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Abstract The asymptotic behaviour of a certain integral is investigated. The investigation involves a
hypergeometric function of a type for which the asymptotics have not previously been considered.
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1. Introduction

The integral
1
I(a,b,c,z) = / t9(1 —t)°(1 — tz)edt (1.1)
0

is well known. It exists provided that R(a) > —1 and R(b) > —1. Also, it defines a
regular function of z in the z-plane cut along the real axis from z = 1 to 4+o00. Its relation
to the standard hypergeometric function, denoted by F', is given by

ald!

I(a,b,c,z): m

F(—c,a+1l;a+b+2;2). (1.2)

The aim of this paper is to discuss the asymptotic behaviour of I for various values of
the parameters a, b and c. Several results are already known. For example, if a, ¢ and z
are fixed and b — o0,

alb! cla+1)
I(a’b’c’z)w(a+b+1)!{la+b+2z+"'}' (13)

Another formula is

Ila+ A\ b,c— A 2)
bl(1 — z)bFeti=A
T lat b+ A— DI [

1—i(b—l—l){a—i—l—l—éb—(a+b+c—|—2)z}+~-~] (1.4)

as A — oo with a, b, ¢, z fixed and R(z) < 1. Here, and subsequently, the restriction
Iph(1 — 2)| < 7 is imposed.
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Various expansions in terms of Bessel functions can be derived from the corresponding
expressions for the hypergeometric function (see [1]). One integral that can be estimated
in this way is I(a + X\, b+ A\, c— A, 2) as A — oo with a, b, ¢ and z fixed.

One case that does not seem to have been covered is that in which b and ¢ grow
simultaneously. To simplify matters, the investigation will be limited to the case in which
b = ¢. Thus, an integral of the form I(v, u — %, w— %, z) will be considered. The aim is
to discover what happens as v + pu — oo, which involves the cases where either v or
w1 or both tend to infinity. The behaviour of other integrals can be deduced by taking

advantage of relations such as

%[z_cl(a, bc,z)] = —cz “(a,b,c—1,2), (1.5)
di[z“erHI(a, b,c,2)] = bz I(a,b—1,¢,2), (1.6)
z

e LT Ry (N )

dz
= az""I(a - 1,b,¢,2), (1.7)

d ,
(1 _ Z)C+b+2—[za+b+c+2(1 _ Z)_C_b_lf(a, b, c, Z)]

dz
=(a+b+c+2)22T  (a,b,c+1,2), (1.8)

provided that the integrals on the right-hand sides exist. Evidently, there is no loss of
generality if it is assumed that v > 0 and p > % since lower values can be handled by
the above relations. From now on, therefore, it will be assumed that v + yu — co subject
to the conditions v > 0 and p > %

In the discussion of the asymptotic behaviour, free use of the theory of Olver (see, for
example, [2-4]) will be made without further specific reference.

By a transformation of the hypergeometric function, it follows from (1.2) that

V! _ z
Moo= hou= 39 = 5= D= 2P (3 -+ Jas i) 9

where A:u+y+%.
Now make the transformation

z/(z—1)=1(1-w). (1.10)

Since (1.10) is a bilinear transformation, circles in one plane are mapped into circles in
the other plane. In particular, the cut for the integral in the z-plane becomes a cut along
the real axis from —oo to —1 in the w-plane. Also, the imaginary axis of the w-plane
maps into the unit circle of the z-plane.

If A > 1 while p and |w| are bounded, it is standard that

Fh—pp+ix+15i1-w)~1+1E - pd)— (1.11)
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to a first approximation. For 0 < 4 < 2 and |1—w| < 1, the error in approximation (1.11)
is less than 1% for A > 7. But the error grows rapidly with . Even a moderate increase
in p to 5 (say) requires A to exceed 80 to achieve an accuracy of 1%. Thus, (1.11) is not
very satisfactory for practical purposes unless /) is relatively small.

2. Behaviour of the hypergeometric function

The hypergeometric function in (1.11) satisfies

d’F dF 5
W—Q(/\+w)—+(u - 1F=0. (2.1)

(1= w?) dw

On making the substitution F = (1—w)~A+D/2(14w)A=1/2p the differential equation
(2.1) becomes
d*p p 27 2 2 1 2
w:—m[/\ {1 —w”) =1} +1—3(1 —w)], (22)
where o = u/\ > 0. This differential equation has turning points on the imaginary axis
at w = +i(1 — 0?)/2 /o since o < 1. The turning points can be placed on the real axis
by putting w = iv, with the result that

d?p p

_ 27 2 2 31,2
Due to the substitution in (2.1), there are cuts in the v-plane from i to ico and from —ioco
to —i.
A new variable ¢ is now introduced via
dv ¢?—a? 1/2
— =1+ 24
e e (2.0

where « is a real non-negative constant selected so that the points ( = +a and v =
+(1 — 02)'? /o correspond. Integration of (2.4), starting from ¢ = a, yields

onfov + {o%(1 +v?) — 1}/
—Info+ {o*(1+v?) =1} + L In(1 +v?) + (1 - o) In(1 — 0?)
= 5¢(¢* = )2 = §a® W[{¢ + (P — @®) !/} /al. (2.5)

The square roots in (2.5) are defined to be positive on the real axis where { > « or
v > (1 —0?)"2/0 and elsewhere by continuity. In the interval —a < ¢ < a, it is more
convenient to use trigonometric functions instead of logarithms. There is no difficulty in
seeing that, for —a < ¢ < «, (2.5) becomes

1 ov 1 v 1

2 2\1/2 1 _2 —1
m—cos = C(Oé —C ) / —§Oé COS

(1 —02)1/2(1 +v2)1/2 —2 ; (2:6)

0 Ccos

Q |y
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where cos™! is taken to lie in the interval (0, 7). The substitution ( = —a, v = —(1 —
02)1/2 /g in (2.6) leads to
o® =2(1-o0), (2.7)
which specifies a.. Note also that (2.6) implies that ¢ = 0 corresponds to v = 0 by virtue
of (2.7).
Although o is never strictly unity it can be close to this value. So it is worth observing
that, when o =1 and « = 0, (2.5) reduces to

¢? =1n(1 +v?). (2.8)
The transformation
do \/2
r=(5) (2.9
changes (2.3) to
1 e - at) 0} (2.10)
= g, :
where
22+3C2 <2_21_~_2
e R et RGN E AL L SO
Thus
dv\/?
Fb = ot A 110 ) = (1= i) 0024002 (90 40), 212

where ¢ is a suitable solution of (2.10). Once ¢ has been determined, the integral I (v, u—
2. u— 3, (iv—1)/(iv + 1)) may be deduced from (1.9).

At first sight it appears that ¢ has singularities at ( = +a. However, it may be
checked that the contributions of the various singular terms cancel, so that ¢ is bounded
at ( = +a. Furthermore, as v — oo along the real axis,

2 ~20lnv,

so ¥ = O(1/¢?) as ¢ — <.

3. The first approximation

Since A is large, a first approximation to ¢ can be obtained by neglecting + in (2.10).

Solutions can then be expressed in terms of parabolic cylinder functions that satisfy
d2U

Appropriate solutions of (3.1) are
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where
(-30-3) ~2%/4 1 1.1.1,2
e T 1Fi(za+ 3535 527),
(-30— )t —2%/4 1 3.3.1.2
yQZWZQ 1F1(§(1+Z;§;§Z )’

and 1F] is the usual confluent hypergeometric function. Connection formulae follow
immediately from (3.2) and (3.3); they are

U(a,—z) =V(a,z)cosma — U(a, z) sinra, (3.4)

V(a,—z) = U(a,z)cosma + V(a, z) sinra. (3.5)

They permit results in one half of the z-plane to be carried over to the remainder of the
z-plane. One particular relation is

Ula,—2) +iV(a, —z) = ie™{U(a, ) — iV (a, 2)}. (3.6)

It can be seen from the formulae for y; and y, that

(_%a _ %)l ) ) rl/29—a/2-1/4
U(@.0) = Tpgaraeiya 57 +20) = Ty (87)
o (ga=
V(CL,O) = m Slnﬂ'(z —+ 5(1) (38)
Moreover, if dU(a, z)/dz is denoted by U’(a, 2),
(fla _ l)g ' r1/291/4—a/2
/ — 2 4 1 1.y _
U'(a,0) = 11/29a/2-1/4 sinm(g + 3a) = (Ta— ) (3.9)
/ (—3a—3)! 1,1
V ((L, O) = m COS ﬂ'(Z + 501) (310)
Consequently,
9\!/2
Ula,2)V'(a,z) —U'(a,2)V(a,z) = (—a — é)'() : (3.11)
™
When a is fixed and |z| — oo with |phz| < 37/4,
1 3
—a—1/2,_—22/4 s(l 1 (§a+ Z)S

s=0
where, for arbitrary (b)s, we denote by (b)s the Pochhammer symbol defined by

(b+s—1)!

(b)s = (b — 1)!
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When 7/4 < phz < 57/4,

2 2m)/2 2
U(CL,Z) ~ Zfafl/Zefz /4 + ( 7T) . e171'(1/2711)2/,(171/262 /4 (313)
(a—3)!
as |z| = oo. For —5m/4 < phz < —m /4, change the sign of i in the exponential in the
second term on the right-hand side of (3.13).
The analogous formula for V' is

. 1y 2 2 ~1/2,22 (1~ 39
V(a,z) ~ ilU(a,z) + (—a — 2)!<W> 2712 /3N "8 (4 — Ja) 22 (3.14)
s=0

where ¢g = 1 for —7/4 < phz < 37/4 and ¢ = —1 for —37/4 < phz < w/4. There
are apparently two different formulae for V' when |phz| < 7/4 but they are consistent
because here U is negligible compared with the rest of the expression. The asymptotic
behaviour of U and V for other regions of phz can be deduced from (3.12), (3.13) and
(3.14) by means of the connection formulae (3.4) and (3.5).

After the v in (2.10) is dropped, comparison with (3.1) shows that the first approxi-
mation to ¢ is given by

4(Q) = AU(=31a”, (20)/%¢) + BV (=32a”, (21)1/¢),

where A and B are constants to be determined. These constants can be found from the
values of ¢ and its derivative at ¢ = 0.

From (2.12),
a2 \V4
<1_02> {AU(=3X0®,0) + BV(=3A?,0)} = F(3 —p,p+ 5: A+ 1;3) =p1 (say).
(3.15)
For the derivative let
d . .
po= oL~ PG — o+ A+ 15 - o))
v=0
Then
1-0%\/* 1/2 11y .2 11y 2
= (2AN) AU (=52a7,0) + BV (=5Ma”,0)} = po. (3.16)

On account of (3.11), (3.15) and (3.16) imply that

1/2
!(2> 4
s

1_ g2 1/4 2 \1l/4
= U) pr’(—ékaz,O)—< - ) (m V(-3ixa?,0),  (3.17)

o? 1— g2 2\)1/2
9 \1/2
o? !/ P2 1—02 1/4
:(1—02) <2A)1/2U(_5m2’0)_< o2 ) pU'(=320%,0).  (3.18)
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Since
All/29=A
p1 = (3.19)
B 5 DD+ e D)
and
Alrt/221-4 (3.20)
P2 = — ) .
D fo- DI T D)
it follows from (3.7)—(3.10) that
9 \1/2
(Lra? - ;)v() A= Aycost(d — 1xa?) +idssinn(d — Dra?), (3.21)
T
9 \1/2
(3Aa? — é)'() B = A;sinm(} — 1Xa?) —idy cos (3 — $Aa?), (3.22)
™
where
1— o2 1/4 AI21/4=A/2—p/2
A1:< 2) SR (3.23)
o (5)\ + SH— Z)‘
and
a? 1/4 A19L/4=A/2—p/2
A2:<1_ 2) A S (3.24)
o (GA+5p— )\

Thus the approximation for ¢(¢) which results from neglecting v in (2.10) is

A +A i —Aa?
q(¢) = #(%ﬂlﬂe (1/4=xa*/4)

C(Axa2 - D2
x {U(=3 a2, (20)2¢) —iV(=1xa?, (20)'/20)}
AL — Ay 1,.\1/2 —in(1/4—Xa?/4)
(%)\042 _ %)|2(§7T) e
x {U(=3 a2, (20)2¢) +iV(=1xa?, 2020}, (3.25)

The expression in (3.25) can be rewritten by calling on the connection formulae

o\/2
Ula,2) £iV(a,2) = (-} - ) () @R (Lo i) (3.26)
Vi

Consequently,
q(¢) = 3(A1 + A)U(E A%, i(20)Y20) + L (A1 — A)U(3ha?, —1(20)/2¢).  (3.27)
It may be remarked that, since A + p is large,

Ao /AL ~1+0(1/(N+ p)?) (3.28)

https://doi.org/10.1017/50013091505001240 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091505001240

708 D. S. Jones

from (3.23) and (3.24). This suggests that, if O(1/(A+pu)?) is neglected, the term involving
A1 — As in (3.27) can be dropped and A; + A5 can be replaced by 2A4;, provided that ¢
does not have a value that makes the second U dominant. In any case, there is little point
in retaining the order term in (3.28) until it has been ascertained whether the presence
of ¢ in (2.10) produces a contribution of like magnitude. The effect of ¢ is considered in
the next section.

4. Higher approximations

To allow for the influence of ¥ in (2.10) as A — oo, take as a possible solution

1/2
q(¢) = U(=3xa”, (20)'2¢) T’;,(f) + (21)2 U'(=3Aa, (20)/%() 5’;7(5). (4.1)
m=0 m=0
Then
SR SR L ICRPOLIN SIS S (4.2)
m=0 A™ A™ m=0 )\m Am+2 ‘
and
g _ U . 2(¢
@* (C 70‘ Q+ Z{T +§SM+ ( )m}
m=0
1/2771 ” 1
) Zm o) =
+(2)) Umz_:o< +/\2>>\
Therefore, (2.10) can be satisfied by requiring that rj =0, 7{ = 0 and
Trgs = é(z/)sm — s, (4.3)
(4-2 - a2)5;n + C'Sm = %(d””m - T;:’L)

for m > 0.

With r,,, known, s,, can be found from (4.4) and then r,,+2 can be determined from
(4.3). The iterative process is started with o = 1 and r; = 0. The constants of integration
arising in (4.3) and (4.4) are fixed by requiring that s,, (m > 0) and r,, (m > 2) vanish
at the origin. Then

¢
e =y [ (s = )¢ (45)

and

1 < ’(/}Tm - T;;L
TR a2 /0 (C2—a2)1/2 d. (4.6)

Clearly, both s,, and r,, are identically zero when m is odd.
Observe that the choice 7o = 0, 7y = 1 generates the same series as in (4.1) multiplied
by 1/A. Hence there is no loss of generality in the selection that has been made.
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Since ¢ = O(1/¢?) as ¢ — oo, it is evident that 7, is bounded at infinity, whereas
$m = O(1/¢). Furthermore, v is an even function of ¢ so that s,, is an odd function and
rm an even function of (. This is verified by the explicit formula for sg, namely

L ¢ —6a%
0= 2402((2 — a?)?
v o?—4 5 20%0? — 3(1 — 0?)

8(C2 — a?)1/2(1 — 02) [{02(1 Fo2) — 111/ + 3 (211 02) = 1}3/2]. (4.7)

Another solution of (2.10) is obtained by replacing U with V in (4.1). Two further
solutions are given by

i(2 1/2
¢=(C) = U(Fra?, +(2)) /%) T’;ﬁf) . X ig U’ ($ha?, +i(20) /%) 78";7(5),
m=0 m=0
(4.8)
the upper and lower signs being taken together.
If the analysis of § 3 is repeated, it is found that (3.27) becomes
q(¢) = 5(A1 + A3)a+(O) + (A1 — A3)q-(C), (4.9)

where

AB_AQ/{lJr > ‘ij"n(fg} (4.10)

m=0

The formula (4.9) can be simplified. As v approaches —i from the origin along the
imaginary axis, ( — —ioco. Indeed, if { = —in and n > 0,

4+ a’lnn ~ —In(1 — iv).

Hence, when v — —i, it is evident from (3.12) that ¢, (¢) tends to zero like (1 — iv)*/?
when the behaviour of r,, and s,, at infinity is borne in mind. On the other hand, it is

transparent from (3.13) that ¢_(¢) becomes infinite like (1 — iv)~*/2. But, as v — —i,
F(3—pp+ 32+ 1511-iv) > 1,

which is inconsistent with (4.9) and (2.12) unless the term in ¢_(¢) is absent. In other
words, consistency requires that A; = Ag or

, 1/2 1 1, 1
1+Z%@&(&)<QHM J (4.11)

1—o02 N+ Tp— 3)IN/2

from (4.10), (3.23) and (3.24).
The expression for ¢(¢) now reduces to

a(¢) = A1q+(C) (4.12)
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and

. o . 2 _ 42 1/4
FO—pp+ 32+ 1,301 - ) ~ (1 —iv) A/2(1+w)”2< : _1> A1q4(Q)-

o2(1 + 02)
(4.13)

An additional check on (4.13) is provided by allowing v and ¢ to tend to infinity along
the positive real axis, taking into account the largeness of the parameters.

Note that it has now been verified that putting A; = As in (3.27) does offer a tolerable
first approximation.

It follows from (1.9) and (4.13) that, as v + p — oo,

1  iv—1
I<Vau—27ﬂ—27wﬂ>

A U N2 PN a? 1/4q o
X+ 3p- D1 -2 | a2 o2(1+v2) — 1 S

(4.14)

When p is an odd half integer, F' is a polynomial in 1 — iv. For these values of u, the
polynomial will supply more convenient values for I than (4.14) so long as p is not too
large.

Asymptotic formulae for other hypergeometric functions can be deduced from (4.13)
by means of the well-known relations between hypergeometric functions but details are
omitted.
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