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Abstract

We study investment and disinvestment decisions in situations where there is a time
lag d > 0 from the time t when the decision is taken to the time t + d when the
decision is implemented. In this paper we apply the probabilistic approach to the
combined entry and exit decisions under the Parisian implementation delay. In particular,
we prove the independence between Parisian stopping times and a general Brownian
motion with drift stopped at the stopping time. Relying on this result, we solve the
constrained maximization problem, obtaining an analytic solution to the optimal ‘starting’
and ‘stopping’ levels. We compare our results with the instantaneous entry and exit
situation, and show that an increase in the uncertainty of the underlying process hastens
the decision to invest or disinvest, extending a result of Bar-Ilan and Strange (1996).
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1. Introduction

Numerous investment and disinvestment decisions are characterized by a significant imple-
mentation lag which has a profound impact on the profitability of the economic or financial
decisions undertaken. In fact, depending on the evolution of the decision variable during
the implementation lag, the investment or disinvestment opportunity may lose part of its
attractiveness. Although in the past two decades a number of investment and disinvestment
models have been extensively studied, the problem of the existence of a time lag between the
decision time and the implementation time has not received much attention in the literature
(for exceptions, see Bar-Ilan and Strange (1996) and Gauthier and Morellec (2000), who
studied investments with implementation delay, and Øksendal (2005), who studied optimal
disinvestment with delayed information). It is our purpose in this paper to analyze the effect
of implementation lags on reversible decisions and on simultaneously determined optimal
investment and disinvestment levels. Our analysis differs significantly from the ‘construction-
lag’ or ‘time-to-build’ literature, where the lag refers to the time between the decision to invest
and the receipt of the project’s first revenues (see Majd and Pindyck (1987) and Pindyck (1991),
(1993)). In our case the lag measures a systematic delay that occurs before the investment or
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disinvestment project effectively takes place, i.e. before the consequence of hitting the trigger
price comes into play.

The combined investment and disinvestment decision problem, also called the entry and exit
problem, was initially discussed in Brennan and Schwartz (1985) and McDonald and Siegel
(1986). Applying the option pricing theory developed in Black and Scholes (1973) and Merton
(1973), they evaluated active and inactive firms and defined the concepts of option to enter
and option to abandon as part of the firms’ value. A rigorous mathematical treatment of the
investment and disinvestment decision problem was proposed in Brekke and Øksendal (1994).
The authors analyzed the entry–exit decision problem by applying both option pricing and
dynamic programming theories. They gave a formal proof of the existence of a solution and
extended the classical approach to considering the case of a finite resource. Duckworth and
Zervos (2000) proposed a general model for an investment producing a single commodity which
relied on the complementarity of the contingent claim approach and the dynamic programming
approach. For a rigorous proof of this relationship, we refer the reader to Knudsen et al. (1999).
A formal and complete discussion of the entry and exit problem—based on differential equations
when the dynamics of the system follow a geometric Brownian motion—was presented in Dixit
(1989). Using the notion of reflected backward stochastic differential equations, Hamadène and
Jeanblanc (2007) solved the investment/disinvestment problem for a very general underlying
process.

Although these papers have taken a great step toward a better understanding of investment and
disinvestment decisions, they assumed that the project is brought on line immediately after the
decision to invest is made. The same holds true for the disinvestment option. Nevertheless, the
complexity of these decisions and the constraints they are subject to are not properly modeled.
To model the delay between the decision to invest (or disinvest) and the implementation
process, we follow the study in Bar-Ilan and Strange (1996) and consider that an investment
(disinvestment) project initiated at a precise date will be implemented only at a specific period
of time. Bar-Ilan and Strange (1996) focused on the effects of time lags on irreversible
investments and presented analytical solutions to this problem. With an application to portfolio
disinvestment and to resource extraction, Øksendal (2005) identified optimal stopping rules by
reducing the problem with delayed information to a classical optimal exit problem. Gauthier and
Morellec (2000) studied the implementation delay that affects the capital budgeting process (for
which see Harris and Raviv (1996)). The paper addressed the issue of an investment decision
under the Parisian implementation delay using the probabilistic approach.

The aim of this paper is to study the effects of implementation delay in the simplest possible
model of an uncertain, reversible decision process and to present analytic solutions for optimal
entry and exit levels. This framework characterizes numerous industrial-production processes.
In the industrial-production context, investing indicates the decision to undertake or start a
production process, whereas disinvesting indicates the decision to undo or change a specific
production process. A typical example, also introduced in Hamadène and Jeanblanc (2007), is
the energy-industry sector. Fuel-burning utilities which generate electricity burning either gas
or coal have a co-production option. Each facility conveniently adapts its fuel inputs according
to the price evolution of these factors on international exchanges. However, each utility needs
some time to implement fuel switching. Fuel switching is the extent to which a producer can
reduce the use of a certain type of energy—coal, for instance—and uptake another source of
energy—gas—in its place. Ideally, the decision to fuel switch takes place when the underlying
variable, i.e. the fuel price, hits a prespecified barrier level. In fact, the existence of physical
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and technical constraints allows the implementation of the new production process after only a
given time interval (see Tseng and Barz (2002) and Deng and Oren (2003)).

As in Gauthier and Morellec (2000), we apply the probabilistic approach, but we apply
it to the combined investment and disinvestment decision under the Parisian implementation
delay. The Parisian delay reflects the will of any firm to verify that market conditions remain
favorable or unfavorable during the implementation lag of the investment or disinvestment
decision, respectively. The Parisian criterion originates from a relatively new type of financial
option contract introduced in Chesney et al. (1997) and termed a Parisian option. Such a
contract corresponds to a generalization of a barrier-type option. More precisely, a Parisian
option gets activated or deactivated when the underlying process has spent a sufficient amount
of time above or, respectively, below the barrier level. Literature addressing the mathematical
and computational aspects related to this new option contract is extensive (see Schröder (2003),
Avellaneda and Wu (1999), Haber et al. (1999), and the references therein). However, to
the authors’ knowledge, only Gauthier and Morellec (2000) use the Parisian criterion for the
appraisal of investments in a real option context.

The probabilistic approach leads to more tractable valuation results than does the partial
differential equation approach. Relying on standard mathematical results, we prove the inde-
pendence between Parisian stopping times and the underlying process stopped at the stopping
time, obtaining a quite remarkable result. More precisely, in Lemma C.1 we prove that
such an independence property holds for a Brownian motion with drift and not just for a
standard Brownian motion. This makes our study significantly different from the analysis
in Chesney et al. (1997) and in Gauthier and Morellec (2000). An interesting contact with
Wald’s identity is discussed. We derive a sufficient condition in order to obtain correctly
ordered Parisian optimal levels, i.e. with the investment level higher than the disinvestment level.
Finally, a numerical exercise is performed, comparing the delayed investment and disinvestment
decision problem with the corresponding instantaneous problem. Our results confirm that an
increase in uncertainty postpones instantaneous investments (see Pindyck (1991)) and that the
value of investments and disinvestments under the Parisian criterion is lower compared to the
corresponding instantaneous cases (Gauthier and Morellec (2000) were the first to obtain this
result in the investment case). Moreover, extending the results of Bar-Ilan and Strange (1996)
to the disinvestment case, we show that an increase in the uncertainty of the underlying process
also hastens the decision to disinvest.

The paper is organized as follows. In Section 2 we introduce the model for the investment
and disinvestment decision problem in the context of the Parisian stopping times. In Section 3
we solve the constrained maximization problem and derive sufficient conditions to obtain
the optimal triggering levels correctly ordered. In Section 4 we conclude with a numerical
comparison.

2. Problem formulation

Following the literature on real options (see Dixit and Pindyck (1994) and Bar-Ilan and
Strange (1996)), we model optimal investment and disinvestment decisions as the valuation of
a perpetual American option contract. Agents are risk neutral and the firm has an investment
opportunity in a nontraded asset yielding stochastic returns. Markets are incomplete in the sense
that it is impossible to buy an asset or a dynamic portfolio of assets spanning the stochastic
changes in the value of the project. There is no futures market for the decision variable and the
size of the investment project prevents the firm from taking a position on such a market. As
mentioned before, the Parisian criterion reflects the will of the firm to check that the market
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conditions remain favorable or unfavorable during the implementation delay of the investment
or disinvestment decision, respectively. In this section we give the mathematical formulation
of the Parisian criterion, and in the next section we determine the value of investment and
disinvestment decisions under the Parisian criterion.

At any time t the firm can invest in a project yielding an operating profit that depends on the
instantaneous cash flow (St , t ≥ 0). We assume that St follows a geometric Brownian motion,

dSt

St

= µ dt + σZt , S0 = x,

where µ and σ are constants and (Zt , t ≥ 0) is a Brownian motion defined on a filtered
probability space (�, F , (Ft )t≥0, P). We denote by Vt the expected sum of the discounted
cash flows from t to ∞,

Vt = Et

[∫ ∞

t

e−ρ(u−t)Su du

]
,

where the discount rate ρ is constant and Et [·] stands for the conditional expectation E[· | Ft ].
Lemma 2.1. Assume that St follows a geometric Brownian motion and that ρ > µ. Then Vt

is a geometric Brownian motion and, moreover,

Vt = St

ρ − µ
.

Proof. We have

Vt = Et

[∫ ∞

t

e−ρ(u−t)Ste
µ(u−t) exp

{
−σ 2

2
(u − t) + σ(Zu − Zt)

}
du

]
,

where the last term is a martingale. Applying Fubini’s theorem we obtain

Vt = St

∫ ∞

t

e−ρ(u−t)eµ(u−t) du = St

ρ − µ
.

This completes the proof.

Therefore, Vt satisfies the following stochastic differential equation:

dVt

Vt

= µ dt + σZt , V0 = S0

ρ − µ
. (2.1)

Since the agents are risk neutral, the value of the investment and disinvestment decision
problem can be written as a discounted expectation,

E[exp{−ρτI}(VτI − CI)
+ + exp{−ρτD}(CD − VτD)+],

where (·)+ corresponds to max(0, ·), CI and CD respectively represent the investment and
disinvestment costs, which we assume to be constant, and τI and τD represent the first instants
when the process Vt has consecutively spent d units of time above or, respectively, below a
specific threshold. This satisfies the Parisian criterion, i.e. the firm invests or disinvests at τI
or, respectively, τD only if the decision variable Vt has reached a prespecified level and has
remained constantly above or, respectively, below this level for a time interval longer than a
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Figure 1: A possible sample path of the underlying process. After the process has consecutively spent
dI units of time above the investment threshold h∗

I , the firm undertakes the investment. After the process
has consecutively spent dD units of time below the disinvestment threshold h∗

D, the firm undertakes the
disinvestment.

specific period of time (the so-called time window). See Figure 1 for a graphical interpretation.
The time window corresponds to the implementation delay, whereas the prespecified levels
correspond to the optimal investment threshold h∗

I and the optimal disinvestment threshold
h∗

D. We assume that the time window associated with the investment or disinvestment is a
fixed amount of time dI or, respectively, dD. The criterion that triggers the decision to act is the
so-called Parisian stopping time which depends on the size of the excursions of the state variable
above or below the optimal thresholds.

The firm maximizes the present value of its opportunities, namely, it solves the following
problem:

V F(V0) = max
τI<τD

E[exp{−ρτI}(VτI − CI)
+ 1{τI<∞} + exp{−ρτD}(CD − VτD)+ 1{τD<∞}].

Because we are in the perpetual case, the investment or disinvestment decision will occur at
the first instant when Vt hits some constant optimal threshold h∗

I or, respectively, h∗
D. Letting

τI and τD be the stopping times which correspond to the Parisian criterion with time windows
dI and dD, and letting hI and hD respectively be the entry and exit levels, the present value of
the investment and disinvestment decision problem becomes

V F(V0) = max
hD≤hI,V0≤hI

E0[exp{−ρτI}(VτI − CI) 1{τI<∞} + exp{−ρτD}(CD − VτD) 1{τD<∞}].
(2.2)

3. The solution of the problem

In this section we solve the maximization problem, obtaining an analytic solution to the
optimal entry and exit thresholds. Following the literature on Parisian options, we reformulate
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the problem in terms of the drifted Brownian motion. We define

Vt = V0 exp{σXt }, where Xt = bt + Zt and b = µ − σ 2/2

σ
, (3.1)

and construct a new probability measure P∗ under which Xt becomes a P∗-Brownian motion,

dP∗

dP

∣∣∣∣
Ft

= exp

{
b2

2
t − bXt

}
. (3.2)

Applying Girsanov’s theorem, we change the probability measure in (2.2). Under the new
measure, τI < ∞ and τD < ∞ hold almost surely. Using the independence result from
Theorem C.5, we obtain

EP∗
[

exp

{
−

(
ρ + b2

2

)
τI

}]
EP∗ [exp{bXτI}(V0 exp{σXτI} − CI)] (3.3)

for the first term in the maximization problem. Similarly, the second term becomes

EP∗
[

exp

{
−

(
ρ + b2

2

)
τD

}]
EP∗ [exp{bXτD}(CD − V0 exp{σXτD})]. (3.4)

In Appendix D we compute the Laplace transform of the Parisian investment and dis-
investment times under the new measure P∗ defined in (3.2). We calculate the moment
generating function for the process Xt defined in (3.1) and stopped at the Parisian investment
and disinvestment times. Finally, we evaluate the first hitting time of X which starts from the
Parisian investment time. After that, and combining Proposition D.6 and Proposition D.7, we
can rewrite the maximization problem, (2.2), as

V F(V0) = max
hD≤hI,V0≤hI

(
V0

hI

)θ1 φ(b
√

dI)

φ(
√

(2ρ + b2)dI)

{
hI

φ(
√

dI(σ + b))

φ(b
√

dI)
− CI

+
(

hI

hD

)θ2 φ(−√
(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

φ(−b
√

dD)

φ(b
√

dI)

(
CD − hD

φ(−(b + σ)
√

dD)

φ(−b
√

dD)

)}
,

(3.5)

where φ(z) is the moment generating function derived in Appendix A and defined as

φ(z) =
∫ ∞

0
x exp

{
zx − 1

2
x2

}
dx,

and where, to simplify the already complicated notation, we adopt the following:

θ1 = −b + √
2ρ + b2

σ
and θ2 = −b − √

2ρ + b2

σ
.

Let us start by considering the instantaneous investment and disinvestment problem, i.e. when
dI = dD = 0. First, we solve the unconstrained problem corresponding to (3.5). Taking its
partial derivative with respect to hD and solving for the critical value, we obtain an explicit
solution for the optimal instantaneous disinvestment h∗

ND,

h∗
ND = θ2CD

θ2 − 1
,
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whereas the optimal instantaneous investment threshold is h∗
NI = max(V0, x

∗), where x∗ is the
largest of the two solutions of the implicit equation

x = θ1CI

θ1 − 1
+

(
x

h∗
ND

)θ2 θ2 − θ1

θ1 − 1

CD

1 − θ2
;

the equation is obtained by taking the partial derivative of (3.5) with respect to hI and solving
for the critical value. However, the solution of the unconstrained maximization problem, h∗

ND
and max(x∗), does not necessarily coincide with the solution of the constrained maximization
problem. Imposing CD < CI, the solution satisfies the first constraint h∗

ND ≤ max(x∗).
Assuming in addition that V0 ≤ h∗

NI, the (instantaneous) constrained problem has also correctly
ordered optimal levels. Summarizing, the solution of the (instantaneous, i.e. dI = dD = 0)
unconstrained problem coincides with the solution of the constrained problem, imposing CD <

CI and assuming that V0 ≤ h∗
NI.

We now consider the investment and disinvestment problem with Parisian delay for more
general time windows, i.e. dI > 0 and dD ≥ 0. First, we solve the unconstrained problem
corresponding to (3.5), where we assume that V0 ≤ hI. This is a necessary assumption due
to the mathematical construction of the Parisian investment stopping time that does not admit
already started excursion (for further details see Appendix A and Appendix B). As we did for
hD ≤ hI , we could investigate under which conditions the constraint V0 ≤ hI is implicitly
satisfied. We leave this for future research. Taking its partial derivative with respect to hD
and solving for the critical value, we obtain an explicit solution for the optimal disinvestment
threshold h∗

D,

h∗
D = φ(−b

√
dD)

φ(−(b + σ)
√

dD)

θ2CD

θ2 − 1
. (3.6)

It is immediately observable that h∗
ND = h∗

D when dD = 0. Intuitively, h∗
D increases when

the disinvestment cost CD increases. Therefore, similar to the instantaneous investment and
disinvestment problem, the higher the disinvestment cost the sooner the firm wants to exit.
Furthermore, since φ is an increasing function, we obtain h∗

ND ≤ h∗
D, meaning that the firm

decides to disinvest earlier in the presence of a disinvestment delay.
Taking the partial derivative with respect to hI and solving for the critical value, we obtain

an implicit solution for h∗
I , as in the case of the instantaneous investment and disinvestment

problem. In particular, h∗
I = max(V0, x

∗), where x∗ solves the implicit equation

x = θ1CI

θ1 − 1

φ(b
√

dI)

φ((b + σ)
√

dI)
+

(
x

h∗
D

)θ2 θ2 − θ1

θ1 − 1

φ(−√
(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

φ(−b
√

dD)

φ((b + σ)
√

dI)

CD

1 − θ2
.

(3.7)
Denoting the right-hand side of the implicit equation (3.7) by f (x), we now prove that it

has two solutions, one of which is larger than h∗
D, if we impose condition (3.8), below.

Lemma 3.1. Let f (x) be the right-hand side of (3.7), and let h∗
D be defined as in (3.6). Then

the following relations hold.

(a) The function f is increasing in (0, ∞), and

lim
x↘0

f (x) = −∞ and lim
x→∞ f (x) = θ1CI

θ1 − 1

φ(b
√

dI)

φ((b + σ)
√

dI)
.
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(b) f (h∗
D) > h∗

D if the following inequality holds:

CD
φ(−b

√
dD)

φ(−(b + σ)
√

dD)
< CI

φ(b
√

dI)

φ((b + σ)
√

dI)
. (3.8)

Proof. Since θ1 > 1, part (a) follows easily. To prove part (b), note that the following
relations hold since φ is an increasing function:

θ1

θ1 − 1
= 1

1 − θ2

(
−θ2 + θ1 − θ2

θ1 − 1

)

≥ 1

1 − θ2

(
−θ2 + θ1 − θ2

θ1 − 1

φ(−√
(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

φ(−(b + σ)
√

dD)

φ((b + σ)
√

dI)

)
.

We now multiply the left- and right-hand side terms of the inequality above with the terms
in (3.8) and we obtain

θ1CI

θ1 − 1

φ(b
√

dI)

φ((b + σ)
√

dI)
>

CD

1 − θ2

φ(−b
√

dD)

φ(−(b + σ)
√

dD)

×
(

−θ2 + θ1 − θ2

θ1 − 1

φ(−√
(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

φ(−(b + σ)
√

dD)

φ((b + σ)
√

dI)

)
.

Regrouping the terms we obtain f (h∗
D) > h∗

D. This completes the proof.

Relying on the previous lemma, the implicit equation x = f (x) has two solutions, termed x∗
1

and x∗
2 , where 0 < x∗

1 < h∗
D < x∗

2 . Hence, the unconstrained maximization version of (3.5) has
two critical points: (x∗

1 , h∗
D) and (x∗

2 , h∗
D). Between them, only the second point satisfies the

constraint h∗
D < x∗. Therefore, assuming that V0 ≤ x∗

2 and imposing condition (3.8), the critical
point (x∗

2 , h∗
D) is a local maximum point for the unconstrained maximization problem (3.5),

and, thus, (h∗
I , h

∗
D) is the unique solution of (3.5). We summarize our results in the following

theorem.

Theorem 3.1. Consider the investment and disinvestment decisions of a firm under the Parisian
criterion with time windows dI and dD. If (3.8) holds and V0 ≤ x∗

2 , then the optimal investment
and disinvestment thresholds satisfy the following equations:

h∗
D = φ(−b

√
dD)

φ(−(b + σ)
√

dD)

θ2CD

θ2 − 1

and h∗
I = x∗, where x∗ solves the implicit equation

x = θ1CI

θ1 − 1

φ(b
√

dI)

φ((b + σ)
√

dI)
+

(
x

h∗
D

)θ2 θ2 − θ1

θ1 − 1

φ(−√
(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

φ(−b
√

dD)

φ((b + σ)
√

dI)

CD

1 − θ2
.

4. Model results

We now present a brief discussion of the optimal investment and disinvestment thresholds,
h∗

I and h∗
D, in terms of the time windows dI and dD.

(a) If dI = dD = 0, we recover the well-known case of the instantaneous investment and
disinvestment problem and, therefore, h∗

I = h∗
NI and h∗

D = h∗
ND.
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Table 1: Ratio of the Parisian value problem to the instantaneous value problem. The parameters are
ρ = 0.13, µ = 0.05, σ = 0.40, CD = 0.5, CI = 1.7, and V0 = 1.

dD
dI

0.0 0.5 1.0 1.5 2.0

0.0 1.0000 0.9999 0.9998 0.9997 0.9996
0.5 0.9872 0.9871 0.9870 0.9869 0.9868
1.0 0.9738 0.9737 0.9736 0.9735 0.9734
1.5 0.9600 0.9599 0.9598 0.9598 0.9597
2.0 0.9461 0.9460 0.9459 0.9458 0.9457

(b) If dD = 0 and dI ≥ 0, then h∗
D = h∗

ND.

(c) If dD → ∞ then h∗
I converges to

h∗
OI = θ1CI

θ1 − 1

φ(b
√

dI)

φ((b + σ)
√

dI)
,

where h∗
OI represents the optimal investment threshold for the time window dI, while

disinvestment is not possible. Gauthier and Morellec (2000) were the first to obtain this
result.

(d) If dD ≥ 0 and dI ≥ 0, then h∗
D ≥ h∗

ND.

For illustrative purposes, we perform a numerical evaluation to compare the investment and
disinvestment decision problem in the presence of implementation delay and the instantaneous
investment and disinvestment decision problem. In Table 1 we report the ratio of the value of
the Parisian investment and disinvestment decision problem with respect to the instantaneous
investment and disinvestment decision problem, at their respective optima. Since the first
column and row correspond to the values of dI and dD, respectively, we expect this ratio to be
equal to 1 when the delay dI = dD = 0. This is the case, as we observe in the upper-left corner
of Table 1.

We observe that the value of the investment and disinvestment decision problem is lower
under the Parisian criterion than in the instantaneous case for reasonable parameter values.
This is expected, because the time lag under the Parisian criterion measures a systematic
(and unavoidable) delay that forces the firm to ‘postpone’ the investment (or disinvestment)
procedure. Of particular interest is the presence of an asymmetric effect: the larger dI, the
stronger the impact on the investment value. Conversely, dD does not have such a strong
impact, possibly due to the reversibility of the investment decision. Since firm’s profits are a
convex function of the stochastic underlying and disinvestment is possible at a cost, a firm will
invest at a lower level when the implementation delay forces it to decide in advance whether to
enter a few periods ahead or not. In other words, the impact of dI dominates dD.

Since either instantaneous and Parisian investment/disinvestment optima are linear functions
of both CD and CI, only the impact on the optimal thresholds of the volatility of the underlying
process requires further investigation. Our findings confirm the results of numerous papers
which report that an increase in uncertainty delays (instantaneous) investments. (See Pindyck
(1991) for a survey.) The first row of Table 2 shows the effect of an increase in uncertainty
without investment delay. As σ goes from 0.05 to 0.40, h∗

I rises from 2.8291 to 5.3185, while h∗
D
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Table 2: Parisian optimal investment value h∗
I . The parameters are ρ = 0.13, µ = 0.05, CD = 0.5,

CI = 1.7, and V0 = 1.

σ = 0.05 σ = 0.20 σ = 0.40

dD
dI

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0 2.8291 2.8291 2.8291 3.5735 3.5735 3.5734 5.3185 5.3113 5.3080
3 2.3221 2.3221 2.3221 2.1571 2.1571 2.1570 2.0858 2.0823 2.0807
5 2.0973 2.0973 2.0973 1.8080 1.8079 1.8079 1.5447 1.5417 1.5403

falls from 0.4882 to 0.2620 (not reported in the table). The higher (instantaneous) investment
threshold and the lower (instantaneous) disinvestment threshold imply that further uncertainty
delays both entry and exit, and, thus, generates more so-called inertia. The intuition behind
such a conventional result is that a firm delays in order to avoid learning bad news after it has
made its decision to enter or exit. The likelihood of receiving bad news rises with uncertainty,
as does the benefit of waiting. However, waiting has an opportunity cost due to the loss of
income during the period of inaction and this is more evident in the presence of delays. As a
result, conventional findings on the effect of the uncertainty of the underlying process on the
investment and disinvestment are reversed when there are time lags. Similar to Bar-Ilan and
Strange (1996), Table 2 shows that an increase in uncertainty hastens the decision to invest
and disinvest. For instance, when dI = 5, h∗

I falls from 2.0973 to 1.5447, while h∗
D rises from

0.5201 to 0.5884 (not reported in the table). Since a firm can exit at a cost, the downside risk of
the project is bounded. This makes profits a convex function of the stochastic underlying, and
the expected return of the project rises with uncertainty. Therefore, a higher volatility hastens
investment and disinvestment when delays force a firm to decide in advance whether or not to
undertake a decision in the near future.

An interesting direction for future research would be the analytical study of the behavior
of optimal thresholds in the Parisian decision problem as functions of the delays dI and dD.
Moreover, we can look for explicit conditions when inequality (3.8) holds. Although possible,
such an analysis would require a careful study of the properties of the function φ.

Appendix A. Definitions and results

The Brownian meander and the Parisian criterion are closely related. In the following we
define the Brownian meander and list some of its properties. Then, we present the connection
existing between the Brownian meander and the Parisian criterion.

Let (Zt , t ≥ 0) be a standard Brownian motion on a filtered probability space (�, F ,

(Ft )t≥0, P). For each t > 0, we define the random variables

gt = sup{s : s ≤ t, Zs = 0},
dt = inf{s : s ≥ t, Zs = 0}.

The interval (gt , dt ) is called the ‘interval of the Brownian excursion’which straddles time t .
For u in this interval, sgn(Zt ) remains constant. In particular, gt represents the last time
the Brownian motion crossed the level 0. It is known that gt is not a stopping time for the
Brownian filtration (Ft )t≥0 but for the slow Brownian filtration (Gt )t≥0, which is defined
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by Gt = Fgt ∨ σ(sgn(Zt )). The slow Brownian filtration represents the information on the
Brownian motion until its last 0 plus the knowledge of its sign after this.

The Brownian meander process ending at t is defined as

m(t)
u = 1√

t − gt

|Zgt+u(t−gt )|, 0 ≤ u ≤ 1. (A.1)

The process m
(t)
u is the nonnegative and normalized Brownian excursion which straddles time t

and is independent of the σ -field (Gt )t≥0. When u = 1 and t = 1, we conveniently denote
m1 = m

(1)
1 . The random variable m1 will play a central role in the calculation of many other

variables that will be introduced later on. The distribution of m1 is known to be

P(m1 ∈ dx) = x exp
{− 1

2x2} 1x>0 dx,

and the moment generating function φ(z) is given by

φ(z) = E[exp{zm1}] =
∫ ∞

0
x exp

{
zx − 1

2
x2

}
dx. (A.2)

We now look at the first instant when the Brownian motion spends d units of time consecu-
tively above or below the level 0. For d ≥ 0, we define the random variables

H+
d = inf{t ≥ 0 : t − gt ≥ d, Zt ≥ 0}, (A.3)

H−
d = inf{t ≥ 0 : t − gt ≥ d, Zt ≤ 0}.

The variables H+
d and H−

d are Gt -stopping times and, hence, Ft -stopping times (see Revuz
andYor (1991, Chapter XII) for more details). From (A.1) we can easily deduce that the process(

1√
d

|Zg
H

+
d

+ud |
)

u≤1
= (m

(H+
d )

u )u≤1

is a Brownian meander, independent of Gg
H

+
d

. In particular, (1/
√

d)ZH+
d

is distributed as m1,

P(ZH+
d

∈ dx) = x

d
exp

{
− x2

2d

}
1x>0 dx,

and the random variables H+
d and ZH+

d
are independent.

Similarly, (1/
√

d)ZH−
d

is distributed as −m1,

P(ZH−
d

∈ dx) = −x

d
exp

{
− x2

2d

}
1x<0 dx,

and the random variables H−
d and ZH−

d
are independent.

Chesney et al. (1997) were the first to calculate the Laplace transform of H+
d . We present

the result in the next theorem.

Theorem A.1. Let H+
d be the stopping time defined in (A.3), and let φ be the moment generating

function defined in (A.2). For any λ > 0,

E[exp{−λH+
d }] = 1

φ(
√

2λd)
.
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The proof is based on the Azèma martingale, µt = sgn(Zt )
√

t − gt , a remarkable (Gt )

martingale. The same results hold also when H+
d is replaced with H−

d .
So far we have only looked at the Brownian motion excursions above or below level 0. More

generally, we can define, for any a ∈ R and any continuous stochastic process X,

g
X0,a
t (X) = sup{s : s ≤ t, Xt = a | X0 = x}, (A.4)

H+
(X0,a),d (X) = inf{t ≥ 0 : t − g

X0,a
t ≥ d, Xt ≥ a | X0 = x},

H−
(X0,a),d (X) = inf{t ≥ 0 : t − g

X0,a
t ≥ d, Xt ≤ a | X0 = x}.

Thus, g
X0,a
t (X) represents the last time the process X crossed level a. As for the Brownian

motion case, gX0,a
t (X) is not a stopping time for the Brownian filtration (Ft )t≥0 but for the slow

Brownian filtration (Gt )t≥0. The random variables H+
(X0,a),d (X) and H−

(X0,a),d (X) represent the
first instants when the process X spends d units of time above or, respectively, below the level a.
The variables H+

(X0,a),d (X) and H−
(X0,a),d (X) are Gt -stopping times and, hence, Ft -stopping

times. In the notation we use we indicate the starting point of the process X, the level a, and
the length of time d . Although indicating the starting point seems unnecessary, it turns out to
be extremely helpful in the context of the Parisian criterion.

Another relevant random variable is the first hitting time of level a, which we define as

TX0,a(X) = inf{s : Xs = a | X0 = x}.

Appendix B. Parisian criterion

According to the notation introduced in Section 2, the investment stopping time τI which sat-
isfies the Parisian criterion corresponds to H+

(V0,hI),dI
(V ). In order to express the disinvestment

stopping time τD in mathematical formulae, we need to extend the definition of H+
(V0,hI),dI

(V ).

Let τ be any stopping time, let a ∈ R, let X be a continuous stochastic process, and let gX0,a
t (X)

be as defined in (A.4). Then

(a) the first instant after τ when the process X spends d units of time above or below level a

is given by the stopping time H
+,τ
(X0,a),d (X) or, respectively, H

−,τ
(X0,a),d (X):

H
+,τ
(X0,a),d (X) = inf{t ≥ τ : t − g

X0,a
t ≥ d, Xt ≥ a | X0 = x},

H
−,τ
(X0,a),d (X) = inf{t ≥ τ : t − g

X0,a
t ≥ d, Xt ≤ a | X0 = x};

(b) the first hitting time after τ of level a is the stopping time T τ
X0,a

(X),

T τ
X0,a

(X) = inf{s ≥ τ : Xs = a | X0 = x}.
If X has the strong Markov property and τ is a finite stopping time, we have the following

equalities in distribution: H
+,τ
(X0,a),d (X) = H+

(Xτ ,a),d (X), H
−,τ
(X0,a),d (X) = H−

(Xτ ,a),d (X), and
T τ

X0,a
(X) = TXτ ,a(X). Now we can state the formulae for the stopping times τI and τD, which

satisfy the Parisian criterion.

Proposition B.1. Let τI and τD be the stopping times corresponding to the Parisian criterion
with time windows dI and dD and levels hI and hD, respectively. Then the following equalities
hold:

τI = H+
(V0,hI),dI

(V ), τD = H
−,τI
(V0,hD),dD

(V ).
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Otherwise, in terms of the drifted Brownian motion, the Parisian stopping times are

τI = H+
(V0,hI),dI

(V ) = H+
(l0,lI),dI

(X), where l0 = 0 and lI = 1

σ
log

(
hI

V0

)
,

and

τD = H
−,τI
(V0,hD),dD

(V ) = H
−,τI
(l0,lD),dD

(X), where l0 = 0 and lD = 1

σ
log

(
hD

V0

)
.

Appendix C. Parisian stopping times and independence

In this appendix we prove that the Parisian investment and disinvestment times and the
position of the underlying value process at that time are independent. We rely on the key
property of independence of the Brownian meander from the slow Brownian filtration. The
independence is a pivotal result that allows us to perform exact calculations of the maximization
problem, (2.2), in Section 3.

The following proposition helps us to decompose the disinvestment Parisian time, provided
that we have proved the independence relationship between the Parisian investment time and
the position of the underlying value process.

Proposition C.1. Let τ be any finite stopping time such that τ and Vτ are independent, and
assume that hD ≤ Vτ almost surely (a.s.). Then the following equality in distribution holds:

H
−,τ
(V0,hD),dD

(V ) = τ + TVτ ,hD(V ) + H−
(hD,hD),dD

(V ),

and the terms of the sum are independent. A similar relationship holds for H
+,τ
(V0,hI),dI

(V ) if we
assume that Vτ ≤ hI a.s.

Proof. The strong Markov property and the continuity of the process V give us the equality.
The independence follows from our hypothesis that τ and Vτ are independent.

The next theorem shows that the Parisian disinvestment time and the position of the under-
lying value process at that time are independent.

Theorem C.1. Assume that hD ≤ hI and that V0 ≤ hI, let τD = H
−,τI
(V0,hD),dD

(V ), and let P∗ be
as defined in (3.2). Then the stopping time τD is finite P∗-a.s. and the random variables τD and
VτD are independent under the P∗-measure.

The proof is broken down into several steps and relies on the next lemma. The lemma is
one of the main results of this paper and it proves an interesting independence property of the
Brownian motion with drift.

Lemma C.1. Let Xt = bt+Zt , where b ∈ R, and construct the stopping time T = H+
(0,0),d (X)

according to (A.4). The following conclusions hold.

(a) The random variables XT 1{T <∞} and T 1{T <∞} are independent under the P-measure
if and only if b ≥ 0.

(b) The random variables XT 1{T <∞} and T 1{T <∞} are independent under the P∗-measure
for any b ∈ R.

A similar relationship holds when H+
(0,0),d (X) is replaced with H−

(0,0),d (X).
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Proof. Using Girsanov’s theorem, we construct the probability measure P∗ under which
Xt becomes a P∗-Brownian motion. Under this probability, XT = XH+

(0,0),d
(X) is a Brownian

meander and, thus, it is independent of T = H+
(0,0),d (X). Also, 1{T <∞} = 1 a.s. under the

measure P∗. Thus, we have the required independence under the P∗-measure for any b ∈ R.
We need to show that the independence also holds under the original measure P if and only if
b ≥ 0.

The independence holds if and only if the Laplace transforms satisfy the equality

EP[exp{−λXT − αT } 1{T <∞}] = EP[exp{−λXT } 1{T <∞}] EP[e−αT 1{T <∞}]. (C.1)

Hence, we show that the equality holds if and only if b ≥ 0.
Let us apply a transformation of measure to the left-hand side of (C.1). (We thank an

anonymous referee for the derivation of the Girsanov’s transformation with T being a stopping
time.) Let us consider a fixed time T ∗. Then

EP[exp{−λXT − αT } 1{T ≤T ∗}] = EP∗
[
exp{−λXT − αT } 1{T ≤T ∗} exp

{− 1
2b2T ∗ + bXT ∗

}]
= EP∗

[
exp{−λXT − αT } 1{T ≤T ∗}
× EP∗

[
exp

{− 1
2b2T ∗ + bXT ∗

} | XT , T
]]

= EP∗
[
exp{−λXT − αT } 1{T ≤T ∗} exp

{− 1
2b2T + bXT

}]
.

This relies on the Markov property and the fact that exp{−b2T/2+bXT } is a P∗-martingale.
Now, setting T ∗ → ∞ and because, under the P∗-measure, 1{T <∞} = 1 a.s., we obtain

EP[exp{−λXT − αT } 1{T <∞}] = EP∗
[
exp{−λXT − αT } exp

{− 1
2b2T + bXT

}]
.

We know that, under the P∗-measure, XT is independent of T and, grouping the factors, the
left-hand side of (C.1) becomes

EP[exp{−λXT − αT } 1{T <∞}] = EP∗ [exp{(−λ + b)XT }] EP∗
[
exp

{(−α − 1
2b2)T }]

.

Let us now calculate the product of the right-hand side of (C.1). Using Girsanov’s theorem,
we change the measure in both terms:

EP∗
[
exp{−λXT } exp

{− 1
2b2T + bXT

}]
EP∗

[
e−αT exp

{− 1
2b2T + bXT

}]
.

Since, under the P∗-measure, XT is independent of T , we obtain

EP∗ [exp{(−λ + b)XT }] EP∗
[
exp

{(−α − 1
2b2)T }]

EP∗
[
exp

{− 1
2b2T + bXT

}]
.

Therefore, we can immediately identify the extra term

EP∗
[
exp

{− 1
2b2T + bXT

}] = φ(b
√

d)

φ(|b|√d)
,

where the last equality follows from the properties of the Brownian meander. This extra term is
equal to 1 if and only if b ≥ 0, which means that the independence holds if and only if b ≥ 0.

Remark. It is worth noting that in Chesney et al. (1997) all computations are carried out
under the measure P∗, where the independence comes automatically from the properties of
the Brownian meander. In Gauthier and Morellec (2000) the authors do not investigate under
which conditions for b the independence under the measure P holds.
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Analyzing the independence relationships we can observe an interesting connection with
Wald’s identity. Let us recall the following known theorem which relates Wald’s identity to the
finiteness of the stopping times.

Theorem C.2. Let Zt be a P-Brownian motion, and let Xt = bt + Zt be a drifted P-Brownian
motion. Let P∗ be the measure under which Xt is a P∗-Brownian motion. Let T be any stopping
time, and assume that P∗(T < ∞) = 1. Then Wald’s identity,

EP∗
[
exp

{− 1
2b2T + bXT

}] = 1,

holds if and only if P(T < ∞) = 1.

In our case, T = H+
(0,0),d (X). From Chesney et al. (1997) we know that P∗(T < ∞) = 1

and, based on the properties of the Brownian meander, we also know that

EP∗
[
exp

{− 1
2b2T + bXT

}] = 1 if and only if b ≥ 0.

Thus, P(T < ∞) < 1 if and only if b < 0. Let us now compute P(T < ∞). In order to
proceed, we first take a detour and calculate the Laplace transform of H+

(0,0),d (X) under the
P-measure.

Theorem C.3. Let Xt = bt +Zt , where b is some fixed real number, and construct the stopping
time H+

(0,0),d (X) according to (A.4). Let φ be the moment generating function defined in (A.2).
Then, for any λ > 0, the Laplace transform of H+

(0,0),d (X) is given by

EP[exp{−λH+
(0,0),d (X)}] = φ(b

√
d)

φ(
√

(2λ + b2)d)
.

Proof. Using Girsanov’s theorem, we construct the probability measure P∗ under which
Xt becomes a P∗-Brownian motion. Under this probability, XH+

(0,0),d
(X) becomes a Brownian

meander and, thus, it is independent of H+
(0,0),d (X). We then compute the Laplace transform

and apply the change of measure

EP[exp{−λH+
(0,0),d (X)}] = EP∗

[
exp{−λH+

(0,0),d (X)}
× exp

{− 1
2b2H+

(0,0),d (X) + bXH+
(0,0),d

(X)

}]
.

Grouping terms together and using the independence property, we obtain

EP[exp{−λH+
(0,0),d (X)}] = EP∗

[
exp

{(−λ − 1
2b2)H+

(0,0),d (X)
}]

EP∗ [exp{bXH+
(0,0),d

(X)}].
Using the Laplace transform of the Brownian meander and recognizing that φ is the moment
generating function of (1/

√
d)H+

(0,0),d (X), we obtain

EP[exp{−λH+
(0,0),d (X)}] = φ(b

√
d)

φ(
√

(2λ + b2)d)
.

This completes the proof.

We now calculate P(T < ∞), where we let T = H+
(0,0),d (X). If T (ω) < ∞ then

lim
λ↘0

e−λT (ω) = 1;
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if T (ω) = ∞ then e−λT (ω) = 0 for every λ > 0, so

lim
λ↘0

e−λT (ω) = 0.

Therefore,
lim
λ↘0

e−λT (ω) = 1{T <∞} .

Letting λ ↘ 0 and using the monotone convergence theorem, we obtain

P(T < ∞) = φ(b
√

d)

φ(|b|√d)
.

If b ≥ 0 then
P(T < ∞) = 1.

If b < 0 then

P(T < ∞) = φ(b
√

d)

φ(−b
√

d)
< 1.

We summarize the results in the following theorem.

Theorem C.4. Let Xt = bt +Zt , where b is some fixed real number, and construct the stopping
time H+

(0,0),d (X) according to (A.4). Let φ be the moment generating function defined in (A.2).
Then,

P(H+
(0,0),d (X) < ∞) = φ(b

√
d)

φ(|b|√d)
.

Remark. In the real option context this theorem has the following implications. If b ≥ 0 then
the investment process will take place with probability 1, while there is a positive probability
that the disinvestment process will not take place. If b < 0 then there is a positive probability
that the investment process will not take place. Furthermore, if the investment took place then
the disinvestment process would take place with probability 1.

The next result is a direct consequence of Lemma C.1 and proves an independence relation-
ship for the process Vt , starting from hI. In order to emphasize that the starting point for our
process is hI, we use the notation V

hI
t in the proof of the next lemma.

Lemma C.2. Let T = H+
(hI,hI),dI

(V ) be the stopping time defined in (A.4), and let b and Xt be
as defined in (3.1). The following conclusions hold.

(a) The random variables T 1{T <∞} and VT 1{T <∞} are independent under the P-measure
if and only if b ≥ 0. In particular, T 1{T <∞} and XT 1{T <∞} are independent under the
P-measure if and only if b ≥ 0.

(b) The random variables T 1{T <∞} and VT 1{T <∞} are independent under the P∗-measure
for any b ∈ R. In particular, T 1{T <∞} and XT 1{T <∞} are independent under the
P∗-measure for any b ∈ R.

Proof. We know that Vt is the geometric Brownian motion in (2.1). If it starts from hI then

V
hI
t = hI exp{σXt }, where Xt = bt + Zt and b = µ − σ 2/2

σ
.
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From the equality above we also obtain H+
(hI,hI),dI

(V ) = H+
(0,0),dI

(X). Thus, we have obtained

VH+
(hI,hI),dI

(V ) = hI exp{σXH+
(0,0),dI

(X)} and H+
(hI,hI),dI

(V ) = H+
(0,0),dI

(X).

The independence now follows from Lemma C.1.

We now prove that the Parisian investment time and the position of the underlying value
process at that time are independent, which is a remarkable finding of the paper.

Theorem C.5. Assume that V0 ≤ hI, let b and Xt be as defined in (3.1), and recall that the
Parisian investment time is τI = H+

(V0,hI),dI
(V ). Then the following conclusions hold.

(a) If b ≥ 0 then the stopping time τI is finite P-a.s. and, under P∗, τI is finite a.s. for any
b ∈ R.

(b) The random variables τI 1{τI<∞} and VτI 1{τI<∞} are independent under the P-measure
if and only if b ≥ 0. In particular, τI 1{τI<∞} and XτI 1{τI<∞} are independent under the
P-measure if and only if b ≥ 0.

(c) The random variables τI 1{τI<∞} and VτI 1{τI<∞} are independent under the P∗-measure
for any b ∈ R. In particular, τI 1{τI<∞} and XτI 1{τI<∞} are independent under the
P∗-measure for any b ∈ R.

Proof. Let us first prove the independence under P∗. We apply Proposition C.1 with τ = 0,
and obtain

τI = H+
(V0,hI),dI

(V ) = T(V0,hI)(V ) + H+
(hI,hI),dI

(V ),

where the terms of the sum are independent. If b ≥ 0 then, under P, τI < ∞ a.s. because the
stopping times T(V0,hI)(V ) and H+

(hI,hI),dI
(V ) are finite. Similarly, τI < ∞ a.s. under P∗ for any

b ∈ R. On the other hand, by the strong Markov property and the continuity of the process V ,
we have the following equality in distribution under P∗:

VτI 1{τI<∞} = VH+
(hI,hI),dI

(V ).

We now apply Lemma C.2, and find that VH+
(hI,hI),dI

(V ) and H+
(hI,hI),dI

(V ) are independent. By
the strong Markov property we find that VH+

(hI,hI),dI
(V ) and T(V0,hI)(V ) are independent. There-

fore, we find that τI and VτI are independent, which is the desired result. The proof of
independence under P is similar to the proof of Lemma C.1 and so we omit it.

We now have all the ‘components’ to prove Theorem C.1.

Proof of Theorem C.1. Here we work under the measure P∗. Let τD = H
−,τI
(V0,hD),dD

(V ). We
need to prove that τD and VτD are independent. Recall that the Parisian investment time is
τI = H+

(V0,hI),dI
(V ) and that, by Theorem C.5, the random variables τI and VτI are independent.

We apply Proposition C.1 with τ = τI and obtain

τD = H
−,τI
(V0,hD),dD

(V ) = τI + TVτI ,hD(V ) + H−
(hD,hD),dD

(V ),

where the terms of the sum are independent. Also, under P∗, τD < ∞ because the stopping
times τI, TVτI ,hD(V ), and H−

(hD,hD),dD
(V ) are finite. On the other hand, by the strong Markov

property and the continuity of the process V , we have the following equality in distribution
under P∗:

VτD = VH−
(hD,hD),dD

(V ).
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We now apply Lemma C.2, and find that VH−
(hD,hD),dD

(V ) and H−
(hD,hD),dD

(V ) are independent. By
the strong Markov property, we find that VH−

(hD,hD),dD
(V ) is independent of τI and of TVτI ,hD(V ).

Therefore, we find that τI and VτI are independent, which is the desired result.

Appendix D. Laplace transforms and moment generating functions

To obtain the optimal investment and disinvestment thresholds in analytic form, we need to
calculate all terms that enter into the maximization problem. We first find the Laplace transform
of the Parisian investment time under the measure P∗ defined in (3.2).

Proposition D.1. For any λ > 0, the following equality holds:

EP∗ [exp{−λτI}] =
(

V0

hI

)√
2λ/σ 1

φ(
√

2λdI)
.

Proof. From Proposition C.1 we have

EP∗ [exp{−λτI}] = EP∗ [exp{−λTl0,lI}] EP∗ [exp{−λH+
(lI,lI),dI

(X)}].

Using the corresponding Laplace transforms, we obtain

EP∗ [exp{−λτI}] = exp{−(lI − l0)
√

2λ} 1

φ(
√

2λdI)
=

(
V0

hI

)√
2λ/σ 1

φ(
√

2λdI)
.

In the next proposition we calculate the moment generating function for the process Xt

defined in (3.1), stopped at the Parisian investment time.

Proposition D.2. For any λ ∈ R, the following equality holds:

EP∗ [exp{−λXτI}] =
(

hI

V0

)−λ/σ

φ(−λ
√

dI).

Proof. Using the definition of XτI ,

EP∗ [exp{−λXτI}] = EP∗ [exp{−λ(lI + m1

√
dI)}].

Now, using the definitions of lI and φ, we obtain

EP∗ [exp{−λXτI}] = exp{−λlI}φ(−λ
√

dI) =
(

hI

V0

)−λ/σ

φ(−λ
√

dI).

In the following we calculate the Laplace transform of the first hitting time of X, starting at
the Parisian investment time.

Proposition D.3. For any λ > 0, the following equality holds:

EP∗ [exp{−λT(XτI ,lD)(X)}] =
(

hD

hI

)√
2λ/σ

φ(−√
2λdI).
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Proof. Conditioning, we write

EP∗ [exp{−λT(XτI ,lD)(X)}] = EP∗ [EP∗ [exp{−λT(XτI ,lD)(X)} | FτI ]].
Since XτI ≥ lD a.s., we can use the Laplace transform of the hitting time to obtain

EP∗ [exp{−(XτI − lD)
√

2λ}].
Using the formulae for XτI and ld , we know that XτI − ld = (1/σ) log(VτI/hD) and, hence, we
obtain

EP∗
[(

VτI

hD

)−√
2λ/σ ]

= h

√
2λ/σ

D EP∗ [V −√
2λ/σ

τI
] =

(
hD

V0

)√
2λ/σ

EP∗ [exp{−√
2λXτI}].

Applying Proposition D.2 we obtain the desired result.

Now, we find the Laplace transform of the Parisian disinvestment time under the measure
P∗ defined in (3.2).

Proposition D.4. For any λ > 0, the following equality holds:

EP∗ [exp{−λτD}] = EP∗ [exp{−λτI}]φ(−√
2λdI)

φ(
√

2λdD)

(
hD

hI

)√
2λ/σ

.

Proof. Using Proposition C.1, we can write

EP∗ [exp{−λτD}] = EP∗ [exp{−λτI}] EP∗ [exp{−λT(XτI ,lD)(X)}] EP∗ [exp{−λH−
(lD,lD),dD

(X)}].
Now, using the corresponding Laplace transforms, we obtain the desired result.

Again, we calculate the moment generating function for the process Xt defined in (3.1),
stopped at the Parisian disinvestment time.

Proposition D.5. For any λ ∈ R, the following equality holds:

EP∗ [exp{−λXτD}] =
(

hD

V0

)−λ/σ

φ(λ
√

dD).

Proof. Using the definition of XτD ,

EP∗ [exp{−λXτD}] = EP∗ [exp{−λ(lD − m1

√
dD)}].

Now, using the definitions of lD and φ, we obtain the desired result.

Finally, we are able to calculate the first term appearing in the maximization problem, (2.2).

Proposition D.6. The following equality holds:

EP[exp{−ρτI}(VτI − CI) 1{τI<∞}] = EP∗
[

exp

{
−

(
ρ + b2

2

)
τI

}](
hI

V0

)b/σ

φ(b
√

dI)

×
(

hI
φ(

√
dI(σ + b))

φ(b
√

dI)
− CI

)
.
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Proof. Using (3.3) and Proposition D.2, the left-hand side of the above equality becomes

EP∗
[

exp

{
−

(
ρ + b2

2

)
τI

}](
V0

(
hI

V0

)(σ+b)/σ

φ(
√

dI(σ + b)) − CI

(
hI

V0

)b/σ

φ(b
√

dI)

)
,

and grouping the terms we obtain the desired result.

Similarly, we calculate the second term appearing in the maximization problem, (2.2).

Proposition D.7. The following equality holds:

EP[exp{−ρτD}(CD − VτD) 1{τD<∞}]

= EP∗
[

exp

{
−

(
ρ + b2

2

)
τI

}](
hI

V0

)b/σ (
hI

hD

)(−b−
√

2ρ+b2)/σ

× φ(−√
(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)
φ(−b

√
dD)

(
CD − hD

φ(−(b + σ)
√

dD)

φ(−b
√

dD)

)
.

Proof. Using (3.4), Proposition D.4, and Proposition D.5, the left-hand side of the above
equality becomes

EP∗
[

exp

{
−

(
ρ + b2

2

)
τI

}](
hD

hI

)√
2ρ+b2/σ

φ(−√
(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

×
(

CD

(
hD

V0

)b/σ

φ(−b
√

dD) − V0

(
hD

V0

)(σ+b)/σ

φ(−(b + σ)
√

dD)

)
,

and now factoring out and grouping the terms we obtain the desired result.
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