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Abstract.—Organismal metabolic rates reflect the interaction of environmental and physiological factors.
Thus, calcifying organisms that record growth history can provide insight into both the ancient environ-
ments in which they lived and their own physiology and life history. However, interpreting them requires
understanding which environmental factors have the greatest influence on growth rate and the extent to
which evolutionary history constrains growth rates across lineages. We integrated satellite measurements
of sea-surface temperature and chlorophyll-a concentration with a database of growth coefficients, body
sizes, and life spans for 692 populations of livingmarine bivalves in 195 species, set within the context of a
new maximum-likelihood phylogeny of bivalves. We find that environmental predictors overall explain
only a small proportion of variation in growth coefficient across all species; temperature is a better pre-
dictor of growth coefficient than food supply, and growth coefficient is somewhat more variable at higher
summer temperatures. Growth coefficients exhibitmoderate phylogenetic signal, and taxonomicmember-
ship is a stronger predictor of growth coefficient than any environmental predictor, but phylogenetic iner-
tia cannot fully explain the disjunction between our findings and the extensive body of work
demonstrating strong environmental control on growth rateswithin taxa. Accounting for evolutionary his-
tory is critical when considering shells as historical archives. The weak relationship between variation in
food supply and variation in growth coefficient in our data set is inconsistent with the hypothesis that the
increase in mean body size through the Phanerozoic was driven by increasing productivity enabling faster
growth rates.
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Introduction

Several lines of evidence suggest that the
mean energy requirements and metabolic
rates of metazoans have generally increased

through time (Bambach 1993; Payne and Finne-
gan 2006; Finnegan et al. 2011; Payne et al. 2014;
Smith et al. 2016). A variety of potential intrin-
sic (e.g., physiological/behavioral/ecological)
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and extrinsic (environmental) drivers have
been invoked to explain this long-term trend
(Bambach 1993; Vermeij 1995; Bush and Bam-
bach 2011; Klompmaker et al. 2017), but no con-
sensus view has yet emerged. This is due, in
part, to the inherent limitations of studying fos-
sil organisms: in most cases metabolic rates
must be inferred from a combination of body-
mass estimates, independent estimates of
important environmental parameters, and
physiological inferences from comparison
with extant relatives (Finnegan et al. 2011;
Payne et al. 2014; Heim et al. 2015; Strotz
et al. 2018). Such analyses are further compli-
cated by the fact that, without additional data,
it is impossible to separate the contributions
of growth rate and longevity to body size in fos-
sil organisms (Jones 1988).
Organisms that grow mineralized skeletons

by marginal accretion (including many marine
invertebrate groups such as corals, sponges,
brachiopods, and mollusks) have the potential
to provide more precise information about
metabolic rates. These organisms commonly
preserve their ontogenetic histories as seasonal
variation in the physical properties and/or iso-
topic composition of accreted skeletal material
(Jones and Quitmyer 1996) and can therefore
provide a detailed record of individual growth
rate through time and ultimate longevity.
Bivalve mollusks are diverse and abundant

in the fossil record, and their skeletal growth
is especially well-understood among taxa that
grow by marginal accretion (Gosling 2015a).
Consequently, they can serve as a useful
model system for studying metabolic rate vari-
ation across space and time. However, before
interpreting such rate variation in the fossil
record, it is useful to first address three ques-
tions about extant bivalves:

1. Which environmental factors have the great-
est influence on growth rates?

2. How much of an influence does evolution-
ary history (e.g., phylogenetic relatedness)
have on growth rates?

3. How much of the total variation in bivalve
growth rates can be explained by environ-
mental variation and evolutionary history?

We address these questions by evaluating tem-
perature, primary production, and evolution-
ary history as predictors of growth rate in
bivalves. Salinity has also been found to inter-
act with growth rate in bivalves, but the nature
of this relationship is not straightforward, has
been subject to very limited study, and may
only be relevant at very low salinities (Seed
and Suchanek 1992), so we do not consider it
here. Temperature and food availability are
well studied as predictors of growth ratewithin
species, and positive relationships are generally
recovered (e.g., Beukema and Cadee 1991; Seed
and Suchanek 1992; Savina and Pouvreau 2004;
Bourlès et al. 2009; Chauvaud et al. 2012; but
see Widdows 1978). Indeed, food availability
has been claimed to be the most important pre-
dictor of growth rate in bivalves (Gosling
2015a). However, comparatively little work
has explored causes of variation in growth
rate at broader taxonomic scales, which to our
knowledge have only been addressed in a few
studies: Heilmayer et al. (2005) demonstrated
a strong (r2 = 0.693) relationship between in
situ temperature and growth rate among scal-
lops (Pectinidae). Killam and Clapham (2018)
demonstrated that bivalves living at lower
and more variable temperatures were more
likely to experience seasonal cessations in
growth.Moreover, those authors found no rela-
tionship between chlorophyll-a concentration
and seasonal cessation of growth, contra Gos-
ling (2015a).
In a recent study of spatial variation in

growth trajectories among bivalves, Moss et al.
(2016) analyzed a database of georeferenced
individual- and population-level observations
of shell growth. In their study, Moss et al.
(2016) applied the von Bertalanffy growth equa-
tion (von Bertalanffy 1938), which describes the
length of an organism with indeterminate
growth as a function of time:

L(t) = L1(1− e−k(t−t0)) (1)

where L∞ is the asymptote of the function,
representing the length of the organism
(umbo-to-commissure shell height for bivalves)
given infinite time, and k is the growth
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coefficient in units of years−1. The growth coef-
ficient k is proportional but not equal to the rate
of size increase (growth rate): instead, it is an
exponential decay constant expressing the rate
at which an organism’s current size approaches
its theoretical maximum or asymptotic size
(L∞). Thus, the larger of two organisms with
identical growth coefficient k would grow fas-
ter in terms of length per time (Fig. 1). Von Ber-
talanffy growth parameters L∞ and k can be
readily inferred for a bivalve by measuring
the distance between successive annual growth
lines/bands (= growth increments) in their
cross-sectioned shells. Each dark band (in
reflected light) corresponds to an interval of
slow shell growth, and these are generally sea-
sonally controlled (e.g., Jones and Quitmyer
1996; Schöne 2008; but see Surge et al. 2001;
Edie and Surge 2013; see also Schoene and
Surge [2012] on subannual banding). Moss
et al. (2016) found that distance from the equa-
tor was positively correlated with life span and

inversely correlated with the growth coefficient
k, but body size showed no relationship either
with latitude or with the other growth para-
meters. Importantly, only a small proportion
of the variation in growth coefficient was
explained by latitude; thus, much of the vari-
ation in growth coefficient at broad taxonomic
scales must be explained by extrinsic or intrin-
sic variables other than temperature. The
degree to which growth rate is constrained by
evolutionary history has never been explored
in depth, but Moss et al. (2016) did recover
some clustering of growth coefficients within
taxonomic orders of bivalves. If closely related
species tend to grow at similar rates, it could
explain the disjunction between the findings
of Moss and colleagues and the studies at nar-
rower taxonomic scopes that recover a stronger
dependence of growth rate on environmental
conditions. In this study, we use remote-sensing
data, a new phylogeny of bivalves, and phylo-
genetic comparative methods to evaluate the
degree to which variation in growth coefficient
across Bivalvia can be explained by evolutionary
history and environmental variation.

Methods

Data Sources.—We build on the Moss et al.
(2016) data set to yield 692 observations of life
span and the von Bertalanffy parameters k
(growth coefficient) and L∞ (body size)
among wild populations of bivalves from the
ecological literature. The observations encom-
pass 195 species in 12 orders (Horton et al.
2016), with 75 genera represented by multiple
species. A complete description of our data
set can be found in Moss et al. (2016). Observa-
tions in the Moss et al. (2016) data set without
growth coefficient k are not included in this
study.
Deposit feeders have been found to make

up a greater proportion of bivalve species at
higher latitudes (Berke et al. 2014; Edie et al.
2018), which might influence our results if
deposit feeders and suspension feeders differ
systematically in their growth parameters or
in their responses to temperature or food
supply. We acquired data on feeding ecology
(i.e., suspension feeding, deposit feeding, or
chemosynthetic) from published sources,

FIGURE 1. Illustration of changing L∞ and k of the von
Bertlanaffy growth equation (eq. 1). Solid black line: L∞ =
75, k = 0.30, t0 = 0. Dashed gray line: L∞ = 50, k = 0.10, t0 =
0. Dashed-dotted gray line: L∞ = 100, k = 0.30, t0 = 0. k is
the rate at which L∞ is approached. In the scenario of two
organisms with identical k values but different L∞ values
(top two lines), the organisms with the higher L∞ values
would accrete more shell in terms of length per time. Alter-
natively, if L∞ is identical, but k differs (bottom two lines),
then the organisms with the higher k values would accrete
more shell in terms of length per time. Thus, direct compar-
isons between taxa of k in terms of absolute growth rate can-
not bemade, because L∞may different. However, because k
is the rate at which L∞ is approached, it provides informa-
tion on the growth strategy of the organism in question
and may also provide insights into ecology.
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listing the feeding ecology of congeners when
this information was not available for a given
species. Suspension feeders comprise 93% of
our observations, deposit feeders another 6%,
and chemosynthetic bivalves a final 1%. Mean
absolute latitude of observations was 48.7° for
deposit feeders and 41.9° for suspension
feeders.
We use NASA’s OceanColor Web, a reposi-

tory for satellite-based remote-sensing oceano-
graphic data, to obtain data products from the
MODIS-Aqua satellite for as many observa-
tions in the data set as possible (NASA God-
dard Space Flight Center, Ocean Biology
ProcessingGroup 2014). Grids of environmental
parameters with 1/24-degree spatial resolution
(equal to 4.6 km at the equator) are obtained
for chlorophyll-a concentration (mg/m3) and
sea-surface temperature (SST, °C) for each
month between July 2002 and December 2016.
This time span does not overlap with every
study used in the Moss et al. (2016) data set
(1910–2015, median publication year = 1996).
However, the satellite data are assumed to
broadly represent oceanic conditions during
the original studies; for instance, they encom-
pass five El Niño events, which are major
sources of supra-annual variability in the
ocean (Philander 1989; NOAA Center for

Weather and Climate Prediction n.d.). We gen-
erate grids of “minimum” and “maximum”
values for chlorophyll and SST. Instead of
true minima and maxima, which are sensitive
to outliers, the values in these grids correspond
to the 10th and 90th percentiles of the data in
each cell. Results were found to be relatively
insensitive to the choice of percentile values
(Supplementary Table S1). Environmental pre-
dictors are extracted for every available locality
in the Moss et al. (2016) data set.
Most population-level bivalve research is

done very close to land, where remote-sensing
data are sometimes unavailable. Of the 692
observations in the data set, SST is available
for 623 (90%) of them, and chlorophyll-a data
for 489 (70%) (Fig. 2). Observations for which
only SST is available are distributed fairly
evenly, both geographically and phylogenetic-
ally. Our data set is biased toward the
temperate Northern Hemisphere and toward
English-language literature. Four observations
from below shelf depths (>200 m) are excluded
from comparison with environmental vari-
ables, as remote-sensing proxies are unreliable
estimates of environmental conditions at great
depths. SST and chlorophyll concentration are
not correlated with each other in our data set
(Supplementary Material 3).

FIGURE 2. Geographic distribution of growth parameter observations, plotted at 50% opacity. Localities with only chloro-
phyll or temperature data available are plotted as orange triangles; those with both are plotted as blue circles (see online
version for colors). N = 688.
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Evaluating Predictors.—Growth rate scales
exponentially with temperature during the ris-
ing phase of a thermal performance curve
(Schulte 2015). Because of the close correspond-
ence between growth rate and metabolic rate,
we predicted and tested for a linear relationship
between SST and the natural log of the growth
coefficient. We expected no such exponential
relationship between chlorophyll concentration
and growth coefficient; instead, growth should
increase linearly with food availability, or per-
haps as a saturating function reflecting limits
on food intake. For this reason, we tested for
an association between unlogged chlorophyll
concentration and growth coefficient, despite
both variables being right skewed and having
lower bounds at 0 (Supplementary Material
2). The decision not to log transform either vari-
able does not strongly impact our findings
(Supplementary Fig. S3).
Because life-history traits such as growth rate

may not showa simple linear response to envir-
onmental variables, we use both linear and
quantile regression to evaluate predictors of
growth rate. Quantile regression estimates the
conditional response of a given quantile of a
response variable given specified values of pre-
dictor variables; in otherwords, it tests whether
certain parts of a response variable regress dif-
ferently against predictors (Koenker 2013). We
use this approach to pursue the apparent rela-
tionship between latitude and variability of
growth rate across taxa revealed by Moss
et al. (2016: Fig. 3D). To investigate the
“shape” of our data, we use a joint test of equal-
ity of slopes on the first, second, and third con-
ditional quartiles (the 25th, 50th, and 75th

quantiles) of the response variable. Quantile
regression is implemented with the ‘quantreg’
package (v. 5.38; Koenker 2013) in R.
Comparing the effects of various environ-

mental parameters on a response variable is
less straightforward when data for those para-
meters are patchy and more complete for
some variables than for others. In these cases,
it may be hard to separate real differences in
predictive power from differences in sample
selection. As such, we also evaluate regressions
in which we exclude data points for which only
temperature is available. We also use a model
selection framework to assess the relative

importance of taxonomic membership and
maximum and minimum values of tempera-
ture and chlorophyll as predictors of ln(k) in
simple and multiple regressions. This analysis
considers only those data points for which
both SST and chlorophyll-a concentration are
available (N = 472). Finally, we evaluate envir-
onment–growth relationships within the 10
most well-sampled families.

Phylogenetic Comparative Methods.—To test
the robustness of observed correlations and
assess the phylogenetic signal of growth rate,
we infer a maximum-likelihood phylogeny of
bivalve species in the data set using nuclear
(18s, 28s) and mitochondrial (COI, 16s)
sequence data downloaded from GenBank
(Clark et al. 2016). Sequence datawere available
for 135 species (∼2.3 sequences per taxon) in 90
genera, represented by a total of 559 observa-
tions. Crown Bivalvia probably diverged in
the Cambrian to Ordovician (Zong-jie and Sán-
chez 2012; Bieler et al. 2014); as such, the rela-
tively rapidly evolving molecular markers
used here might fail to recover the deepest
nodes in the bivalve tree. Consequently, we
constrain tree topology at the suborder level,
using previously published phylogenies (Bieler
et al. 2014; Combosch et al. 2017). This con-
straint tree, our sequence alignment, the phyl-
ogeny used in our analyses, and further
details on our phylogenetic analysis (Supple-
mentary Data 1) are available in the Supple-
mentary Material.
We calculate Pagel’s λ and Blomberg’s K,

two common measures of phylogenetic signal,
for the means of log growth coefficient, log
body size, log life span, latitude, and mean
observed minimum and maximum SST and
chlorophyll concentration using the ‘phytools’
package in R (v. 0.6-60; Revell 2012). Pagel’s λ
is a dimensionless value that expresses the
phylogenetic interdependence of trait values:
λ = 1 is obtained for traits that are best modeled
in a likelihood framework by Brownian motion
on a phylogeny with unmodified branch
lengths, while lower values indicate that a
trait is best modeled by a phylogeny in which
internal branch lengths have been shortened
relative to terminal branch lengths (Freckleton
et al. 2002). Blomberg’s K is calculated as
the variance among species divided by the
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variance of independent contrasts (Blomberg
et al. 2003); the latter is calculated here with
104 simulations. While λ can be no higher
than 1, but K can theoretically exceed 1, and
values of λ are not directly comparable with
values of K. Significance is assessed for K by
comparing the observed value against values
of K calculated for trait data randomly assigned
to the tips of a phylogeny; and significance is
assessed for λ using the ratio of the likelihood
of the observed phenotypes given the inferred
λ to the likelihood of the data given λ = 0.
Bothmetrics are typically usedwith ultrametric
trees (i.e., trees in which the distance from the
root to the tip is the same for all tips), so we
rescale the phylogeny of bivalves for tests of
phylogenetic signal using the chronos function
in the ‘ape’ package (v. 5.0; Paradis et al.
2004). We test phylogenetic signal under three
different penalized-likelihood time-scaling set-
tings to assess sensitivity: using a smoothing
parameter of 0, and using a smoothing param-
eter of 1 under either a relaxed or correlated
model of molecular evolution.
Observed organismal growth coefficient

reflects both a heritable reaction norm—the
curve describing response to environmental
variation—and environmental conditions
(David et al. 2004). For this reason, we calculate
the phylogenetic signal of not only the mean
growth coefficient observed, but also of the
maximum, and we hypothesize that this
might more accurately reflect the growth
reaction norm.
Phylogenetic generalized least squares

(PGLS) is used to evaluate the same relation-
ships treated with linear regression while
accounting for phylogenetic autocorrelation in
the context of the phylogeny inferred in this
study. For this analysis, mean trait values are
used to evaluate minimum and maximum
chlorophyll concentration and SST as predic-
tors of the log of growth coefficient, and Akaike
weights are compared for simple and multiple
regression models. This analysis uses only
those observations for which both temperature
and chlorophyll data are available, resulting in
a data set of 121 species. PGLS uses information
about the phylogenetic signal (Pagel’s λ) of resi-
duals to scale the off-diagonals of the variance–
covariance matrix used in the regression; our

analysis uses a maximum-likelihood estimate
of this parameter. All PGLS analyses use a
phylogeny time-scaled with the chronos func-
tion in the ‘ape’ R package, with a smoothing
parameter of 0. All R code associated with
this study is provided in the Supplementary
Material and was run in v. 3.5.0. (2018-04-23;
R Core Team 2013).

Results

Regressions.—Environmental predictors gen-
erally only weakly predict growth coefficient k
(Fig. 3). All environmental parameters besides
maximum chlorophyll concentration regress
significantly against k, but with low r2 values:
minimum SST, the strongest predictor, explains
12.2% of the variation in log growth coefficient,
while maximum SST explains 7.2%. Minimum
chlorophyll concentration explains 1.1% of the
variation in unlogged growth coefficient.
Multiplying k by L∞ gives a response variable
that should conform more closely to true
growth rate in distance per time, but this
response variable shows weaker or comparable
relationships with all predictors (Supplemen-
tary Fig. S2). Excluding non–suspension feed-
ing bivalves has a negligible effect on the
strength of the predictors under study, includ-
ing chlorophyll-a concentration (Supplemen-
tary Table S2). SST is available for 20% more
of the observations in the data set, but exclud-
ing these data also has little impact on our find-
ings: r2 values for the regressions of ln(k)
against minimum and maximum SST is nearly
identical when SST-only observations are
removed (0.117 and 0.080, respectively).
Quantile regression reveals that the growth

coefficient is slightly more variable at higher
maximum but not minimum SST. Increasing
chlorophyll concentration is not significantly
associated with a change in the spread of
growth coefficients (Fig. 3, Supplementary
Table S3). Joint tests of equality of slopes reveal
that the first, second, and third conditional
quantiles are significantly different for
maximum but not minimum temperature.
Increased spread of observed growth coefficient
is therefore associated with high maximum
but not high minimum annual temperature.
Joint tests of equality of slopes return
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insignificant results for quantiles conditional on
chlorophyll-a concentration.
Regression models in which taxonomic

family membership is included as a categorical
predictor receive uniformly high Akaike infor-
mation criterion (AIC) scores relative to those
that include only environmental predictors,
such that the Akaikeweights (AICw) of models
that include family summed to ∼1 (Table 1).
The best-supported model includes family
and minimum SST and chlorophyll a (AICw
= 0.7916), with some support for models

including minimum and maximum SST and
chlorophyll and family (AICw = 0.1587) and
including minimum SST and family (AICw=
0.04965). Regressions that include family mem-
bership and at least one environmental variable
have the highest r2 value (>0.35), and r2 for the
regression including only family membership
(0.3062) is higher than any that include only
environmental variables. In a few cases, environ-
ment–growth coefficient regressions within
subclades are stronger than those that include
the entire data set (Supplementary Fig. S4).

FIGURE 3. Linear regression and quantile regression plotted for minimum and maximum temperature and chlorophyll-a
concentration. The 5th, 25th, 75th, and 95th conditional percentiles of the response variable are shown as dashed lines. Tests
of equality of slopes reveal that only maximum temperature is associated with a change in the spread of growth coefficient
(Supplementary Data 4). Sample sizes and coefficients of determination are shown for each regression. Sample sizes are
identical for minimum and maximum predictors. *p < 0.05; ***p < 0.0005.

BIVALVE GROWTH RATES 411

https://doi.org/10.1017/pab.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2019.20


TA
B
L
E
1.

M
od

el
su

pp
or
t
an

d
ef
fe
ct

si
ze
s
(a
d
ju
st
ed

r2
)
in

lin
ea
r
re
gr
es
si
on

s
an

d
ph

yl
og

en
et
ic
ge

ne
ra
liz

ed
le
as
t
sq
ua

re
s
(P
G
L
S)
.M

od
el

w
ith

th
e
hi
gh

es
t
A
ka

ik
e
in
fo
rm

at
io
n

cr
it
er
io
n
(A

IC
)s
co
re

sh
ow

n
in

bo
ld
.A

,A
IC

,Δ
A
IC

,A
ka

ik
e
w
ei
gh

ts
,a

nd
r2

va
lu
es

fo
r
si
m
pl
e
an

d
m
ul
tip

le
re
gr
es
si
on

s
w
ith

en
vi
ro
nm

en
ta
lv

ar
ia
bl
es

an
d
fa
m
ily

m
em

be
rs
hi
p
as

pr
ed

ic
to
rs
.O

nl
y
in
cl
ud

es
ob

se
rv
at
io
ns

w
it
h
se
a-
su

rf
ac
e
te
m
pe

ra
tu
re

(S
ST

)
an

d
ch

lo
ro
ph

yl
ld

at
a
(N

=
55
0)
.B

,M
od

el
su

pp
or
t
an

d
ef
fe
ct

si
ze

fo
r
PG

L
S.

O
nl
y
in
co
rp
or
at
es

ob
se
rv
at
io
ns

w
it
h
co
rr
es
po

nd
in
g
ti
ps

in
ou

r
ph

yl
og

en
y
an

d
w
it
h
SS

T
an

d
ch

lo
ro
ph

yl
ld

at
a.

Sa
m
pl
e
si
ze

is
N
=
13
6
sp

ec
ie
s.

A
.S

im
pl
e
an

d
m
ul
tip

le
re
gr
es
si
on

B
.P

G
L
S

Pr
ed

ic
to
rs

Δ
A
IC

A
ka

ik
e

w
ei
gh

t
r2

Pr
ed

ic
to
rs

λ,
m
ax

im
um

-l
ik
el
ih
oo

d
es
ti
m
at
e

Δ
A
IC

A
ka

ik
e

w
ei
gh

t
r2

r2
,l
am

bd
a

=
0

M
in
im

u
m

S
S
T
+
ch

lo
ro
p
h
yl
l-
a
+

fa
m
il
y

0
0.
79
16

0.
37
43

M
in
im

u
m

S
S
T
+

ch
lo
ro
p
h
yl
l-
a

0.
38
8

0
0.
57
71

0.
13
65

0.
14
2

M
in
im

um
an

d
m
ax

im
um

SS
T
+

ch
lo
ro
ph

yl
l-
a
+
fa
m
ily

3.
21
4

0.
15
87

0.
37
53

M
in
im

um
SS

T
0.
54
9

2.
26
33

0.
18
61

0.
11
38

0.
10
47

M
in
im

um
SS

T
+
fa
m
ily

5.
53
8

0.
04
96
5

0.
36
42

M
in
im

um
an

d
m
ax

im
um

SS
T

+
ch

lo
ro
ph

yl
l-
a

0
2.
70
53

0.
14
92

0.
15
54

0.
15
54

Fa
m
ily

44
.7
22

0
0.
30
62

M
in
im

um
an

d
m
ax

im
um

SS
T

0.
54
7

4.
23
73

0.
06
93
7

0.
11
38

0.
10
53

M
in
im

um
an

d
m
ax

im
um

SS
T
+

ch
lo
ro
ph

yl
l-
a

94
.6
69

0
0.
13
16

M
ax

im
um

SS
T

0.
41
3

7.
26
94

0.
01
52
3

0.
06
84

0.
07
2

M
in
im

um
SS

T
+
ch

lo
ro
ph

yl
l-a

91
.1
04

0
0.
13
08

M
in
im

um
ch

lo
ro
ph

yl
l-
a

0.
26
6

11
.5
32
4

1.
81
E-
03

0.
03
36
5

0.
03
40
2

M
in
im

um
SS

T
97
.8
08

0
0.
11
47

M
in
im

um
an

d
m
ax

im
um

ch
lo
ro
ph

yl
l-
a

0.
27
9

13
.3
21
7

7.
39
E-
04

0.
03
52
1

0.
03
55
9

M
in
im

um
ch

lo
ro
ph

yl
l-
a

15
0.
12
2

0
1.
09
E-
02

M
ax

im
um

ch
lo
ro
ph

yl
l-
a

0.
26
7

14
.6
25
7

3.
85
E-
04

8.
63
E-
03

9.
01
E-
03

JAMES SAULSBURY ET AL.412

https://doi.org/10.1017/pab.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2019.20


Among the top 10 best-sampled families,
relatively high r2 values are observed for the
regression between SST and ln(k) among the
Veneridae (r2 = 0.33,N = 125) and the Pectinidae
(r2 = 0.30, N = 81). Neither the number of obser-
vations of a taxonomic family nor the standard
deviation of observed environmental values
predicts the strength of the environment–k
regression within that family.

Phylogenetic Comparative Methods.—Tests of
phylogenetic signal show that growth coeffi-
cient is somewhat conserved within lineages
across Bivalvia, although not to the degree
that body size and life span are (Table 1). For
growth coefficient, all estimates of Pagel’s λ
are intermediate (between 0.3 and 0.7) but stat-
istically insignificant, indicating that residuals
in the fitted models are adequately modeled
as being independent. On the other hand, all
estimates of Blomberg’s K are statistically sig-
nificant and comparable in magnitude to esti-
mates for body size and life span (K = 0.10–
0.14), meaning that phylogenetic information
helps predict the observed growth coefficient
data. λ and K perform best under different
models of trait evolution (Münkemüller et al.
2012), so rather than being contradictory,
these findings indicate that growth coefficient
is somewhat conserved within lineages. Lati-
tude and log chlorophyll concentration take
mostly low values of both metrics of phylogen-
etic signal, but SST exhibits high phylogenetic
signal comparable with body size and life
span. Different approaches to reconstructing
the timescale of bivalve evolution produce con-
cordant estimates of phylogenetic signal in
terms of their relative ordering and their statis-
tical significance, except in the case of latitude.
Phylogenetic signal is slightly higher for the
maximum growth coefficient observed within
species than for themean value in all cases, con-
sistent with our earlier suggestion that themax-
imum k observed within a species should more
closely reflect the heritable component of
growth coefficient; however, the difference is
slight. Some groups of bivalves show highly
conserved values of one or more growth para-
meters (Fig. 4): Hiatellidae, the family includ-
ing the geoduck Panopea, is characterized by
long life spans, moderately high L∞, and fairly
low growth coefficients, while the razor clams

(Pharidae, including Ensis and Siliqua) are rela-
tively large (in terms of maximum dimension),
have intermediate life spans, and grow at
variable rates.
Multiple regression in a PGLS framework

uncovers environment–growth relationships
that are broadly similar in their effect sizes
and relative ordering to those returned by non-
phylogenetic regressions (Table 1). Models
including only minimum or maximum chloro-
phyll as predictors have effectively no support.
Maximum-likelihood estimates of Pagel’s λ,
which in PGLS models the phylogenetic signal
of residuals, are low to intermediate across all
models. When the value of λ is set to 1, a hand-
ful of observations in the Veneridae drive the
effect size for all minimum temperature–
growth coefficient relationships above r2 = 0.4
(Supplementary Table S4), recapitulating the
point made by Uyeda et al. (2018) that
phylogenetic comparative methods are no
less vulnerable to outliers than traditional
comparative approaches.

Discussion

Environmental Predictors of Growth Coeffi-
cient.—SST is consistently a stronger predictor
of growth coefficient than chlorophyll-a con-
centration in all of our analyses. Although the
link between metabolic rate and shell growth
rate is indirect (Lewis and Cerrato 1997; Pouv-
reau et al. 2006; Bourlès et al. 2009), as is the
link between shell growth rate and growth coef-
ficient (see discussion in “Methods”), the well-
documented and theoretically robust tempera-
ture dependence of metabolism probably
explains our results (Gillooly et al. 2001). Sea-
floor temperature tends to correspond more
closely with SST during the winter than during
the summer (Prandle and Lane 1995; Austin
et al. 2006), which may explain why minimum
temperature is the strongest predictor in our
analyses. Moss et al. (2016) found that the
standard deviation of all k observations within
a latitudinal bin decreased from the equator to
the poles; along the same line, our results offer
some support for the idea that higher tempera-
tures are associated with not just higher k but
also a greater spread of k. The link between
metabolic rate and growth coefficient is highly
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FIGURE 4. Maximum-likelihood phylogeny of 135 bivalve species, time-scaled using penalized likelihood. Branch lengths
correspond to time, but because our downstream analyses depend only on the relative timing of divergences rather than on
absolute dates, the geological timescale is not shown here. Growth coefficient, body size, and life span are shown for each
species. Colors (see online version) correspond to values on a log scale.
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indirect: not all of the energy produced by
metabolism is devoted to shell growth, and
there are important differences between
growth rate and growth coefficient (see “Meth-
ods”). However, a latitudinal gradient in not
just the mean but also the spread of metabolic
rates would have wide-reaching evolutionary
implications. If temperature increases the max-
imum metabolic rate possible without a com-
parable increase in the minimum, then the
pace of life set by metabolism is not simply
higher in the tropics: instead, the tropics facili-
tate a wider range of metabolic rates, and per-
haps by extension, a wider range of lifestyles.
This scenario provides a plausible mechanism
for the latitudinal gradient in functional diver-
sity (Stuart-Smith et al. 2013; Edie et al. 2018),
although the links between growth coefficient,
growth rate, and metabolic rate are not suffi-
ciently understood at present to speculate
further.
The apparent unimportance of food supply

in determining spatial patterns in growth coef-
ficient might be a biologically meaningful
result, but there are several issues with inter-
preting it at face value. Chlorophyll concentra-
tion shows strong spatiotemporal variability
below the ∼5 km, month-scale resolution cap-
tured by the MODIS-Aqua satellite (Mackas
et al. 1985;Wambeke et al. 2002). Not all surface
primary production reaches the seafloor, which
might further impact the accuracy of this pre-
dictor. In short, imperfections of the satellite
proxy might obscure a truly strong relationship
between primary production and bivalve
growth coefficient. This would be consistent
with results from laboratory and in situ studies,
which typically recover phytoplankton concen-
tration as a strong predictor of bivalve growth
rate in terms of distance over time (Beukema
and Cadee 1991; Savina and Pouvreau 2004;
Bourlès et al. 2009; Gosling 2015a), and with
paleontological research that suggests primary
production is a driver of changes in growth
coefficient over deep time (Haveles and Ivany
2010). Aside from the possibility that the satel-
lite chlorophyll-a proxy might not closely
reflect in situ conditions, those in situ condi-
tions might not be the ones that matter most
to bivalves. Diatom abundance, for example,
could be a stronger control on bivalve growth

than the concentration of phytoplankton in
general (Gosling 2015a). Similarly, dissolved
organic matter and non-phytoplankton par-
ticulate organic matter, neither of which are
reflected by our predictors, are important com-
ponents of the diets of some bivalves (Kang
et al. 1999; Gosling 2015b). Particulate organic
matter may be an especially important compo-
nent of marine food webs at high latitudes
(Peck et al. 2005; Mincks and Smith 2007).
Other lines of evidence support our finding

that food supply is weakly associated with
growth coefficient at best. McClain et al.
(2012) reported that depth, a proxy for food
availability, did not correlate with growth rate
or per-mass metabolic rate among a wide var-
iety of marine organisms after accounting for
covariation with body size and temperature,
corroborating previous work (Childress 1995).
Instead, the authors found that food availabil-
ity controls biomass, abundance, and diversity
in marine communities. Killam and Clapham
(2018) recovered a similar pattern despite
using a different kind of data: chlorophyll-a
concentration showed no relationship with the
occurrence of seasonal cessations in bivalve
shell growth, which influence long-term
growth (Gosling 2015a). Even if growth coeffi-
cients were expected to depend on food supply,
growth should be more sensitive to changes in
temperature: the Arrhenius equation predicts
that the rate at which aerobic metabolism (or
any chemical reaction) proceeds should scale
exponentially with temperature (Schulte
2015), whereas growth rate would be at most
expected to scale linearly with the amount of
food ingested. Growth coefficient is an imper-
fect proxy for growth rate in terms of size
increase per time, but our finding that
chlorophyll concentration shows little or no
relationship with the product of k and L∞ (Sup-
plementary Fig. S2) argues against the possibil-
ity that chlorophyll concentration controls
growth rate but not growth coefficient. While
our results do not preclude a role for food sup-
ply in controlling growth rate and metabolic
rate, they do support temperature as a more
important determinant of spatial patterns in
growth parameters, consistent with previous
findings (Heilmayer et al. 2004; Killam and
Clapham 2018). Notably, one of the only
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bivalve groups above the species level in which
a strong temperature–growth relationship has
been demonstrated is the Pectinidae (Heil-
mayer et al. 2005), and in our data set the log
of growth coefficient regresses against SST
with a relatively high r2 (0.30) in this group
(Supplementary Fig. S4). Why the dependency
of growth rate on environmental conditions
should vary somuch between taxa is not imme-
diately clear, but it is consistent with our find-
ing that evaluating environmental predictors
in a PGLS framework does not result in
appreciably greater effect sizes.
Importantly, no environmental predictor or

combination of predictors explains more than
15% of the variation in log growth coefficient
across Bivalvia. Because this remains so even
when considering environment–growth rela-
tionships in a PGLS framework, we infer that
“phylogenetic inertia” does not explain the
weak dependency of growth coefficient on
broad-scale environmental conditions observed
in our data set. In other words, it does not
appear to be the case that environment–growth
relationships become weaker at deeper nodes
in the tree, at least at the broad phylogenetic
scale considered in this analysis. Our finding
that effect sizes of environment–growth regres-
sions within bivalve families are not consist-
ently greater than those across all Bivalvia
supports this inference (Supplementary Fig. S4).
Conceivably, further study within subclades—
for example, within the Veneridae or the Pecti-
nidae (Supplementary Fig. S4)—might recover
stronger environment–k relationships or might
reveal interesting k–L∞ interactions not seen in
our study. Some of our results could be peculiar
to the coarse phylogenetic and geographic scale
of our study, but a finer investigation is not
possible with the data at hand. Environmental
parameters do not appear to explain much
of the variation in growth coefficient at any
taxonomic scale.
Beyond the imperfections in the environmen-

tal proxies mentioned previously, the poor
environment–growth correspondence we
observe can probably be attributed in part to
metabolic rate compensation, the suite of bio-
chemical processes by which organisms modu-
late their metabolic rates independently of
environmental conditions (Bullock 1955). For

example, a near-independence of temperature
and the energy available for growth across a
limited temperature range was observed by
Widdows (1978) and Sobral and Widdows
(1997) for the mussel Mytilus edulis and the
venerid clam Venerupis philippinarum, respect-
ively, and in both cases was attributed to
metabolic rate compensation.

Evolution of Growth.—Although phylogen-
etic inertia might not explain why studies of
environmental determinants of growth at
broad taxonomic scales fail to recapitulate the
results of within-species experimental research,
conservation of growth coefficient within
lineages does appear to be a real phenomenon.
This is indicated on the one hand by themoder-
ate phylogenetic signal recovered for k in this
study (Table 2). On the other hand, and per-
haps more compelling, is the observation that
familymembership alone predicts growth coef-
ficient more successfully than any combination
of environmental variables (Table 1). These
findings corroborateMoss et al. (2016) andDex-
ter and Kowalewski (2013), who showed that
bivalves within the same taxonomic families
and orders typically had similar growth
coefficients.
Growth coefficient itself might be subject to

phylogenetic inertia, but it is worth considering
whether growth is instead a function of phylo-
genetically conserved environmental condi-
tions. Tests of phylogenetic signal reveal that
closely related bivalves might showaweak ten-
dency to live at similar latitudes (Table 2),
although other studies have recovered stronger
tendencies of this kind (Tomašových and
Jablonski 2016). More compellingly, environ-
mental temperature exhibits relatively high
phylogenetic signal, and some of the highest
values of λ and K in our analysis are obtained
for maximum SST. If close relatives tend to
live at similar temperatures, we might not
need to invoke phylogenetic conservation of
growth coefficient to explain some of the pat-
terns recovered in this study. Other sorts of eco-
logical similarity among closely related taxa
might also explain some of the phylogenetic
conservatism of growth coefficient observed
here. For example, the slow-growing geoducks
(Panopea) share a deep-burrowing lifestyle
(Kondo 1987); likewise, the cementing ostreids
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(Ostrea, Crassostrea) share a generally high
growth coefficient. However, there is some
independent evidence to support a scenario in
which growth trajectories are phylogenetically
conserved independent of environmental con-
ditions. Vladimirova et al. (2003) measured
metabolic rates at a standardized temperature
(20°C) across Bivalvia and found some conser-
vation of rates within orders and families. In
that study, bivalves living closer to the equator
exhibited higher metabolic rates when acclima-
tized to and measured at a standard tempera-
ture. In conjunction with the findings of the
present study, this experimental finding indi-
cates that the higher rates of growth andmetab-
olism seen in the tropics are the result not just of
phenotypically plastic responses to environ-
mental gradients, but also of changes in the
heritable reaction norms of growth rate and
metabolic rate.

Conclusions

Fossilized growth rates are one of the best
and most widely available proxies for studying
the history and evolution of metabolic rates,
though they have rarely been used for this pur-
pose. Our study calls attention to some import-
ant considerations for the use of growth
coefficients in this research effort. At the

relatively broad spatial, environmental, and
taxonomic scales considered in this study, SST
explains only about one-tenth of the variation
in growth coefficient, and surface chlorophyll-a
concentration accounts for almost none. Mul-
tiple regression and tests of phylogenetic signal
indicate that closely related bivalves grow at
similar rates. The conflict between our results
and those of previous within-species studies
may be explained in part by shortcomings of
remote-sensing proxies. Taxonomic member-
ship is a good predictor of growth coefficient,
but a substantial portion of the variation in
growth coefficient must be explained by
fine-scale environmental conditions or by
intrinsic processes like metabolic rate compen-
sation. Studies of environmental or temporal
variation in growth rate, growth coefficient, or
metabolic rate that do not consider phylogeny
or do not restrict analysis to within-lineage
changes risk discovering only spurious pattern.
Intuitively, an oyster k is not a geoduck k is not a
scallop k.
Because no temporal trend in growth rate

through the Phanerozoic has been established,
it is unclear what the apparently weak depend-
ence of growth coefficient on chlorophyll con-
centration implies for the hypothesis that
increased nutrient availability is responsible
for trends in body size through deep time

TABLE 2. Results of tests of phylogenetic signal.We performed 1000 simulations for each test of Blomberg’sK; as such, the
synthetic p-values associated with that test cannot go below 0.001. A, Phylogenetic signal calculated on an ultrametric tree
scaled with the assumption of a strict molecular clock. B, The same, calculated on a tree time-scaled assuming
autocorrelated but variable rates of molecular evolution. C, The same, calculated on a tree time-scaled under a relaxed
model of molecular evolution. SST, sea-surface temperature. *p≤ 0.05; **p≤ 0.005; ***p≤ 0.0005.

A. Phylogenetic signal,
lambda = 0

B, Phylogenetic signal, lambda = 1,
correlated

C, Phylogenetic signal, lambda = 1,
relaxed

Pagel’s λ
Blomberg’s

K Pagel’s λ
Blomberg’s

K Pagel’s λ
Blomberg’s

K

ln(k) 0.3607 0.1515** ln(k) 0.422 0.1327** ln(k) 0.6702 0.1029**
Maximum
ln(k)

0.4449 0.1694** Maximum
ln(k)

0.5001 0.1468** Maximum
ln(k)

0.6704 0.1188**

Body size 0.8131*** 0.2025** Body size 0.7630*** 0.1410** Body size 0.9081*** 0.1015**
Lifespan 0.6107*** 0.1915** Lifespan 0.6433*** 0.1820** Lifespan 0.8573*** 0.1255**
Latitude 0.04967 0.1677** Latitude 0.0375 0.06 Latitude 7.32E-05 0.0425
Minimum
SST

0.6463** 0.1615** Minimum
SST

0.5525* 0.1349** Minimum
SST

0.8045* 0.1145**

Maximum
SST

0.8351** 0.2768** Maximum
SST

0.8694** 0.1990** Maximum
SST

0.8617* 0.2031**

Minimum
chlorophyll

0.5146 0.1832 Minimum
chlorophyll

0.5524 0.0725 Minimum
chlorophyll

8.11E-01 0.06094

Maximum
chlorophyll

6.65E-05 0.1641 Maximum
chlorophyll

0.3324 0.05224 Maximum
chlorophyll

6.62E +
00

0.04397
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(Bambach 1993). However, our study provides
evidence against a scenario in which increased
nutrient availability through the Phanerozoic
promoted larger body sizes by enabling
metazoans to grow faster. Instead, increased
nutrient availability probably influenced eco-
system structure (Knoll and Follows 2016; but
see McClain et al. 2018) and patterns of diver-
sity (Martin 1996; McClain et al. 2012; but see
Hunt et al. 2005), at least in the oceans.
Outstanding questions include: To what

degree are our findings particular to bivalves?
Can some of the substantial variation in growth
coefficient that is not explained by remote-
sensing predictors be attributed to fine-scale
environmental variation? How robust is the
apparent latitudinal gradient in the variability
of growth coefficient, and does this map onto
a similar gradient in metabolic rate? More gen-
erally, what are the long-term trends in growth
rate and metabolic rate, and how do they relate
to the evolution of body size over the Phanero-
zoic? Resolving these uncertainties will require
the integration of data with a broader taxo-
nomic scale from experimental physiology,
sclerochronology, macroecology, and the fossil
record.
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