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Abstract

A finite variety is a class of finite groups closed under taking subgroups, factor groups and finite
direct products. To each such class there exists a sequence H>,, w2, . . . of words such that the finite
group G belongs to the class if and only if wk(G) — 1 for almost all AT. As an illustration of the
theory we shall present sequences of words for the finite variety of groups whose Sylow ̂ -subgroups
have class c for c = 1 and c = 2.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 10, 20 D 20, 20 E 10, 20 F 12.

1. Introduction

By a well known theorem of Zorn a finite group belongs to the class of finite
nilpotent groups if and only if it satisfies almost all Engel conditions. This result
can be viewed as an example of a description of a finite variety of groups by a
sequence of laws. A class f of finite groups is called a finite variety if it is closed
under taking subgroups, factor groups and finite direct products. The central
result on these classes reads as follows: given a finite variety f then there exists a
sequence of laws such that the finite group G belongs to f if and only if almost
all of these laws hold identically in G. As an illustration of the theory we shall
present sequences of laws in two variables for the classes of finite groups having
abelian Sylow/^-subgroups and Sylow ̂ -subgroups of nilpotency class two. All
groups considered in this paper are finite.
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[2) Finite varieties of groups 465

2. Finite varieties and their recognizability

In this section the concept of a finite variety will be discussed.

DEFINITION. Let f be a class of finite groups.
(a) f is called a finite variety if f is closed under taking subgroups, factor

groups and finite direct products. Using P. Hall's well known closure operators
we see that this just means f = { Q, S, D }f.

(b) f is called w-recognizable if the following is true: "The finite group G
belongs to f if and only if all of its M-generator subgroups belong to I".

One easily verifies that finite varieties are just those formations which are
closed under taking subgroups, so there are plenty of them. For example, the
classes of finite abelian, nilpotent or supersoluble groups are finite varieties
which are 2-recognizable (see Huppert (1967), p. 261 and p. 722). The reason
why we have called our classes finite varieties lies in some similarity with
varieties of groups. This is best illustrated by the following central result:

THEOREM A. Let I be a finite variety of groups {which is n-recognizable). Then
there exists a sequence w,, w2, . . . of words (in n variables) such that the finite
group G lies in f if and only if wk = 1 is a law in G for almost all positive integers
k.

The proof of Theorem A depends on the Oates-Powell Theorem (see Neu-
mann (1967), p. 151) and on a result of G. Higman on finite groups in a variety
generated by finitely many finite groups (see Neumann (1967), p. 18). It will
appear in Brandl (to appear).

A typical illustration of Theorem A is a result due to Zorn which gives a
description of the 2-recognizable finite variety of finite nilpotent groups by a
sequence of laws in two variables. This sequence is given by the Engel words
wk(x> y) = [x> *>*]• This paper is concerned with a special type of finite variety
which we shall describe now.

DEFINITION. Let p be a prime and let © be a finite variety of p-groups. Then
by Syl(Gf) we denote the class of all finite groups whose Sylow />-subgroups
belong to 6.

We have immediately:

LEMMA 1. Let © be a finite variety ofp-groups. Then
(a) Syl(S) is a finite variety,
(b) If S is n-recognizable then Syl(6) is n-recognizable.
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In the remainder of this note we shall discuss two examples of finite varieties.

3. Groups with abelian Sylow p-subgroups

In this chapter p denotes some fixed prime number. Let ©^ be the class of all
finite groups having abelian Sylow/^-subgroups. So <Sp is a finite variety which is
2-recognizable. The object of this chapter is to describe this class by a sequence
of laws. In order to do this we first introduce some notation.

DEFINITION, (a) Let {pl,p2, • • • } be the set of all prime numbers different
from/?. For each positive integer k we define mk : = ( / ? , - . . . -pk)

k.
(b) Let x, y be variables. For any positive integer k we define the word

ak(x,y):=[x^,y^r.

The following result gives some information about groups satisfying some law

LEMMA 2. Let G be a finite group satisfying ak(G) = 1 for some positive integer
k. Then G has abelian Sylow p-subgroups.

PROOF. Let P G SyL,(G) and let x,y G P be given. As mk and \P\ are
coprime, we can find xo,yo E P with x = xg* and>> = y(p. Then, as ak(G) = 1,
we have 1 = ak(x0,y0) = [xo"S K*]"* = [x.yT1- N°w> as [x,y] E P, we can
conclude that [x, y] = 1 so P is abelian.

In view of Theorem A the question arises whether each group in <Sp satisfies
almost all laws ak(x,y) = 1. This, however, is not the case in general, as the
following shows.

EXAMPLE. Let G = SL(2,/?2) for some odd prime p. Let c e GF(/>2) with
c2 = - 4 . Furthermore, let x = (̂  }) and y = ( '?) . Then [x,y] = ( c ; 3 ,f.c) has
trace - 2 and so has order 2p. In particular, we have ak(G) # 1 for all k. But the
Sylow/^-subgroups of G are abelian.

However, the prime p = 2 plays a special role. We have

THEOREM B. Let G be a finite group. Then the following are equivalent:
i) G G @2,
ii) G satisfies almost all laws ak(x,y) = 1.
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PROOF. In view of Lemma 2 we only need to show that groups with abelian
Sylow 2-subgroups satisfy almost all ak(x,y) = 1. Let G e @2- Then, by Walter
(1969), there exist normal subgroups K and N of G with K < N such that K and
G/N have odd order and N/K » A X is, X • • • X Es with some abelian
2-group A and simple groups £, possessing elementary abelian Sylow 2-
subgroups.

Let k be such that the greatest odd integer which divides the order of G also
divides mk. In proving ak(G) = 1 it suffices to show that for any elements x,y of
G whose orders are powers of 2 the commutator [x,y] has odd order. As \G/N\
is odd, we have x,y E: N. Without loss of generality we may assume that K = 1.
So N ss A X El X • • • X Es.

Let x = Xo*, • • • x, and>> = yoyx • • • ys with x0, .y0 e A and x,,^, e £, for
1 < / < s. Then [x,y] = [x,,^,] • • • [x,,^,] as A is abelian. For some 1 < i < s
let D = <x,-,_y,->. So Z) is a dihedral group as x, and 7, are involutions. As the
Sylow 2-subgroups of D are elementary abelian, the order of [x,, yt] is odd. The
result follows.

A result similar to Theorem B for p odd is not known to the author. We just
know by Theorem A that some sequence of words in two variables does exist.
However, if we restrict ourselves to/>-soluble groups (we could do this by adding
the sequence for the finite variety of/^-soluble groups), we have a result for all/?.

THEOREM B*. Let G be p-soluble. Then the following conditions are equivalent:
i) G has abelian Sylowp-subgroups,
ii) G satisfies almost all laws ak{x,y) = 1.

PROOF. It suffices to show that each group G G <3p which is /?-soluble satisfies
almost all ^ (x ,^ ) = 1. By Huppert (1967), p. 691, G has/?-length one. Let K
and N be normal subgroups of G with K < N such that G/N and K are
//-groups and N/K is an abelian/>-group.

We can choose k such that exp(G/Ar) and exp(Af) both divide mk. Then for
any x,y e G we have x™*^™* & N. It follows that [x "*,>>"*] £ K and finally
ak(x, y) = 1. This proves the result.

4. p-soluble groups with Sylow/?-subgroups of class two

In this chapter p denotes a fixed prime different from 3. We now introduce
the laws we shall deal with.
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DEFINITION. For variables x, y and some positive integer k the word bk is
defined by

The following is a counterpart to Lemma 2:

LEMMA 3. Let G be a finite group satisfying bk(G) = 1 for some k. Then the
Sylow p-subgroups of G have class two.

PROOF. Let P G SyL,((7) and let x, y G P be given. As in the proof of Lemma
2 choose x0, y0 G P with x = x^ and y = y^. Then 1 = b^x^, y^) =
\[x,yY*,y1*. As x,y G P we have [[x,ylT*,y] = 1, so [*,>>]"* G C(>>)-

Now [x,y] G P and so the order of [x, y] and mk are coprime. This yields
[x,y] G C(>>) and so [x,^,^] = 1. So P satisfies the second Engel condition and
the result follows as p ¥= 3.

In the proof of the main result of this section we shall utilize a corollary of
Theorem B of Hall-Higman (see Gorenstein (1968), p. 359) which presumably is
well known.

LEMMA 4. Let G be a finite p-soluble group and let the Sylow p-subgroups of G
be of class two. Then

(a) lp(G) =lifP> 5,
(b) if p = 2 and O2(G) = 1 then O2r2(G)/O^G) is elementary abelian.

The purpose of this paragraph is to present a sequence of laws for the finite
variety %p of all finite groups having Sylow/^-subgroups of nilpotency class two.
Asp ¥= 3 these classes are 2-recognizable by Neumann (1967), 34.31.

THEOREM C. Let G be p-soluble, where p is a prime different from 3. Then the
following conditions are equivalent:

i) G G Zp,
ii) G satisfies almost all laws bk(x, y) = 1.

PROOF. By Lemma 3, we only need to prove that a /^-soluble group G £ J ;

satisfies almost all laws bk{x,y) = 1 . If p > 5 we know by Lemma 4 that
\p(G) = 1 and the result follows immediately. So let/? = 2.

It suffices to show that for all 2-elements x, y G G the element z =
[[•*> y]™*, y] has odd order. We may assu, e that OT(G) = 1 and need to show
that z = 1. Without loss of generality G = (x,y). We then have G = O2Ta(G).
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Let R := 02(G) and define W := R/Z{R). Being generated by two involu-
tions, G/R is a dihedral group. We claim that G/R centralizes W. Indeed, let
P G SyL/G). Then Z(P) < CC(R) = Z(R) by Gorenstein (1968), p. 228. If any
involution in G/R were to act nontrivially on W then P/Z(R) would be
nonabelian and so the class of P would exceed two. So xR and yR both
centralize W and we are done.

So R/Z(R) < Z(G/Z(R)) and G/Z(R) possesses a normal 2-complement
and has abelian Sylow 2-subgroups. This implies [x,yf* G Z(R) for almost all
k.

We now choose a 2-complement D in O22(G) such that [x, j ] = rrf for some
r G Z(7?) and (d) = £>. Let Z(R) = CZ(R)(D) X [Z(rt), D ] = : J ? 1 X « 2 and
let r = rxr2 with r, e /{,-(/= 1, 2). Then r, is a 2-element and the order of r2d is
odd. Moreover [r,, r2</] = 1. So we have

(1) [x,.y]m* = r?* G /{, for almost all k.

By definition of R2 we know that D stabilizes the chain R > Z(R) > R2.
Hence [R, D) < R2 and so G/R2 is 2-nilpotent. Therefore,

(2) [ [ x, y ] m\ y ] G R2 for almost all A;.

Now (1) and (2) together with /?, n /?2 = 1 imply [[*, yf\ y] - 1 proving the
theorem.
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