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1. Introduction

The integral

I(a, b, c, z) =
∫ 1

0
ta(1 − t)b(1 − tz)c dt (1.1)

is well known. It exists provided that R(a) > −1 and R(b) > −1. Also, it defines a
regular function of z in the z-plane cut along the real axis from z = 1 to +∞. Its relation
to the standard hypergeometric function, denoted by F , is given by

I(a, b, c, z) =
a!b!

(a + b + 1)!
F (−c, a + 1; a + b + 2; z). (1.2)

The aim of this paper is to discuss the asymptotic behaviour of I for various values of
the parameters a, b and c. Several results are already known. For example, if a, c and z

are fixed and b → ∞,

I(a, b, c, z) ∼ a!b!
(a + b + 1)!

{
1 − c(a + 1)

a + b + 2
z + · · ·

}
. (1.3)

Another formula is

I(a + λ, b, c − λ, z)

∼ b!(1 − z)b+c+1−λ

(a + b + λ − 1)!λb+1

[
1 − 1

λ
(b + 1){a + 1 + 1

2b − (a + b + c + 2)z} + · · ·
]

(1.4)

as λ → ∞ with a, b, c, z fixed and R(z) < 1. Here, and subsequently, the restriction
|ph(1 − z)| < π is imposed.
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Various expansions in terms of Bessel functions can be derived from the corresponding
expressions for the hypergeometric function (see [1]). One integral that can be estimated
in this way is I(a + λ, b + λ, c − λ, z) as λ → ∞ with a, b, c and z fixed.

One case that does not seem to have been covered is that in which b and c grow
simultaneously. To simplify matters, the investigation will be limited to the case in which
b = c. Thus, an integral of the form I(ν, µ − 1

2 , µ − 1
2 , z) will be considered. The aim is

to discover what happens as ν + µ → ∞, which involves the cases where either ν or
µ or both tend to infinity. The behaviour of other integrals can be deduced by taking
advantage of relations such as

d
dz

[z−cI(a, b, c, z)] = −cz−c−1I(a, b, c − 1, z), (1.5)

d
dz

[za+b+1I(a, b, c, z)] = bza+bI(a, b − 1, c, z), (1.6)

(1 − z)c+a+b+2 d
dz

[za+b+1(1 − z)−c−a−b−1I(a, b, c, z)]

= aza+bI(a − 1, b, c, z), (1.7)

(1 − z)c+b+2 d
dz

[za+b+c+2(1 − z)−c−b−1I(a, b, c, z)]

= (a + b + c + 2)za+b+c+1I(a, b, c + 1, z), (1.8)

provided that the integrals on the right-hand sides exist. Evidently, there is no loss of
generality if it is assumed that ν � 0 and µ � 1

2 since lower values can be handled by
the above relations. From now on, therefore, it will be assumed that ν + µ → ∞ subject
to the conditions ν � 0 and µ � 1

2 .
In the discussion of the asymptotic behaviour, free use of the theory of Olver (see, for

example, [2–4]) will be made without further specific reference.
By a transformation of the hypergeometric function, it follows from (1.2) that

I(ν, µ − 1
2 , µ − 1

2 , z) =
ν!
λ!

(µ − 1
2 )!(1 − z)µ−1/2F

(
1
2 − µ, µ + 1

2 ; λ + 1;
z

z − 1

)
, (1.9)

where λ = µ + ν + 1
2 .

Now make the transformation

z/(z − 1) = 1
2 (1 − w). (1.10)

Since (1.10) is a bilinear transformation, circles in one plane are mapped into circles in
the other plane. In particular, the cut for the integral in the z-plane becomes a cut along
the real axis from −∞ to −1 in the w-plane. Also, the imaginary axis of the w-plane
maps into the unit circle of the z-plane.

If λ � 1 while µ and |w| are bounded, it is standard that

F ( 1
2 − µ, µ + 1

2 ; λ + 1; 1
2 (1 − w)) ∼ 1 + 1

2 ( 1
4 − µ2)

1 − w

λ + 1
(1.11)
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to a first approximation. For 0 � µ � 2 and |1−w| < 1, the error in approximation (1.11)
is less than 1% for λ > 7. But the error grows rapidly with µ. Even a moderate increase
in µ to 5 (say) requires λ to exceed 80 to achieve an accuracy of 1%. Thus, (1.11) is not
very satisfactory for practical purposes unless µ/λ is relatively small.

2. Behaviour of the hypergeometric function

The hypergeometric function in (1.11) satisfies

(1 − w2)
d2F

dw2 − 2(λ + w)
dF

dw
+ (µ2 − 1

4 )F = 0. (2.1)

On making the substitution F = (1−w)−(λ+1)/2(1+w)(λ−1)/2p, the differential equation
(2.1) becomes

d2p

dw2 = − p

(1 − w2)2
[λ2{σ2(1 − w2) − 1} + 1 − 1

4 (1 − w2)], (2.2)

where σ = µ/λ > 0. This differential equation has turning points on the imaginary axis
at w = ±i(1 − σ2)1/2/σ since σ < 1. The turning points can be placed on the real axis
by putting w = iv, with the result that

d2p

dv2 =
p

(1 + v2)2
[λ2{σ2(1 + v2) − 1} + 3

4 − 1
4v2]. (2.3)

Due to the substitution in (2.1), there are cuts in the v-plane from i to i∞ and from −i∞
to −i.

A new variable ζ is now introduced via

dv

dζ
= (1 + v2)

{
ζ2 − α2

σ2(1 + v2) − 1

}1/2

, (2.4)

where α is a real non-negative constant selected so that the points ζ = ±α and v =
±(1 − σ2)1/2/σ correspond. Integration of (2.4), starting from ζ = α, yields

σ ln[σv + {σ2(1 + v2) − 1}1/2]

− ln[v + {σ2(1 + v2) − 1}1/2] + 1
2 ln(1 + v2) + 1

2 (1 − σ) ln(1 − σ2)

= 1
2ζ(ζ2 − α2)1/2 − 1

2α2 ln[{ζ + (ζ2 − α2)1/2}/α]. (2.5)

The square roots in (2.5) are defined to be positive on the real axis where ζ > α or
v > (1 − σ2)1/2/σ and elsewhere by continuity. In the interval −α < ζ < α, it is more
convenient to use trigonometric functions instead of logarithms. There is no difficulty in
seeing that, for −α < ζ < α, (2.5) becomes

σ cos−1 σv

(1 − σ2)1/2 −cos−1 v

(1 − σ2)1/2(1 + v2)1/2 = 1
2ζ(α2−ζ2)1/2− 1

2α2 cos−1 ζ

α
, (2.6)
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where cos−1 is taken to lie in the interval (0, π). The substitution ζ = −α, v = −(1 −
σ2)1/2/σ in (2.6) leads to

α2 = 2(1 − σ), (2.7)

which specifies α. Note also that (2.6) implies that ζ = 0 corresponds to v = 0 by virtue
of (2.7).

Although σ is never strictly unity it can be close to this value. So it is worth observing
that, when σ = 1 and α = 0, (2.5) reduces to

ζ2 = ln(1 + v2). (2.8)

The transformation

p =
(

dv

dζ

)1/2

q(ζ) (2.9)

changes (2.3) to
d2q

dζ2 = {λ2(ζ2 − α2) + ψ}q, (2.10)

where

ψ =
2α2 + 3ζ2

4(ζ2 − α2)2
+

(ζ2 − α2)(1 + v2)
4{σ2(1 + v2) − 1}3 [(σ2 − 4){σ2(1 + v2) − 1} + 5σ2 − 5]. (2.11)

Thus

F ( 1
2 − µ, µ + 1

2 ; λ + 1; 1
2 (1 − iv)) = (1 − iv)−(λ+1)/2(1 + iv)(λ−1)/2

(
dv

dζ

)1/2

q(ζ), (2.12)

where q is a suitable solution of (2.10). Once q has been determined, the integral I(ν, µ−
1
2 , µ − 1

2 , (iv − 1)/(iv + 1)) may be deduced from (1.9).
At first sight it appears that ψ has singularities at ζ = ±α. However, it may be

checked that the contributions of the various singular terms cancel, so that ψ is bounded
at ζ = ±α. Furthermore, as v → ∞ along the real axis,

ζ2 ∼ 2σ ln v,

so ψ = O(1/ζ2) as ζ → ∞.

3. The first approximation

Since λ is large, a first approximation to q can be obtained by neglecting ψ in (2.10).
Solutions can then be expressed in terms of parabolic cylinder functions that satisfy

d2U

dz2 = ( 1
4z2 + a)U. (3.1)

Appropriate solutions of (3.1) are

U(a, z) = y1 cos π( 1
4 + 1

2a) − y2 sin π( 1
4 + 1

2a), (3.2)

V (a, z) = y1 sin π( 1
4 + 1

2a) + y2 cos π( 1
4 + 1

2a), (3.3)
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where

y1 =
(− 1

2a − 3
4 )!

π1/22a/2+1/4 e−z2/4
1F1( 1

2a + 1
4 ; 1

2 ; 1
2z2),

y2 =
(− 1

2a − 1
4 )!

π1/22a/2−1/4 ze−z2/4
1F1( 1

2a + 3
4 ; 3

2 ; 1
2z2),

and 1F1 is the usual confluent hypergeometric function. Connection formulae follow
immediately from (3.2) and (3.3); they are

U(a,−z) = V (a, z) cos πa − U(a, z) sin πa, (3.4)

V (a,−z) = U(a, z) cos πa + V (a, z) sin πa. (3.5)

They permit results in one half of the z-plane to be carried over to the remainder of the
z-plane. One particular relation is

U(a,−z) + iV (a,−z) = ieiπa{U(a, z) − iV (a, z)}. (3.6)

It can be seen from the formulae for y1 and y2 that

U(a, 0) =
(− 1

2a − 3
4 )!

π1/22a/2+1/4 cos π( 1
4 + 1

2a) =
π1/22−a/2−1/4

( 1
2a − 1

4 )!
, (3.7)

V (a, 0) =
(− 1

2a − 3
4 )!

π1/22a/2+1/4 sin π( 1
4 + 1

2a). (3.8)

Moreover, if dU(a, z)/dz is denoted by U ′(a, z),

U ′(a, 0) = −
(− 1

2a − 1
4 )!

π1/22a/2−1/4 sin π( 1
4 + 1

2a) = −π1/221/4−a/2

( 1
2a − 3

4 )!
, (3.9)

V ′(a, 0) =
(− 1

2a − 1
4 )!

π1/22a/2−1/4 cos π( 1
4 + 1

2a). (3.10)

Consequently,

U(a, z)V ′(a, z) − U ′(a, z)V (a, z) = (−a − 1
2 )!

(
2
π

)1/2

. (3.11)

When a is fixed and |z| → ∞ with |ph z| < 3π/4,

U(a, z) ∼ z−a−1/2e−z2/4
∑
s=0

(−2)s( 1
2a + 1

4 )s

( 1
2a + 3

4 )s

s!z2s
, (3.12)

where, for arbitrary (b)s, we denote by (b)s the Pochhammer symbol defined by

(b)s =
(b + s − 1)!

(b − 1)!
.
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When π/4 < ph z < 5π/4,

U(a, z) ∼ z−a−1/2e−z2/4 +
(2π)1/2

(a − 1
2 )!

eiπ(1/2−a)za−1/2ez2/4 (3.13)

as |z| → ∞. For −5π/4 < ph z < −π/4, change the sign of i in the exponential in the
second term on the right-hand side of (3.13).

The analogous formula for V is

V (a, z) ∼ ε0iU(a, z) + (−a − 1
2 )!

(
2
π

)1/2

za−1/2ez2/3
∑
s=0

2s( 1
4 − 1

2a)s

( 3
4 − 1

2a)s

s!z2s
, (3.14)

where ε0 = 1 for −π/4 < ph z < 3π/4 and ε0 = −1 for −3π/4 < ph z < π/4. There
are apparently two different formulae for V when |ph z| < π/4 but they are consistent
because here U is negligible compared with the rest of the expression. The asymptotic
behaviour of U and V for other regions of ph z can be deduced from (3.12), (3.13) and
(3.14) by means of the connection formulae (3.4) and (3.5).

After the ψ in (2.10) is dropped, comparison with (3.1) shows that the first approxi-
mation to q is given by

q(ζ) = AU(− 1
2λα2, (2λ)1/2ζ) + BV (− 1

2λα2, (2λ)1/2ζ),

where A and B are constants to be determined. These constants can be found from the
values of q and its derivative at ζ = 0.

From (2.12),
(

α2

1 − σ2

)1/4

{AU(− 1
2λα2, 0) + BV (− 1

2λα2, 0)} = F ( 1
2 − µ, µ + 1

2 ; λ + 1; 1
2 ) = p1 (say).

(3.15)
For the derivative let

p2 =
[

d
dv

{(1 − iv)λF ( 1
2 − µ, µ + 1

2 ; λ + 1; 1
2 − 1

2 iv)}
]

v=0
.

Then (
1 − σ2

α2

)1/4

(2λ)1/2{AU ′(− 1
2λα2, 0) + BV ′(− 1

2λα2, 0)} = p2. (3.16)

On account of (3.11), (3.15) and (3.16) imply that

( 1
2λα2 − 1

2 )!
(

2
π

)1/2

A

=
(

1 − σ2

α2

)1/4

p1V
′(− 1

2λα2, 0) −
(

α2

1 − σ2

)1/4
p2

(2λ)1/2 V (− 1
2λα2, 0), (3.17)

( 1
2λα2 − 1

2 )!
(

2
π

)1/2

B

=
(

α2

1 − σ2

)1/4
p2

(2λ)1/2 U(− 1
2λα2, 0) −

(
1 − σ2

α2

)1/4

p1U
′(− 1

2λα2, 0). (3.18)
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Since

p1 =
λ!π1/22−λ

( 1
2λ − 1

2µ − 1
4 )!( 1

2λ + 1
2µ − 1

4 )!
(3.19)

and

p2 = − λ!π1/221−λi
( 1
2λ − 1

2µ − 3
4 )!( 1

2λ + 1
2µ − 3

4 )!
, (3.20)

it follows from (3.7)–(3.10) that

( 1
2λα2 − 1

2 )!
(

2
π

)1/2

A = A1 cos π( 1
4 − 1

4λα2) + iA2 sin π( 1
4 − 1

4λα2), (3.21)

( 1
2λα2 − 1

2 )!
(

2
π

)1/2

B = A1 sin π( 1
4 − 1

4λα2) − iA2 cos π( 1
4 − 1

4λα2), (3.22)

where

A1 =
(

1 − σ2

α2

)1/4
λ!21/4−λ/2−µ/2

( 1
2λ + 1

2µ − 1
4 )!

(3.23)

and

A2 =
(

α2

1 − σ2

)1/4
λ!21/4−λ/2−µ/2

( 1
2λ + 1

2µ − 3
4 )!λ1/2

. (3.24)

Thus the approximation for q(ζ) which results from neglecting ψ in (2.10) is

q(ζ) =
A1 + A2

( 1
2λα2 − 1

2 )!2
( 1
2π)1/2eiπ(1/4−λα2/4)

× {U(− 1
2λα2, (2λ)1/2ζ) − iV (− 1

2λα2, (2λ)1/2ζ)}

+
A1 − A2

( 1
2λα2 − 1

2 )!2
( 1
2π)1/2e−iπ(1/4−λα2/4)

× {U(− 1
2λα2, (2λ)1/2ζ) + iV (− 1

2λα2, (2λ)1/2ζ)}. (3.25)

The expression in (3.25) can be rewritten by calling on the connection formulae

U(a, z) ± iV (a, z) = (− 1
2 − a)!

(
2
π

)1/2

e±iπ(a/2+1/4)U(−a,∓iz). (3.26)

Consequently,

q(ζ) = 1
2 (A1 + A2)U( 1

2λα2, i(2λ)1/2ζ) + 1
2 (A1 − A2)U( 1

2λα2,−i(2λ)1/2ζ). (3.27)

It may be remarked that, since λ + µ is large,

A2/A1 ∼ 1 + O(1/(λ + µ)2) (3.28)
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from (3.23) and (3.24). This suggests that, if O(1/(λ+µ)2) is neglected, the term involving
A1 − A2 in (3.27) can be dropped and A1 + A2 can be replaced by 2A1, provided that ζ

does not have a value that makes the second U dominant. In any case, there is little point
in retaining the order term in (3.28) until it has been ascertained whether the presence
of ψ in (2.10) produces a contribution of like magnitude. The effect of ψ is considered in
the next section.

4. Higher approximations

To allow for the influence of ψ in (2.10) as λ → ∞, take as a possible solution

q(ζ) = U(− 1
2λα2, (2λ)1/2ζ)

∑
m=0

rm(ζ)
λm

+
(2λ)1/2

λ2 U ′(− 1
2λα2, (2λ)1/2ζ)

∑
m=0

sm(ζ)
λm

. (4.1)

Then
dq

dζ
= U

∑
m=0

{
r′
m

λm
+ (ζ2 − α2)

sm

λm

}
+ (2λ)1/2U ′

∑
m=0

{
rm

λm
+

s′
m

λm+2

}
(4.2)

and

d2q

dζ2 = λ2(ζ2 − α2)q + U
∑
m=0

{r′′
m + 2ζsm + 2(ζ2 − α2)s′

m} 1
λm

+ (2λ)1/2U ′
∑
m=0

(
2r′

m +
s′′

m

λ2

)
1

λm
.

Therefore, (2.10) can be satisfied by requiring that r′
0 = 0, r′

1 = 0 and

r′
m+2 = 1

2 (ψsm − s′′
m), (4.3)

(ζ2 − α2)s′
m + ζsm = 1

2 (ψrm − r′′
m) (4.4)

for m � 0.
With rm known, sm can be found from (4.4) and then rm+2 can be determined from

(4.3). The iterative process is started with r0 = 1 and r1 = 0. The constants of integration
arising in (4.3) and (4.4) are fixed by requiring that sm (m � 0) and rm (m � 2) vanish
at the origin. Then

rm+2 = 1
2

∫ ζ

0
(ψsm − s′′

m) dζ (4.5)

and

sm =
1

2(ζ2 − α2)1/2

∫ ζ

0

ψrm − r′′
m

(ζ2 − α2)1/2 dζ. (4.6)

Clearly, both sm and rm are identically zero when m is odd.
Observe that the choice r0 = 0, r1 = 1 generates the same series as in (4.1) multiplied

by 1/λ. Hence there is no loss of generality in the selection that has been made.
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Since ψ = O(1/ζ2) as ψ → ∞, it is evident that rm is bounded at infinity, whereas
sm = O(1/ζ). Furthermore, ψ is an even function of ζ so that sm is an odd function and
rm an even function of ζ. This is verified by the explicit formula for s0, namely

s0 =
ζ3 − 6α2ζ

24α2(ζ2 − α2)2

− v

8(ζ2 − α2)1/2(1 − σ2)

[
σ2 − 4

{σ2(1 + v2) − 1}1/2 +
5
3

2σ2v2 − 3(1 − σ2)
{σ2(1 + v2) − 1}3/2

]
. (4.7)

Another solution of (2.10) is obtained by replacing U with V in (4.1). Two further
solutions are given by

q±(ζ) = U( 1
2λα2,±i(2λ)1/2ζ)

∑
m=0

rm(ζ)
λm

± i(2λ)1/2

λ2 U ′( 1
2λα2,±i(2λ)1/2ζ)

∑
m=0

sm(ζ)
λm

,

(4.8)
the upper and lower signs being taken together.

If the analysis of § 3 is repeated, it is found that (3.27) becomes

q(ζ) = 1
2 (A1 + A3)q+(ζ) + 1

2 (A1 − A3)q−(ζ), (4.9)

where

A3 = A2

/{
1 +

∑
m=0

s′
m(0)

λm+2

}
. (4.10)

The formula (4.9) can be simplified. As v approaches −i from the origin along the
imaginary axis, ζ → −i∞. Indeed, if ζ = −iη and η > 0,

η2 + α2 ln η ∼ − ln(1 − iv).

Hence, when v → −i, it is evident from (3.12) that q+(ζ) tends to zero like (1 − iv)λ/2

when the behaviour of rm and sm at infinity is borne in mind. On the other hand, it is
transparent from (3.13) that q−(ζ) becomes infinite like (1 − iv)−λ/2. But, as v → −i,

F ( 1
2 − µ, µ + 1

2 ; λ + 1; 1
2 (1 − iv)) → 1,

which is inconsistent with (4.9) and (2.12) unless the term in q−(ζ) is absent. In other
words, consistency requires that A1 = A3 or

1 +
∑
m=0

s′
m(0)

λm+2 =
A2

A1
=

(
α2

1 − σ2

)1/2 ( 1
2λ + 1

2µ − 1
4 )!

( 1
2λ + 1

2µ − 3
4 )!λ1/2

(4.11)

from (4.10), (3.23) and (3.24).
The expression for q(ζ) now reduces to

q(ζ) = A1q+(ζ) (4.12)
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and

F ( 1
2 − µ, µ + 1

2 ; λ + 1; 1
2 (1 − iv)) ∼ (1 − iv)−λ/2(1 + iv)λ/2

(
ζ2 − α2

σ2(1 + v2) − 1

)1/4

A1q+(ζ).

(4.13)
An additional check on (4.13) is provided by allowing v and ζ to tend to infinity along

the positive real axis, taking into account the largeness of the parameters.
Note that it has now been verified that putting A1 = A2 in (3.27) does offer a tolerable

first approximation.
It follows from (1.9) and (4.13) that, as ν + µ → ∞,

I

(
ν, µ − 1

2 , µ − 1
2 ,

iv − 1
iv + 1

)

∼
ν!(µ − 1

2 )!(1 + iv)λ/2−µ+1/2

( 1
2λ + 1

2µ − 1
4 )!(1 − iv)λ/2

(
1 − σ2

α2

)1/4

2µ/2−λ/2−1/4
{

ζ2 − α2

σ2(1 + v2) − 1

}1/4

q+(ζ).

(4.14)

When µ is an odd half integer, F is a polynomial in 1 − iv. For these values of µ, the
polynomial will supply more convenient values for I than (4.14) so long as µ is not too
large.

Asymptotic formulae for other hypergeometric functions can be deduced from (4.13)
by means of the well-known relations between hypergeometric functions but details are
omitted.
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