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Abstract. A knowledge of the precise relationship between the age and luminosity of a white dwarf 
can in principle be used to determine the composit ions of the white dwarfs in galactic clusters. 
T o this end the assumptions in MesteFs theory of white dwarf cool ing are critically reviewed, 
and the results of recent work aimed at relaxing these restrictions are briefly summarized. It is 
concluded that on the basis of current knowledge an accuracy of the order of 10 or 2 0 % in the age-
luminosity relation should be attainable. 

1. Introduction 

The theory that the luminosity of a white dwarf is derived from the thermal energy 
content of the ions in its interior was proposed by Mestel (1952). In this paper Mestel 
establishes two important points: (1) that the relation between the luminosity L of a 
white dwarf and the cooling time t is tccL~5n, for Kramers ' law opacity in the en­
velope, and (2) that the theoretical age of a white dwarf is inversely proportional to 
the mean atomic weight A of the ions in its interior. For faint white dwarfs such as 
van Maanen 2 this leads to the conclusion that A must be of the order of 10 in order 
that the age of the star be less than the age of the Galaxy. The approximations in 
the theory, however, preclude the possibility of distinguishing between A =4 and 
A = 24. Consequently, it has not yet been possible to determine from the observational 
data what phase (or phases) of nuclear burning occur immediately prior to evolution 
to the white dwarf stage. 

It is the aim of this review to show that recent advances have brought the theory 
of white dwarf evolution to the stage where theoretical ages with an uncertainty of 
the order of tens of percents, rather than factors of two, are now possible. With 
accuracies of this sort, comparison of the theoretical age-luminosity relation with 
the known ages of the galactic clusters can provide reliable determinations of the 
mean chemical compositions of the cluster white dwarfs. Similarly, the shape of the 
observed white dwarf luminosity function, which is simply related to the age-luminosity 
relation and is primarily affected by the thermal structure of the envelope, may lead 
to important new conclusions about the outer layers of the white dwarfs. 

Since a number of excellent reviews (Schwarzschild, 1958, Chapter 7; Mestel, 1965; 
Weidemann, 1968) have dealt with various aspects of Mestel's original theory, I shall 
mainly restrict myself to discussions of the newer developments in the theory of white 
dwarf cooling. It is convenient for this purpose to begin with a critical summary of 
the Mestel theory, with particular emphasis on those approximations that have been 
shown to lead to uncertainties of the order of a factor of two in the theoretical age-
luminosity relation. 
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2. Critical Review of MesteFs Theory 

The luminosity of a star is in general given by (see, e.g., Hayashi et al, 1962, p. 39) 

dM r (1) 

where e is the rate of energy generation (or loss) per unit mass by nuclear processes, 
Tds/dt is the time rate of change of the heat content per unit mass, and Mr is the mass 
interior to radius r. Since s, the entropy per gram, can be regarded as a function of 
the temperature T and density q of the stellar matter, we have 

ds rds\ dT ds\ 8q1 dT T dP\ do 
T = T — —+— - =CV — . (2) 

dt [dT.Q dt dg\Tdt] v dt q2 dT\Qdt 

If nuclear (and neutrino) processes are neglected, following Mestel, (Approximation 1), 
and if the energy released by residual gravitation contraction is ignored (dg/dt = 0: 
Approximation 2), the luminosity of a white dwarf is directly proportional to the 
time rate of decrease of the temperature. 

For a non-relativistic degenerate electron gas, the electronic contribution to the 
specific heat is 

, . „ 3 k n2 kT 
C ( e i e c t ) = _ z — ( 3 ) 

2 AH 3 eF

 W 

where Z, A are respectively, the atomic charge and mass, k= 1.38 x 1 0 " 1 6 e r g ( K ) - 1 is 
Boltzmann's constant, and H= 1.66044 x 1 0 " 2 4 g is the unit of atomic mass. Because 
of the high degeneracy kT is much less than the Fermi energy 

(3n2)2/3h2 ( Q ^ 2 I Z 

e p 2 me \neH 

of the electrons, and C(

v

elect) is ignored in comparison with the specific heat of the 
ions (Approximation 3), which for a non-interacting ion gas becomes (Approxi­
mation 4) 

3 k 
c o o n ) = R _ „ ( A \ 
C v 2 AH' ( 4 ) 

The high degeneracy in the core of a white dwarf also promotes highly efficient heat 
conduction by the degenerate electrons, as was first shown by Marshak (1940). 
The core is therefore very nearly isothermal (Approximation 5), so that one finally 
obtains 

3 kM dTc 

where Tc is the core temperature. 
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In order to calculate T c, one must deal with the problem of heat transfer through 
the thin, non-degenerate envelope of the white dwarf. If the envelope is in radiative 
equilibrium (Approximation 6), and if Kramers ' law, K = K 0 q T ~ 3 '

 5 is used to represent 
the opacity (Approximation 7), the envelope equations can be integrated analytically, 
giving for the 'radiative, zero' surface conditions, P=0 at T = 0 , the result (Schwarz-
schild, 1958, p. 91) 

— T = •-- K0^ P\ (6) 
8.5 4ac 0 k 4nGM 2 

where \i is the mean molecular weight of the envelope and P is the pressure. Since 
at the boundary of the isothermal, degenerate core the pressure and temperature are 
related through the condition kT&eF (or g//ne&2A x 1 0 " 8 T3/2: Schwarzschild, 1958, 
p. 60), Equation (6) can be reduced to a relation between core temperature and 
luminosity: 

L . M (4 x 1 0 2 3 \ fx , . 

where fie = A/Z is the mean molecular weight per electron, and Tc 7 is the core temper­
ature in units of 10 7 K. With the aid of the result (7), Equation (5) can be integrated 
directly to give the age-luminosity law 

7 . 6 x 1 0 ' / K 0 ; , , Y ' / M \ " ' / L \ - " ' 

Equations (7) and (8) contain the main results of Mestel's theory. The principal 
approximations of the theory are summarized in Table I, and we next turn to a 
detailed investigation of the validity of these assumptions. 

T A B L E 1 

Main approximations in Mestel's model 

1. Neglect of nuclear energy sources and sinks. 

2. T^S en C,-^*, ^Q = 0 : Neglect of residual gravitational contraction. 
dt dt dt 

3. Cv^ C Y ( i o n ) : Neglect of electronic heat capacity. 

3 k 
4. C r < l o n ) ^ : Use of perfect gas law for ions. 

2 AH 

5. T(r) T(0) = Tc'. Isothermal core approximation. 

6. Assumption of radiative equilibrium in envelope. 

7. Use of Kramers' law opacity in envelope. 

3. Nuclear and Neutrino Processes 

A . N U C L E A R E N E R G Y P R O D U C T I O N 

Under conditions typical of the interior of a white dwarf ( q ~ 10 6 g - c m " 3 , T~ 10 7 K) 
hydrogen-burning nuclear reactions generate energy at an enormous rate, and - if the 
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hydrogen abundance is at all appreciable - generate far more energy than is required 
to maintain the luminosity of the star. The condition that the total rate of energy 
production not exceed the observed white dwarf luminosity is alone sufficient to 
show XH< 1 0 " 4 (Marshak, 1940). For normal white dwarfs, however, much more 
stringent limitations are set by the following stability considerations (Schatzman, 
1958; Schwarzschild, 1958; Mestel, 1965): 

Suppose first that nuclear energy production occurs near the base of the non-
degenerate envelope. As shown by Ledoux and Sauvenier-Goffin (1950), this situation 
leads to pulsational instability. For most white dwarfs this possibility is therefore 
ruled out as a significant contributor to the luminosity by the negative results of 
the recent observational search for pulsations in degenerate stars by Ostriker and his 
colleagues (Lawrence et al., 1967). Nuclear burning must thus take place, if at all, 
in the deep interior of a white dwarf, where it cannot drive pulsations. However, for 
white dwarfs with M>0.1 M Q (the approximate lower mass limit for the hydrogen-
burning main sequence), all hydrogen in the deep interior must already have been 
consumed. Furthermore, if some residual hydrogen did remain, any appreciable 
nuclear burning in the degenerate core would result in a thermal runaway, since a 
rise in the temperature is not offset by a proportionate increase in the pressure in 
degenerate matter, and the resulting secularly unstable situation is not of interest to 
a study of stable white dwarfs. 

It appears, then, that nuclear reactions are unimportant for 'normal ' white dwarfs, 
and I shall not discuss them further. 

B . N E U T R I N O E N E R G Y L O S S E S 

Adams et al. (1963) and Inman and Ruderman (1964), have shown that decay of a 
photon (or 'transverse plasmon') into a neutrino-antineutrino pair becomes possible 
in the dense plasma of the interiors of stars in the later phases of stellar evolution 
where hcop/kT~l. Here cop=[4nnee2/me]i/2 is the electron plasma frequency. This 
condition is satisfied in the immediate pre-white-dwarf evolutionary stages. Vila (1965) 
has studied the effect of this energy loss mechanism upon the evolution of a 1 M 0 

pure iron star. More recently similar calculations have been done for iron stars of 
other masses by Savedoff et al. (1969), for carbon stars by Beaudet and Salpeter (1969) 
and by Kutter and Savedoff (1969), and for stars composed of 80% O, 10% Ne, 
10% Mg by Vila (1966, 1967). 

The effect of the plasma neutrino energy loss upon the evolution of a star in the 
immediate pre-white-dwarf stages is to deplete the thermal energy store on a timescale 
Tv~kT/AHev, where ev is the energy loss rate in erg g m - 1 s e c " 1 . At T ~ 1 0 8 K, 
£ ~ 1 0 6 g - c m " 3 , the more recent, improved calculation of s v by Beaudet et al. (1967) 
show T v ~ 3 x 10 7 A " 1 yr. This may be compared with the rate of evolution in the 
absence of neutrino losses at a similar stage, as given by Equation (8): T ~ 5 x 10 7 A ~1 yr. 
The neutrino losses considerably accelerate the evolution in those phases where T V < T . 
This is shown graphically for several of the pure iron star models of Savedoff et al. 
(1969) in Figure 1, where the ages of the stars are given as functions of their optical 
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luminosities. At 1 0 " 2 LQ the neutrino models are younger by about a factor of 10, 
while even at 1 0 " 4 L o their ages are still 30-40% less than the ages of the corre­
sponding models computed without neutrino emission. (These calculations used the 
older neutrino rates of Inman and Ruderman (1964) that were too large by a factor 
of 4 (Zaidi, 1965).) The age differences computed with the corrected neutrino rates 
of Beaudet et al. (1967) would be about a factor of 2.5 at 1 0 " 2 L Q and about 10% 
at 1 0 ~ 4 L o . ) Since the timescale of evolution is proportional to the total thermal 

- 2 - 3 - 4 
log L / L o 

Fig. 1. Effect of plasma neutrino emission on the ages of iron white dwarfs as computed by Savedoff 
et al. (1969). The slope of the age-luminosity relation t oc L ~ 5 / 7 derived by Mestel (1952) is also shown. 
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energy content of 1 white dwarf (and thus to A"1), no matter whether neutrino or 
photon emission is the dominant mechanism of energy loss, the ratio of ages of 
models with the same luminosity but with and without the inclusion of neutrino 
energy losses is independent of the chemical composition. Thus the effect is important 
for the brighter white dwarfs of all compositions if the direct electron-neutrino 
interaction actually does exist in nature, as predicted by Feynman and Gell-Mann 
(1958), and by Sudarshan and Marshak (1958), and accurate calculations of the 
ages of the white dwarfs must include the plasma mechanism of neutrino energy loss. 

4. Gravitational Contraction and the Heat Capacity of the Electrons 

The neglect of terms proportional to kT/sF in the equation of state of the degenerate 
electron gas is strictly justifiable only for rather high densities and low temperatures, 
conditions which are not met in the interiors of all white dwarfs; for example, at the 
average density of a 0.4 M Q white dwarf kT/sF>0.\ for T>2 x 10 7 K. The two main 
consequences of this are that for the less massive white dwarfs it is not sufficiently 
accurate to neglect either the residual gravitational contraction of the star or the 
contribution of the electrons to the specific heat of the stellar matter. 

The order of magnitude of the contributions of these effects to net rates of energy 
release in the star can be established in the following way. 

It follows from Equation (3) that the electronic contribution to the luminosity of 
a white dwarf is of the order of in2Z(kT/eF) times that of the ions. For reasonable 
chemical compositions the electrons can even contribute substantially more than the 
ions, in the hotter white dwarfs. This is shown in Figure 2 for the pure iron models 
of Savedoff et al. (1969), where the integrals over the entire star of eion = C(

v

ion) dT/dt, 
£ e l e c t = C ' e l e c t ) dT/dt, and e g r a v = -Tg ~2(dP/dT)Q dg/dt are plotted as functions of the 
stellar luminosity. It is evident that the approximation of neglect of the electronic 
heat capacity introduces errors of more than a factor of 2 in the lifetimes of the more 
luminous iron white dwarfs of all masses, while the effect continues to much lower 
luminosities for the stars of smaller mass. Because of the dependence of C £ e I e c t ) / C j i o n ) 

on Z, the use of an iron composition exaggerates this effect; however, even for a 
carbon composition, the electrons can still contribute as much as 30-50% of the 
luminosity of the hotter white dwarfs. 

The contribution of the residual gravitational contraction to the energy balance is 
much smaller than the effect of the electronic heat capacity. We estimate the magnitude 
of this term using an argument due to Mestel and Ruderman (1967). They show that 
for white dwarfs of low mass 

M M T 

Agx-2 dM r C< i o n ) d T = - 2E{ 

0 0 

t h e r m ' (9) 

where Aq is the difference in density from the fully degenerate, 'black dwar f state, 
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Fig. 2. Contributions of ion cooling, electron cooling and gravitational contraction to the luminosities 
of the iron white dwarfs without neutrino emission computed by Savedoff et al. (1969). 

and we have neglected the coulomb interaction terms (which are discussed in the 
following section). As shown by Equation (2), the total 'gravitational' energy release is 

M M 

R t ep\ R P ( E L E C T ) R t dp\i 

AEaTav = - dM r , — Aq = - \dMr—Aq\ , . t, . (10) 
0 0 

Since the thermal correction to the degenerate electron pressure is 0(kT/sF)2, it is 
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0.0 0.2 0.4 0.6 0.8 1.0 
M r / M 

Fig. 3. Distribution of energy sources in white dwarfs: £tot = — Tds/dt, fiion = — CV i o n ) d77d/, 
fieiect = - Cv{eleci)dT/dt, egrav = - TQ-2(dP/dT)e do/dt. The solid curves refer to the iron white dwarf 
models without neutrino emission computed by Savedoff et al. (1969) and the dashed curves to the 

0.6 MQ white dwarf composed of the Russell mixture of heavy elements constructed by 
Hayashi et al. (1962). 
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negligible, and dP/dT\ 6&kg/AH, from the ionic terms alone. Thus we have 
M T 

I p ( i o n ) \ f f / 5 kT\ 
^ . r a v ^ ^ ^ j d M r J C ^ " > d T = ^ £ ^ £ t h e r m , (11) 

0 0 

where the average is defined by Equation (10). 
The gravitational energy released thus can normally be neglected in a white dwarf, 

except in a star of very low mass (where (kT/eF} may be of the order of 10% or 
greater even at typical white dwarf luminosities), and in the outer, non-degenerate 
envelope. These conclusions are illustrated both by the ratio of the gravitational to 
total luminosity plotted in Figure 2, and by the distribution of energy sources in 
white dwarfs of different masses, as shown in Figure 3 for several of the models of 
SavedofT et al. (1969). Except in the low mass models, the gravitational term is 
completely negligible. Also shown in this figure is the distribution of energy sources 
in a 0.6 MQ star composed of the Russell mixture of heavy elements, as computed 
by Hayashi et al. (1962, p. 164). The agreement between the two results is quite close 
when the contributions e e l e c t are scaled by the ratio of average ionic charges as indi­
cated by Equation (3). 

5. Effects of Coulomb Interactions 

The recent advances in our understanding of the thermodynamic state of the interior 
of a white dwarf stem from the recognition - independently by Kirzhnits (1960), 
Abrikosov (1961), and Salpeter (1961) - that coulomb interactions at the low tempera-
tuies characteristic of the white dwarfs force the ions in the plasma to form a 
crystalline solid. The thermodynamic properties of the stellar plasma in these stages 
of evolution are dependent upon two dimensionless parameters, the ratio T of the 
typical coulomb interaction energy to kT and the ratio of the characteristic energy 
of lattice vibrations ( 'phonons') to kT. For a plasma containing only one species of 
ion, these quantities become 

(Ze)2 Z2 qI/3 

T = \ 1 = 2 . 2 8 t (12) 
akT A115 T 7 

and 
hQP e (2z\ q \ i z 

— = 2.240 = 2.240 x 0.174 ) - 6 - , (13) 
kT T \AJ T 7 

where q 6 = q/106 g - c m " 3 , %na3 = (q/AH) defines the radius a of a sphere which^on 
the average contains one single ion, Q2

p = 4u(q/AH) (Ze2)/AH is the square of the 
ion plasma frequency, and 0 is the Debye temperature of the solid. 

These two parameters separate the evolution of a cooling white dwarf naturally 
into the following four stages*: (i) r<Tm, T>0; in this stage the ions of the plasma 

* Mestel and Ruderman (1967), applying the Lindemann melting point rule, found the transition 
between the high temperature cou lomb liquid and the low temperature cou lomb solid to occur at 
T= r m ^ 64. A somewhat more accurate treatment of this calculation gave r m 170 (Van Horn, 
1969). The numerical 'experiments' of Brush et al. (1966) yielded r m ^ 125. 
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form a coulomb liquid, (ii) r>Tm, 7 X 9 ; the ions crystallize into a regular lattice 
structure, (iii) T>Tm, T<0; the specific heat of the lattice decreases rapidly to zero, 
(iv) r < Tm9 T< 0; in this case the zero point motion of the ions is sufficient to prevent 
crystallization, and the final, zero-temperature state of the plasma is that of a charged 
quantum liquid instead of a solid. 

I shall briefly describe the features of each of these regimes and discuss the attendant 
changes in the rates of evolution of the white dwarfs. 

A . C O U L O M B L I Q U I D S T A G E : T<Tm9 T> 0 

In Figure 4 the locus of points in the H —R diagram where T = 1 0 0 are shown for 
white dwarfs composed entirely of 4 H e , 1 6 0 , or 5 6 F e , together with the observational 
data. It is apparent that Coulomb effects become extremely important in just the 
region occupied by the white dwarfs. Also shown in this figure are the 'experimental' 
data of Brush et al. (1966) for the coulomb corrections to the pressure and entropy 
of an ideal gas of ions, together with semi-empirical fits to the data which are given by 

P0)V , / 2 r 1 1.54 1 
0 7 = - 0.113 T 3 / 2 , x l / , + , x V / , , (14) 

kT L C 1 + 0 .142r) 1 / 2 (1 + 0.575 r ) 3 / 2 J v } 

S0 r r 3 / 2 ( 0.585 0.400 Y ] 
° = - l n 1 + — - 0.015 + 1 / 2 + , / 2 , (15) 

L 2 7 3 V i + r 1 / 2 1 + 1 . 3 0 8 r 3 / V J v } 

where P 0 , S0 are the pressure and entropy of a perfect gas of N ions in a box of 
volume V at temperature T. These expressions reduce to the correct, analytical results 
for T<^\ and TP I and are accurate to better than 10% over the range where the 
corrections are appreciable. 

The coulomb correction terms have two effects upon the lifetimes of the white dwarfs. 
First, the correction to the entropy leads to a gradual increase in the specific heat 
from § k/AH to 3 k/AH as the temperature drops toward the freezing point of the 
plasma. For the large T values typical of white dwarfs the heat capacity is very nearly 
3 k/AH over the whole range of interest, and as first pointed out by Mestel and 
Ruderman (1967) this leads to a factor of two increase in the white dwarf lifetimes 
during this stage. 

The second effect is to increase the rate of gravitational contraction above that 
indicated by Equation (11). With the aid of Equation (14) we find the contraction 
rate in the limit of large T to be about 1.7 times as great as given by Equation (11). 
For the low mass white dwarfs this effect is therefore not negligible. 

B . S T A G E O F C R Y S T A L L I Z A T I O N : T>Tm9 T>0 

When the temperature of the white dwarf core falls to the point where T = Tm at 
the center, crystallization of the plasma begins. As shown by Brush et al. (1966), 
a heat of fusion TAs~\kT\AH is liberated in the transition from the liquid to the 
solid phase. This release of energy increases the time spent in the corresponding region 
of the H —R diagram by as much as 50% above the time computed by Mestel and 
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Ruderman (Van Horn, 1968). Because of the strong composition dependence of the 
Coulomb interaction, as shown, for example, by Equation (12), white dwarfs of 
different compositions undergo crystallization along different, rather well-defined 
sequences in the H —R diagram. It now appears doubtful, however, whether these 
sequences can be distinguished observationally (Weideman, 1969). 

C. O N S E T O F R A P I D C O O L I N G : r>Tmi T<0 

When T drops below the Debye temperature 0 of the lattice, excitation of the higher 
phonon energy levels becomes impossible, and the specific heat begins to fall, 
decreasing as 

C(

v

ion)~il2n4(T/0yk/AH for T<0 

(Landau and Lifshitz, 1958, p. 187ff). The total thermal energy content given by 
Equation (9) is thus 

£ T H E R M = J D M R j * C < I O N ) D T -

3k 
TcM,Tc>0 

AH 
M 

3k 71* 
TCM-

AH 5 

d M r / T r

x 3 

M \0 

(16) 
, Tc<0 

The density dependence of 0 (Equation (13)) requires the integration over the entire 
mass to obtain the heat capacity of the entire star. The results of integrating the full 
Debye expression for the specific heat over the mass distributions for a number of 
white dwarfs have been tabulated by Van Horn (1968), and the substantial reduction 
in the lifetimes of the fainter white dwarfs has been discussed by Mestel and Ruderman 
(1967), by Van Horn (1968), and by Ostriker and Axel (1969). The latter paper shows 
that the inclusion of this effect leads to ages < 1 0 1 0 y r for all white dwarfs more 
massive than about 0.7 M Q . 

The upper boundary of the region of rapid cooling in the H - R diagram is indicated 
in Figure 4, where the locus of points for which T= 0 at the center of the star is shown. 

D . Q U A N T U M L I Q U I D S T A G E : T < T m , T< 0 

When the temperature falls below 0 while T < T m , the zero-point motions of the ions 
are sufficient to prevent the plasma from crystallizing, and the final, zero-temperature 
state is then that of a quantum liquid. The exact value of the stellar mass at which 
this transition occurs depends upon the value of T m and is smaller for larger T m . 
Because of the rather limited range of mass and composition for which white dwarfs 
can possess quantum liquid cores this stage of evolution has been largely neglected. 
However, see Abrikosov (1961). 

6. Radiative Transfer near the Core-Envelope Boundary 

The thermal structure of a typical white dwarf is shown in Figure 5, where the model 
of Sirius B computed by Marshak (1940) is given. At the boundary of the degenerate 

https://doi.org/10.1017/S007418090009714X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090009714X


COOLING OF WHITE DWARFS 109 

core (ij/ = 0), which is reached at a depth of one percent of the stellar radius, the temper­
ature has already climbed to about half the value at the center of the star. It is at 
approximately this point also that the change from radiative transport to electron 
conduction occurs. This is indicated by the run of radiative and conductive opacities 
also shown in the figure. Since about half of the total temperature rise takes place in 
the non-degenerate envelope while most of the remaining change occurs in the outer 
part of the degenerate core, it is important to have accurate knowledge of both the 

0.03 0.02 0.01 0.00 

Fig. 5. Temperature distribution in Sirius B, as computed by Marshak (1940): 7e = 7 ) 1 0 6 K, and 
R is the stellar radius. In the right-hand figure are plotted the distributions of temperature, of the 
degeneracy parameter y/ (y/kT is the Gibbs free energy per electron), and of the radiative, Kr, and 

conductive, A c , opacities near the boundary of the degenerate core. 

radiative and conductive opacities in order to carry out a precise computation of the 
temperature distribution and thermal energy content of a white dwarf. The assumption 
of a strictly isothermal core interior to the point where ^ = 0 clearly leads to an 
underestimate of the total thermal energy and thus of the age by a factor of order two. 

A . C O N D U C T I V E O P A C I T I E S 

The high efficiency of heat conduction by the degenerate electrons in the interior of 
a white dwarf was established by Marshak (1940) and extended to the case of partial 
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degeneracy by Mestel (1950) and Lee (1950). In this group of theories, conventionally 
termed the M M L theory of the conductive opacity, the electrons are assumed to be 
non-relativistic and to be scattered only by the ions, which are taken to be infinitely 
massive point charges distributed at random through the plasma. While this process 
does in fact, provide the main contribution to the thermal resistivity, a number of 
other processes may also be significant in certain cases, as discussed by Abrikosov 
(1964) and by Hubbard (1966). 

A substantial improvement in the treatment of electron conduction was made by 
Hubbard (1966), who carried out a rigorous calculation of the electron-ion scattering 
probability for a plasma and provided an approximate justification of the ad hoc 
cutoff procedure involved in the M M L theory to avoid the divergence of the scattering 
cross-section associated with the long range of the coulomb force. Hubbard pointed 
out that the correlations among the positions of the ions induced by the Coulomb 
forces screens out the long-range electron-ion interactions, thus yielding a naturally 
convergent result. For typical white dwarf conditions Hubbard 's opacities tend gener­
ally to be somewhat lower than corresponding M M L opacities; the differences are of 
the order of a factor of two. 

The effect of electron-electron scattering upon the conductivity has been studied 
intensively by Lampe (1968) and by Hubbard and Lampe (1969). These processes 
are normally neglected because the Pauli exclusion principle restricts the phase space 
available to both scattered electrons and thus inhibits these processes relative to 
electron-ion scattering. However, as Lampe (1968) has shown, near the core-envelope 
boundary, where the degeneracy is not strong, the electron-electron term can reduce 
the conductivity by 25-50%. When this process is taken into account, as in the 
extensive tabulations of Hubbard and Lampe (1969), the resulting opacity values are 
found to agree extremely well with the M M L results in the degenerate core (the 
opacity is wcreased above the value given by Hubbard), but is about a factor of two 
larger than the M M L result in the non-degenerate region. 

An important and badly needed extension of the Hubbard-Lampe theory to the 
conductivity of relativistic, semi-degenerate electrons has been published recently by 
Canuto (1970). At a density of 10 6 g - cm~ 3 , approximately the crossover from non-
relativistic to relativistic degeneracy, the agreement with the Hubbard-Lampe results 
is quite close. 

Two other processes that have also been considered are scattering from impurities 
(Hubbard and Lampe, 1969) and from phonons (Solinger, 1970) both of which can 
take place in the solid phase. Neither of these processes contribute significantly to 
the conductivity in a white dwarf, however. 

B . R A D I A T I V E O P A C I T I E S 

The most extensive tabulations of radiative opacity data for astrophysically interesting 
element mixtures are those published by Cox and Stewart (1965). These calculations 
include contributions from large numbers of absorption lines as well as from bound-
free, free-free, and electron scattering transitions. Corrections for partial electron 
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degeneracy and plasma screening of the ionic potentials are included. Recently, 
Carson et al. (1968) have also attacked the problem of opacity calculations, but by a 
rather different method, using the high temperature Thomas-Fermi-Dirac atom model. 
For the two element-mixtures they have treated in common with Cox and his collabo­
rators they find close agreement in the limit of high ionization. For low ionization, 

i 1 i i i 1 i 1 1 i i 1 1 1 1 1 1 

I I I I 1 I I I I I L _ 
-2 .0 -3 .0 -4.0 

Fig. 6. Effects of different opacity laws and of envelope convection upon the core temperatures of 
white dwarfs. The solid curves show for helium envelopes the variation with L/M of the temperature 
at different values of y/ (the numbers attached to the curves indicate the appropriate if/ values), as 
computed by Lacis (1970) for M M L conductive opacities and Kramers' radiative opacities. The 
dashed curve, also due to Lacis, is the temperature at if/ = 20 calculated with Hubbard-Lampe 
conductive opacities and Cox-Stewart radiative opacities. The temperature distribution at ^ = 0, 
is for a set of helium envelope models that include convection, as computed by Van Horn (1970). 
The jointed curve gives the distribution of temperatures at the base of the convective zone, as 
computed by Bohm (1970); the numbers along the curve refer to the y/ values at the bottom of 

the convective zone. 

however, their opacities are larger by about a factor of two. This may be significant 
when envelope convection becomes important and the origin of the differences between 
these results should be investigated carefully. 

Two additional effects that may become important in white dwarf envelopes are 
(i) the effect of plasma dispersion upon the Rosseland mean (Cox and Giuli, 1968) and 
(ii) the effect of the coulomb-induced ion correlations upon the processes of radiation 
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absorption (Watson, 1970). Current estimates put both of these effects at about the 
ten percent level in typical white dwarf envelopes, although in certain cases they may 
be somewhat larger. More work on the difficult problem of opacity computations is 
thus desirable, but for purposes of establishing the relation between core temperature 
and luminosity the present calculations are probably adequate, at least for the white 
dwarfs of higher luminosity. 

A detailed investigation of the effects on the L-Tc relation of differences in the 
opacity laws has recently been carried out by Lacis (1970). The results of his study 
are briefly summarized in Figure 6, where the temperatures at degeneracies of ij/ = 2.15, 
20, and oo are plotted as functions of the luminosity-to-mass ratio that characterizes 
the envelopes. These calculations made use of Marshak's (1940) version of Kramers ' 
radiative opacity law and of the M M L conductive opacity. Also shown in this figure 
are the temperatures at \j/ = 20 in a model envelope computed using the Cox and 
Stewart (1965) radiative opacities for an almost pure helium mixture and the Hubbard 
and Lampe (1969) conductive opacities. The results agree to within about ten percent, 
indicating that present knowledge of the opacity laws is probably sufficient to provide 
a satisfactory determination of the L-Tc relation. This conclusion differs from that 
expressed by Hubbard and Wagner (1970) for reasons outlined below. 

7. Envelope Convection in White Dwarfs 

Although it has been known for some time that the envelopes of white dwarfs should 
be convectively unstable (Schatzman, 1958, p. 47; Kolesov, 1964), it was not until 
recently that Bohm (1968, 1969) pointed out that the extensive convective zones of 
the cooler white dwarfs result in appreciably lower core temperatures than expected 
on the basis of the radiative envelope model. In Figure 6 we have plotted the tempera­
tures, obtained for nearly pure helium envelopes by Bohm (1970), at the inner 
boundaries of the convective zones (labeled by the degeneracy parameters i//) as a 
function of L/M. It is evident that the core temperatures are substantially reduced; 
the reduction is about a factor of 3 at the lowest luminosity considered. The jog in 
this curve is due to the fact that the models with lower luminosities have two con­
vection zones, the outer zone corresponding to the region of hydrogen and first 
helium ionization, while the deeper zone coincides with that of second helium 
ionization. 

The coincidence of convective regions with partial ionization zones is a general 
phenomenon arising from the combination of very high opacities and reduced adiabatic 
gradients caused by the incomplete ionization (Hayashi et al., 1962, p. 80). Convection 
is thus expected in the outer envelopes of all white dwarfs. This is confirmed by 
preliminary calculations for pure hydrogen, helium, and carbon envelope models 
(Van Horn, 1970). It is found that subsurface convection, beginning at the photosphere, 
occurs in all white dwarfs, but that the convective region occupies a smaller fraction 
of the envelope for the more luminous white dwarfs, while it may extend into the 
degenerate core at the lower luminosities. In the latter cases, the core temperature 
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becomes quite sensitive to the actual atmospheric boundary conditions used; the 
models of Van Horn (1970) give much lower core temperatures in this luminosity 
range than the considerably more accurate models of Bohm (1970) which make use 
of actual atmospheric models computed by Grenfell and Bohm (1970). To obtain a 
reliable estimate of the L-Tc relation at such low luminosities it is, therefore, very 
important to have accurate opacity laws and atmospheres. 

4.5 4.4 4.3 42 41 4.0 3.9 3.8 3.7 3.6 35 
log T e 

Fig. 7. Boundaries in the H — R diagram of regions where envelope convection becomes important, 
shown together with the observations of Eggen and Greenstein (1965), with spectral types indicated. 
Below the upper hatched area marked 'He' the convective zone in a helium envelope extends into 
the degenerate core. Similar results hold for the hydrogen and carbon convection boundaries, 

indicated by the lower hatched area marked 'H, C \ 

At the higher luminosities, where convection does not extend in to ^ = 0, the 
temperature distribution near the core-envelope boundary is independent of the 
surface conditions. This is a consequence of the well-known tendency of envelope 
models to converge to the so-called 'radiative zero' solution (Schwarzschild, 1958, 
p. 92). The effect is shown graphically by Lacis (1970) and by Van Horn (1970) and 
is indicated in Figure 6 by the distribution of temperatures at ^ = 0 obtained for 
helium envelopes with extensive convection zones in the outer parts. The good 
agreement of the temperatures of these models with results of the radiative envelope 
calculations thus indicates that prospects for obtaining accurate L-Tc relations for 
the brighter white dwarfs are much better than anticipated by Hubbard and Wagner. 
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Finally, it is of interest to ask in what regions of the H —R diagram we may expect 
envelope convection to be important. This is qualitatively answered in Figure 7, where 
the loci of points defined by the condition that the inner boundary of the convective 
zone just reach the edge of the degenerate core are plotted for envelopes composed 
of hydrogen, of helium, and of carbon. It is interesting to note that no white dwarfs 
of spectral type DB (strong helium lines) lie below the He-convection boundary, 
and that no DA stars (strong hydrogen lines) fall below the edge of the H, C-zone. 
A refined theory of white dwarf envelope convection such as that being developed by 
Bohm and his coworkers may soon be able to tell us whether this result is real and 
significant. 
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