),

$$
\begin{equation*}
(f+N)(u+N) \text { is idempotent. } \tag{18}
\end{equation*}
$$

Now, since R / N is periodic and has no nonzero nilpotents, by a well known theorem of Herstein [1], R / N is commutative. Combining this with (18), we see that

$$
(f+N)(u+N)=\{(f+N)(u+N)\}^{2}=f u^{2}+N
$$

and hence $f\left(u-u^{2}\right)+N=N$. But $u+N$ is a unit and hence $f(1-u)+N=N$. Thus, $(1-u)+N$ is a right zero divisor (since $f \notin N$), and hence by (16), ($1-u$) $+N$ is idempotent. Thus, $u^{2}+N=u+N$ and hence $u+N=1+N$, a contradiction. This contradiction proves Claim C. Combining (17), Claim C, and the fact that R / N is commutative, the theorem follows.

In conclusion, we would like to express our indebtedness and gratitude to the referee for his helpful comments and valuable suggestions.

References

1. I. N. Herstein, A note on rings with central nilpotent elements, Proc. A.M.S., 5 (1954), p. 620.
2. I. N. Herstein, A commutativity theorem, J. Algebra, 38 (1976), pp. 238-241.
3. N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. of Math., 46 (1945), pp. 695-707.
