NOTE ON A HYPERGEOMETRIC INTEGRAL

D. S. JONES
Division of Mathematics, University of Dundee, Dundee DD1 4HN, UK

(Received 5 September 2005)

Abstract The asymptotic behaviour of a certain integral is investigated. The investigation involves a hypergeometric function of a type for which the asymptotics have not previously been considered.

Keywords: asymptotics; hypergeometric function; parabolic cylinder function
2000 Mathematics subject classification: Primary 33C70
Secondary 45M05

1. Introduction

The integral

$$
\begin{equation*}
I(a, b, c, z)=\int_{0}^{1} t^{a}(1-t)^{b}(1-t z)^{c} \mathrm{~d} t \tag{1.1}
\end{equation*}
$$

is well known. It exists provided that $\mathcal{R}(a)>-1$ and $\mathcal{R}(b)>-1$. Also, it defines a regular function of z in the z-plane cut along the real axis from $z=1$ to $+\infty$. Its relation to the standard hypergeometric function, denoted by F, is given by

$$
\begin{equation*}
I(a, b, c, z)=\frac{a!b!}{(a+b+1)!} F(-c, a+1 ; a+b+2 ; z) \tag{1.2}
\end{equation*}
$$

The aim of this paper is to discuss the asymptotic behaviour of I for various values of the parameters a, b and c. Several results are already known. For example, if a, c and z are fixed and $b \rightarrow \infty$,

$$
\begin{equation*}
I(a, b, c, z) \sim \frac{a!b!}{(a+b+1)!}\left\{1-\frac{c(a+1)}{a+b+2} z+\cdots\right\} \tag{1.3}
\end{equation*}
$$

Another formula is

$$
\begin{align*}
& I(a+\lambda, b, c-\lambda, z) \\
& \sim \frac{b!(1-z)^{b+c+1-\lambda}}{(a+b+\lambda-1)!\lambda^{b+1}}\left[1-\frac{1}{\lambda}(b+1)\left\{a+1+\frac{1}{2} b-(a+b+c+2) z\right\}+\cdots\right] \tag{1.4}
\end{align*}
$$

as $\lambda \rightarrow \infty$ with a, b, c, z fixed and $\mathcal{R}(z)<1$. Here, and subsequently, the restriction $|\operatorname{ph}(1-z)|<\pi$ is imposed.

Various expansions in terms of Bessel functions can be derived from the corresponding expressions for the hypergeometric function (see [1]). One integral that can be estimated in this way is $I(a+\lambda, b+\lambda, c-\lambda, z)$ as $\lambda \rightarrow \infty$ with a, b, c and z fixed.

One case that does not seem to have been covered is that in which b and c grow simultaneously. To simplify matters, the investigation will be limited to the case in which $b=c$. Thus, an integral of the form $I\left(\nu, \mu-\frac{1}{2}, \mu-\frac{1}{2}, z\right)$ will be considered. The aim is to discover what happens as $\nu+\mu \rightarrow \infty$, which involves the cases where either ν or μ or both tend to infinity. The behaviour of other integrals can be deduced by taking advantage of relations such as

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} z}\left[z^{-c} I(a, b, c, z)\right]=-c z^{-c-1} I(a, b, c-1, z), \tag{1.5}\\
& \frac{\mathrm{d}}{\mathrm{~d} z}\left[z^{a+b+1} I(a, b, c, z)\right]=b z^{a+b} I(a, b-1, c, z), \tag{1.6}\\
&(1-z)^{c+a+b+2} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[z^{a+b+1}(1-z)^{-c-a-b-1} I(a, b, c, z)\right] \\
&=a z^{a+b} I(a-1, b, c, z), \tag{1.7}\\
&(1-z)^{c+b+2} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[z^{a+b+c+2}(1-z)^{-c-b-1} I(a, b, c, z)\right] \\
&=(a+b+c+2) z^{a+b+c+1} I(a, b, c+1, z), \tag{1.8}
\end{align*}
$$

provided that the integrals on the right-hand sides exist. Evidently, there is no loss of generality if it is assumed that $\nu \geqslant 0$ and $\mu \geqslant \frac{1}{2}$ since lower values can be handled by the above relations. From now on, therefore, it will be assumed that $\nu+\mu \rightarrow \infty$ subject to the conditions $\nu \geqslant 0$ and $\mu \geqslant \frac{1}{2}$.

In the discussion of the asymptotic behaviour, free use of the theory of Olver (see, for example, $[\mathbf{2 - 4}]$) will be made without further specific reference.

By a transformation of the hypergeometric function, it follows from (1.2) that

$$
\begin{equation*}
I\left(\nu, \mu-\frac{1}{2}, \mu-\frac{1}{2}, z\right)=\frac{\nu!}{\lambda!}\left(\mu-\frac{1}{2}\right)!(1-z)^{\mu-1 / 2} F\left(\frac{1}{2}-\mu, \mu+\frac{1}{2} ; \lambda+1 ; \frac{z}{z-1}\right) \tag{1.9}
\end{equation*}
$$

where $\lambda=\mu+\nu+\frac{1}{2}$.
Now make the transformation

$$
\begin{equation*}
z /(z-1)=\frac{1}{2}(1-w) \tag{1.10}
\end{equation*}
$$

Since (1.10) is a bilinear transformation, circles in one plane are mapped into circles in the other plane. In particular, the cut for the integral in the z-plane becomes a cut along the real axis from $-\infty$ to -1 in the w-plane. Also, the imaginary axis of the w-plane maps into the unit circle of the z-plane.

If $\lambda \gg 1$ while μ and $|w|$ are bounded, it is standard that

$$
\begin{equation*}
F\left(\frac{1}{2}-\mu, \mu+\frac{1}{2} ; \lambda+1 ; \frac{1}{2}(1-w)\right) \sim 1+\frac{1}{2}\left(\frac{1}{4}-\mu^{2}\right) \frac{1-w}{\lambda+1} \tag{1.11}
\end{equation*}
$$

to a first approximation. For $0 \leqslant \mu \leqslant 2$ and $|1-w|<1$, the error in approximation (1.11) is less than 1% for $\lambda>7$. But the error grows rapidly with μ. Even a moderate increase in μ to 5 (say) requires λ to exceed 80 to achieve an accuracy of 1%. Thus, (1.11) is not very satisfactory for practical purposes unless μ / λ is relatively small.

2. Behaviour of the hypergeometric function

The hypergeometric function in (1.11) satisfies

$$
\begin{equation*}
\left(1-w^{2}\right) \frac{\mathrm{d}^{2} F}{\mathrm{~d} w^{2}}-2(\lambda+w) \frac{\mathrm{d} F}{\mathrm{~d} w}+\left(\mu^{2}-\frac{1}{4}\right) F=0 \tag{2.1}
\end{equation*}
$$

On making the substitution $F=(1-w)^{-(\lambda+1) / 2}(1+w)^{(\lambda-1) / 2} p$, the differential equation (2.1) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} p}{\mathrm{~d} w^{2}}=-\frac{p}{\left(1-w^{2}\right)^{2}}\left[\lambda^{2}\left\{\sigma^{2}\left(1-w^{2}\right)-1\right\}+1-\frac{1}{4}\left(1-w^{2}\right)\right] \tag{2.2}
\end{equation*}
$$

where $\sigma=\mu / \lambda>0$. This differential equation has turning points on the imaginary axis at $w= \pm \mathrm{i}\left(1-\sigma^{2}\right)^{1 / 2} / \sigma$ since $\sigma<1$. The turning points can be placed on the real axis by putting $w=\mathrm{i} v$, with the result that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} p}{\mathrm{~d} v^{2}}=\frac{p}{\left(1+v^{2}\right)^{2}}\left[\lambda^{2}\left\{\sigma^{2}\left(1+v^{2}\right)-1\right\}+\frac{3}{4}-\frac{1}{4} v^{2}\right] . \tag{2.3}
\end{equation*}
$$

Due to the substitution in (2.1), there are cuts in the v-plane from ito $\mathrm{i} \infty$ and from $-\mathrm{i} \infty$ to -i .

A new variable ζ is now introduced via

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} \zeta}=\left(1+v^{2}\right)\left\{\frac{\zeta^{2}-\alpha^{2}}{\sigma^{2}\left(1+v^{2}\right)-1}\right\}^{1 / 2} \tag{2.4}
\end{equation*}
$$

where α is a real non-negative constant selected so that the points $\zeta= \pm \alpha$ and $v=$ $\pm\left(1-\sigma^{2}\right)^{1 / 2} / \sigma$ correspond. Integration of (2.4), starting from $\zeta=\alpha$, yields

$$
\begin{align*}
& \sigma \ln \left[\sigma v+\left\{\sigma^{2}\left(1+v^{2}\right)-1\right\}^{1 / 2}\right] \\
& \quad \begin{array}{l}
-\ln \left[v+\left\{\sigma^{2}\left(1+v^{2}\right)-1\right\}^{1 / 2}\right]
\end{array} \quad+\frac{1}{2} \ln \left(1+v^{2}\right)+\frac{1}{2}(1-\sigma) \ln \left(1-\sigma^{2}\right) \\
& \quad=\frac{1}{2} \zeta\left(\zeta^{2}-\alpha^{2}\right)^{1 / 2}-\frac{1}{2} \alpha^{2} \ln \left[\left\{\zeta+\left(\zeta^{2}-\alpha^{2}\right)^{1 / 2}\right\} / \alpha\right] . \tag{2.5}
\end{align*}
$$

The square roots in (2.5) are defined to be positive on the real axis where $\zeta>\alpha$ or $v>\left(1-\sigma^{2}\right)^{1 / 2} / \sigma$ and elsewhere by continuity. In the interval $-\alpha<\zeta<\alpha$, it is more convenient to use trigonometric functions instead of logarithms. There is no difficulty in seeing that, for $-\alpha<\zeta<\alpha$, (2.5) becomes

$$
\begin{equation*}
\sigma \cos ^{-1} \frac{\sigma v}{\left(1-\sigma^{2}\right)^{1 / 2}}-\cos ^{-1} \frac{v}{\left(1-\sigma^{2}\right)^{1 / 2}\left(1+v^{2}\right)^{1 / 2}}=\frac{1}{2} \zeta\left(\alpha^{2}-\zeta^{2}\right)^{1 / 2}-\frac{1}{2} \alpha^{2} \cos ^{-1} \frac{\zeta}{\alpha} \tag{2.6}
\end{equation*}
$$

where $\cos ^{-1}$ is taken to lie in the interval $(0, \pi)$. The substitution $\zeta=-\alpha, v=-(1-$ $\left.\sigma^{2}\right)^{1 / 2} / \sigma$ in (2.6) leads to

$$
\begin{equation*}
\alpha^{2}=2(1-\sigma), \tag{2.7}
\end{equation*}
$$

which specifies α. Note also that (2.6) implies that $\zeta=0$ corresponds to $v=0$ by virtue of (2.7).

Although σ is never strictly unity it can be close to this value. So it is worth observing that, when $\sigma=1$ and $\alpha=0,(2.5)$ reduces to

$$
\begin{equation*}
\zeta^{2}=\ln \left(1+v^{2}\right) \tag{2.8}
\end{equation*}
$$

The transformation

$$
\begin{equation*}
p=\left(\frac{\mathrm{d} v}{\mathrm{~d} \zeta}\right)^{1 / 2} q(\zeta) \tag{2.9}
\end{equation*}
$$

changes (2.3) to

$$
\begin{equation*}
\frac{\mathrm{d}^{2} q}{\mathrm{~d} \zeta^{2}}=\left\{\lambda^{2}\left(\zeta^{2}-\alpha^{2}\right)+\psi\right\} q \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi=\frac{2 \alpha^{2}+3 \zeta^{2}}{4\left(\zeta^{2}-\alpha^{2}\right)^{2}}+\frac{\left(\zeta^{2}-\alpha^{2}\right)\left(1+v^{2}\right)}{4\left\{\sigma^{2}\left(1+v^{2}\right)-1\right\}^{3}}\left[\left(\sigma^{2}-4\right)\left\{\sigma^{2}\left(1+v^{2}\right)-1\right\}+5 \sigma^{2}-5\right] \tag{2.11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
F\left(\frac{1}{2}-\mu, \mu+\frac{1}{2} ; \lambda+1 ; \frac{1}{2}(1-\mathrm{i} v)\right)=(1-\mathrm{i} v)^{-(\lambda+1) / 2}(1+\mathrm{i} v)^{(\lambda-1) / 2}\left(\frac{\mathrm{~d} v}{\mathrm{~d} \zeta}\right)^{1 / 2} q(\zeta) \tag{2.12}
\end{equation*}
$$

where q is a suitable solution of (2.10). Once q has been determined, the integral $I(\nu, \mu-$ $\left.\frac{1}{2}, \mu-\frac{1}{2},(\mathrm{i} v-1) /(\mathrm{i} v+1)\right)$ may be deduced from (1.9).

At first sight it appears that ψ has singularities at $\zeta= \pm \alpha$. However, it may be checked that the contributions of the various singular terms cancel, so that ψ is bounded at $\zeta= \pm \alpha$. Furthermore, as $v \rightarrow \infty$ along the real axis,

$$
\zeta^{2} \sim 2 \sigma \ln v
$$

so $\psi=O\left(1 / \zeta^{2}\right)$ as $\zeta \rightarrow \infty$.

3. The first approximation

Since λ is large, a first approximation to q can be obtained by neglecting ψ in (2.10). Solutions can then be expressed in terms of parabolic cylinder functions that satisfy

$$
\begin{equation*}
\frac{\mathrm{d}^{2} U}{\mathrm{~d} z^{2}}=\left(\frac{1}{4} z^{2}+a\right) U \tag{3.1}
\end{equation*}
$$

Appropriate solutions of (3.1) are

$$
\begin{align*}
& U(a, z)=y_{1} \cos \pi\left(\frac{1}{4}+\frac{1}{2} a\right)-y_{2} \sin \pi\left(\frac{1}{4}+\frac{1}{2} a\right) \tag{3.2}\\
& V(a, z)=y_{1} \sin \pi\left(\frac{1}{4}+\frac{1}{2} a\right)+y_{2} \cos \pi\left(\frac{1}{4}+\frac{1}{2} a\right) \tag{3.3}
\end{align*}
$$

where

$$
\begin{aligned}
& y_{1}=\frac{\left(-\frac{1}{2} a-\frac{3}{4}\right)!}{\pi^{1 / 2} 2^{a / 2+1 / 4}} \mathrm{e}^{-z^{2} / 4}{ }_{1} F_{1}\left(\frac{1}{2} a+\frac{1}{4} ; \frac{1}{2} ; \frac{1}{2} z^{2}\right), \\
& y_{2}=\frac{\left(-\frac{1}{2} a-\frac{1}{4}\right)!}{\pi^{1 / 2} 2^{a / 2-1 / 4}} z \mathrm{e}^{-z^{2} / 4}{ }_{1} F_{1}\left(\frac{1}{2} a+\frac{3}{4} ; \frac{3}{2} ; \frac{1}{2} z^{2}\right),
\end{aligned}
$$

and ${ }_{1} F_{1}$ is the usual confluent hypergeometric function. Connection formulae follow immediately from (3.2) and (3.3); they are

$$
\begin{align*}
& U(a,-z)=V(a, z) \cos \pi a-U(a, z) \sin \pi a, \tag{3.4}\\
& V(a,-z)=U(a, z) \cos \pi a+V(a, z) \sin \pi a . \tag{3.5}
\end{align*}
$$

They permit results in one half of the z-plane to be carried over to the remainder of the z-plane. One particular relation is

$$
\begin{equation*}
U(a,-z)+\mathrm{i} V(a,-z)=\mathrm{i} \mathrm{e}^{\mathrm{i} \pi a}\{U(a, z)-\mathrm{i} V(a, z)\} . \tag{3.6}
\end{equation*}
$$

It can be seen from the formulae for y_{1} and y_{2} that

$$
\begin{align*}
& U(a, 0)=\frac{\left(-\frac{1}{2} a-\frac{3}{4}\right)!}{\pi^{1 / 2} 2^{a / 2+1 / 4}} \cos \pi\left(\frac{1}{4}+\frac{1}{2} a\right)=\frac{\pi^{1 / 2} 2^{-a / 2-1 / 4}}{\left(\frac{1}{2} a-\frac{1}{4}\right)!} \tag{3.7}\\
& V(a, 0)=\frac{\left(-\frac{1}{2} a-\frac{3}{4}\right)!}{\pi^{1 / 2} 2^{a / 2+1 / 4}} \sin \pi\left(\frac{1}{4}+\frac{1}{2} a\right) \tag{3.8}
\end{align*}
$$

Moreover, if $\mathrm{d} U(a, z) / \mathrm{d} z$ is denoted by $U^{\prime}(a, z)$,

$$
\begin{align*}
& U^{\prime}(a, 0)=-\frac{\left(-\frac{1}{2} a-\frac{1}{4}\right)!}{\pi^{1 / 2} 2^{a / 2-1 / 4}} \sin \pi\left(\frac{1}{4}+\frac{1}{2} a\right)=-\frac{\pi^{1 / 2} 2^{1 / 4-a / 2}}{\left(\frac{1}{2} a-\frac{3}{4}\right)!} \tag{3.9}\\
& V^{\prime}(a, 0)=\frac{\left(-\frac{1}{2} a-\frac{1}{4}\right)!}{\pi^{1 / 2} 2^{a / 2-1 / 4}} \cos \pi\left(\frac{1}{4}+\frac{1}{2} a\right) \tag{3.10}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
U(a, z) V^{\prime}(a, z)-U^{\prime}(a, z) V(a, z)=\left(-a-\frac{1}{2}\right)!\left(\frac{2}{\pi}\right)^{1 / 2} \tag{3.11}
\end{equation*}
$$

When a is fixed and $|z| \rightarrow \infty$ with $|\mathrm{ph} z|<3 \pi / 4$,

$$
\begin{equation*}
U(a, z) \sim z^{-a-1 / 2} \mathrm{e}^{-z^{2} / 4} \sum_{s=0}(-2)^{s}\left(\frac{1}{2} a+\frac{1}{4}\right)_{s} \frac{\left(\frac{1}{2} a+\frac{3}{4}\right)_{s}}{s!z^{2 s}} \tag{3.12}
\end{equation*}
$$

where, for arbitrary $(b)_{s}$, we denote by $(b)_{s}$ the Pochhammer symbol defined by

$$
(b)_{s}=\frac{(b+s-1)!}{(b-1)!}
$$

When $\pi / 4<\operatorname{ph} z<5 \pi / 4$,

$$
\begin{equation*}
U(a, z) \sim z^{-a-1 / 2} \mathrm{e}^{-z^{2} / 4}+\frac{(2 \pi)^{1 / 2}}{\left(a-\frac{1}{2}\right)!} \mathrm{e}^{\mathrm{i} \pi(1 / 2-a)} z^{a-1 / 2} \mathrm{e}^{z^{2} / 4} \tag{3.13}
\end{equation*}
$$

as $|z| \rightarrow \infty$. For $-5 \pi / 4<\mathrm{ph} z<-\pi / 4$, change the sign of i in the exponential in the second term on the right-hand side of (3.13).

The analogous formula for V is

$$
\begin{equation*}
V(a, z) \sim \epsilon_{0} \mathrm{i} U(a, z)+\left(-a-\frac{1}{2}\right)!\left(\frac{2}{\pi}\right)^{1 / 2} z^{a-1 / 2} \mathrm{e}^{z^{2} / 3} \sum_{s=0} 2^{s}\left(\frac{1}{4}-\frac{1}{2} a\right)_{s} \frac{\left(\frac{3}{4}-\frac{1}{2} a\right)_{s}}{s!z^{2 s}} \tag{3.14}
\end{equation*}
$$

where $\epsilon_{0}=1$ for $-\pi / 4<\operatorname{ph} z<3 \pi / 4$ and $\epsilon_{0}=-1$ for $-3 \pi / 4<\operatorname{ph} z<\pi / 4$. There are apparently two different formulae for V when $|\mathrm{ph} z|<\pi / 4$ but they are consistent because here U is negligible compared with the rest of the expression. The asymptotic behaviour of U and V for other regions of $\mathrm{ph} z$ can be deduced from (3.12), (3.13) and (3.14) by means of the connection formulae (3.4) and (3.5).

After the ψ in (2.10) is dropped, comparison with (3.1) shows that the first approximation to q is given by

$$
q(\zeta)=A U\left(-\frac{1}{2} \lambda \alpha^{2},(2 \lambda)^{1 / 2} \zeta\right)+B V\left(-\frac{1}{2} \lambda \alpha^{2},(2 \lambda)^{1 / 2} \zeta\right)
$$

where A and B are constants to be determined. These constants can be found from the values of q and its derivative at $\zeta=0$.

From (2.12),

$$
\begin{equation*}
\left(\frac{\alpha^{2}}{1-\sigma^{2}}\right)^{1 / 4}\left\{A U\left(-\frac{1}{2} \lambda \alpha^{2}, 0\right)+B V\left(-\frac{1}{2} \lambda \alpha^{2}, 0\right)\right\}=F\left(\frac{1}{2}-\mu, \mu+\frac{1}{2} ; \lambda+1 ; \frac{1}{2}\right)=p_{1} \quad \text { (say) } \tag{3.15}
\end{equation*}
$$

For the derivative let

$$
p_{2}=\left[\frac{\mathrm{d}}{\mathrm{~d} v}\left\{(1-\mathrm{i} v)^{\lambda} F\left(\frac{1}{2}-\mu, \mu+\frac{1}{2} ; \lambda+1 ; \frac{1}{2}-\frac{1}{2} \mathrm{i} v\right)\right\}\right]_{v=0}
$$

Then

$$
\begin{equation*}
\left(\frac{1-\sigma^{2}}{\alpha^{2}}\right)^{1 / 4}(2 \lambda)^{1 / 2}\left\{A U^{\prime}\left(-\frac{1}{2} \lambda \alpha^{2}, 0\right)+B V^{\prime}\left(-\frac{1}{2} \lambda \alpha^{2}, 0\right)\right\}=p_{2} \tag{3.16}
\end{equation*}
$$

On account of (3.11), (3.15) and (3.16) imply that

$$
\begin{align*}
\left(\frac{1}{2} \lambda \alpha^{2}\right. & \left.-\frac{1}{2}\right)!\left(\frac{2}{\pi}\right)^{1 / 2} A \\
& =\left(\frac{1-\sigma^{2}}{\alpha^{2}}\right)^{1 / 4} p_{1} V^{\prime}\left(-\frac{1}{2} \lambda \alpha^{2}, 0\right)-\left(\frac{\alpha^{2}}{1-\sigma^{2}}\right)^{1 / 4} \frac{p_{2}}{(2 \lambda)^{1 / 2}} V\left(-\frac{1}{2} \lambda \alpha^{2}, 0\right) \tag{3.17}\\
\left(\frac{1}{2} \lambda \alpha^{2}\right. & \left.-\frac{1}{2}\right)!\left(\frac{2}{\pi}\right)^{1 / 2} B \\
& =\left(\frac{\alpha^{2}}{1-\sigma^{2}}\right)^{1 / 4} \frac{p_{2}}{(2 \lambda)^{1 / 2}} U\left(-\frac{1}{2} \lambda \alpha^{2}, 0\right)-\left(\frac{1-\sigma^{2}}{\alpha^{2}}\right)^{1 / 4} p_{1} U^{\prime}\left(-\frac{1}{2} \lambda \alpha^{2}, 0\right) \tag{3.18}
\end{align*}
$$

Since

$$
\begin{equation*}
p_{1}=\frac{\lambda!\pi^{1 / 2} 2^{-\lambda}}{\left(\frac{1}{2} \lambda-\frac{1}{2} \mu-\frac{1}{4}\right)!\left(\frac{1}{2} \lambda+\frac{1}{2} \mu-\frac{1}{4}\right)!} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}=-\frac{\lambda!\pi^{1 / 2} 2^{1-\lambda_{\mathrm{i}}}}{\left(\frac{1}{2} \lambda-\frac{1}{2} \mu-\frac{3}{4}\right)!\left(\frac{1}{2} \lambda+\frac{1}{2} \mu-\frac{3}{4}\right)!}, \tag{3.20}
\end{equation*}
$$

it follows from (3.7)-(3.10) that

$$
\begin{align*}
& \left(\frac{1}{2} \lambda \alpha^{2}-\frac{1}{2}\right)!\left(\frac{2}{\pi}\right)^{1 / 2} A=A_{1} \cos \pi\left(\frac{1}{4}-\frac{1}{4} \lambda \alpha^{2}\right)+\mathrm{i} A_{2} \sin \pi\left(\frac{1}{4}-\frac{1}{4} \lambda \alpha^{2}\right) \tag{3.21}\\
& \left(\frac{1}{2} \lambda \alpha^{2}-\frac{1}{2}\right)!\left(\frac{2}{\pi}\right)^{1 / 2} B=A_{1} \sin \pi\left(\frac{1}{4}-\frac{1}{4} \lambda \alpha^{2}\right)-\mathrm{i} A_{2} \cos \pi\left(\frac{1}{4}-\frac{1}{4} \lambda \alpha^{2}\right) \tag{3.22}
\end{align*}
$$

where

$$
\begin{equation*}
A_{1}=\left(\frac{1-\sigma^{2}}{\alpha^{2}}\right)^{1 / 4} \frac{\lambda!2^{1 / 4-\lambda / 2-\mu / 2}}{\left(\frac{1}{2} \lambda+\frac{1}{2} \mu-\frac{1}{4}\right)!} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}=\left(\frac{\alpha^{2}}{1-\sigma^{2}}\right)^{1 / 4} \frac{\lambda!2^{1 / 4-\lambda / 2-\mu / 2}}{\left(\frac{1}{2} \lambda+\frac{1}{2} \mu-\frac{3}{4}\right)!\lambda^{1 / 2}} \tag{3.24}
\end{equation*}
$$

Thus the approximation for $q(\zeta)$ which results from neglecting ψ in (2.10) is

$$
\begin{align*}
& q(\zeta)=\frac{A_{1}+A_{2}}{\left(\frac{1}{2} \lambda \alpha^{2}-\frac{1}{2}\right)!2}\left(\frac{1}{2} \pi\right)^{1 / 2} \mathrm{e}^{\mathrm{i} \pi\left(1 / 4-\lambda \alpha^{2} / 4\right)} \\
& \quad \times\left\{U\left(-\frac{1}{2} \lambda \alpha^{2},(2 \lambda)^{1 / 2} \zeta\right)-\mathrm{i} V\left(-\frac{1}{2} \lambda \alpha^{2},(2 \lambda)^{1 / 2} \zeta\right)\right\} \\
&+\frac{A_{1}-A_{2}}{\left(\frac{1}{2} \lambda \alpha^{2}-\frac{1}{2}\right)!2}\left(\frac{1}{2} \pi\right)^{1 / 2} \mathrm{e}^{-\mathrm{i} \pi\left(1 / 4-\lambda \alpha^{2} / 4\right)} \\
& \quad \times\left\{U\left(-\frac{1}{2} \lambda \alpha^{2},(2 \lambda)^{1 / 2} \zeta\right)+\mathrm{i} V\left(-\frac{1}{2} \lambda \alpha^{2},(2 \lambda)^{1 / 2} \zeta\right)\right\} \tag{3.25}
\end{align*}
$$

The expression in (3.25) can be rewritten by calling on the connection formulae

$$
\begin{equation*}
U(a, z) \pm \mathrm{i} V(a, z)=\left(-\frac{1}{2}-a\right)!\left(\frac{2}{\pi}\right)^{1 / 2} \mathrm{e}^{ \pm \mathrm{i} \pi(a / 2+1 / 4)} U(-a, \mp \mathrm{i} z) \tag{3.26}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
q(\zeta)=\frac{1}{2}\left(A_{1}+A_{2}\right) U\left(\frac{1}{2} \lambda \alpha^{2}, \mathrm{i}(2 \lambda)^{1 / 2} \zeta\right)+\frac{1}{2}\left(A_{1}-A_{2}\right) U\left(\frac{1}{2} \lambda \alpha^{2},-\mathrm{i}(2 \lambda)^{1 / 2} \zeta\right) \tag{3.27}
\end{equation*}
$$

It may be remarked that, since $\lambda+\mu$ is large,

$$
\begin{equation*}
A_{2} / A_{1} \sim 1+O\left(1 /(\lambda+\mu)^{2}\right) \tag{3.28}
\end{equation*}
$$

from (3.23) and (3.24). This suggests that, if $O\left(1 /(\lambda+\mu)^{2}\right)$ is neglected, the term involving $A_{1}-A_{2}$ in (3.27) can be dropped and $A_{1}+A_{2}$ can be replaced by $2 A_{1}$, provided that ζ does not have a value that makes the second U dominant. In any case, there is little point in retaining the order term in (3.28) until it has been ascertained whether the presence of ψ in (2.10) produces a contribution of like magnitude. The effect of ψ is considered in the next section.

4. Higher approximations

To allow for the influence of ψ in (2.10) as $\lambda \rightarrow \infty$, take as a possible solution

$$
\begin{equation*}
q(\zeta)=U\left(-\frac{1}{2} \lambda \alpha^{2},(2 \lambda)^{1 / 2} \zeta\right) \sum_{m=0} \frac{r_{m}(\zeta)}{\lambda^{m}}+\frac{(2 \lambda)^{1 / 2}}{\lambda^{2}} U^{\prime}\left(-\frac{1}{2} \lambda \alpha^{2},(2 \lambda)^{1 / 2} \zeta\right) \sum_{m=0} \frac{s_{m}(\zeta)}{\lambda^{m}} \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\mathrm{d} q}{\mathrm{~d} \zeta}=U \sum_{m=0}\left\{\frac{r_{m}^{\prime}}{\lambda^{m}}+\left(\zeta^{2}-\alpha^{2}\right) \frac{s_{m}}{\lambda^{m}}\right\}+(2 \lambda)^{1 / 2} U^{\prime} \sum_{m=0}\left\{\frac{r_{m}}{\lambda^{m}}+\frac{s_{m}^{\prime}}{\lambda^{m+2}}\right\} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d}^{2} q}{\mathrm{~d} \zeta^{2}}=\lambda^{2}\left(\zeta^{2}-\alpha^{2}\right) q+U \sum_{m=0}\left\{r_{m}^{\prime \prime}+2 \zeta s_{m}+\right. & \left.2\left(\zeta^{2}-\alpha^{2}\right) s_{m}^{\prime}\right\} \frac{1}{\lambda^{m}} \\
& +(2 \lambda)^{1 / 2} U^{\prime} \sum_{m=0}\left(2 r_{m}^{\prime}+\frac{s_{m}^{\prime \prime}}{\lambda^{2}}\right) \frac{1}{\lambda^{m}}
\end{aligned}
$$

Therefore, (2.10) can be satisfied by requiring that $r_{0}^{\prime}=0, r_{1}^{\prime}=0$ and

$$
\begin{align*}
r_{m+2}^{\prime} & =\frac{1}{2}\left(\psi s_{m}-s_{m}^{\prime \prime}\right) \tag{4.3}\\
\left(\zeta^{2}-\alpha^{2}\right) s_{m}^{\prime}+\zeta s_{m} & =\frac{1}{2}\left(\psi r_{m}-r_{m}^{\prime \prime}\right) \tag{4.4}
\end{align*}
$$

for $m \geqslant 0$.
With r_{m} known, s_{m} can be found from (4.4) and then r_{m+2} can be determined from (4.3). The iterative process is started with $r_{0}=1$ and $r_{1}=0$. The constants of integration arising in (4.3) and (4.4) are fixed by requiring that $s_{m}(m \geqslant 0)$ and $r_{m}(m \geqslant 2)$ vanish at the origin. Then

$$
\begin{equation*}
r_{m+2}=\frac{1}{2} \int_{0}^{\zeta}\left(\psi s_{m}-s_{m}^{\prime \prime}\right) \mathrm{d} \zeta \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{m}=\frac{1}{2\left(\zeta^{2}-\alpha^{2}\right)^{1 / 2}} \int_{0}^{\zeta} \frac{\psi r_{m}-r_{m}^{\prime \prime}}{\left(\zeta^{2}-\alpha^{2}\right)^{1 / 2}} \mathrm{~d} \zeta \tag{4.6}
\end{equation*}
$$

Clearly, both s_{m} and r_{m} are identically zero when m is odd.
Observe that the choice $r_{0}=0, r_{1}=1$ generates the same series as in (4.1) multiplied by $1 / \lambda$. Hence there is no loss of generality in the selection that has been made.

Since $\psi=O\left(1 / \zeta^{2}\right)$ as $\psi \rightarrow \infty$, it is evident that r_{m} is bounded at infinity, whereas $s_{m}=O(1 / \zeta)$. Furthermore, ψ is an even function of ζ so that s_{m} is an odd function and r_{m} an even function of ζ. This is verified by the explicit formula for s_{0}, namely

$$
\begin{align*}
s_{0}= & \frac{\zeta^{3}-6 \alpha^{2} \zeta}{24 \alpha^{2}\left(\zeta^{2}-\alpha^{2}\right)^{2}} \\
& \quad-\frac{v}{8\left(\zeta^{2}-\alpha^{2}\right)^{1 / 2}\left(1-\sigma^{2}\right)}\left[\frac{\sigma^{2}-4}{\left\{\sigma^{2}\left(1+v^{2}\right)-1\right\}^{1 / 2}}+\frac{5}{3} \frac{2 \sigma^{2} v^{2}-3\left(1-\sigma^{2}\right)}{\left\{\sigma^{2}\left(1+v^{2}\right)-1\right\}^{3 / 2}}\right] \tag{4.7}
\end{align*}
$$

Another solution of (2.10) is obtained by replacing U with V in (4.1). Two further solutions are given by

$$
\begin{equation*}
q_{ \pm}(\zeta)=U\left(\frac{1}{2} \lambda \alpha^{2}, \pm \mathrm{i}(2 \lambda)^{1 / 2} \zeta\right) \sum_{m=0} \frac{r_{m}(\zeta)}{\lambda^{m}} \pm \frac{\mathrm{i}(2 \lambda)^{1 / 2}}{\lambda^{2}} U^{\prime}\left(\frac{1}{2} \lambda \alpha^{2}, \pm \mathrm{i}(2 \lambda)^{1 / 2} \zeta\right) \sum_{m=0} \frac{s_{m}(\zeta)}{\lambda^{m}} \tag{4.8}
\end{equation*}
$$

the upper and lower signs being taken together.
If the analysis of $\S 3$ is repeated, it is found that (3.27) becomes

$$
\begin{equation*}
q(\zeta)=\frac{1}{2}\left(A_{1}+A_{3}\right) q_{+}(\zeta)+\frac{1}{2}\left(A_{1}-A_{3}\right) q_{-}(\zeta) \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{3}=A_{2} /\left\{1+\sum_{m=0} \frac{s_{m}^{\prime}(0)}{\lambda^{m+2}}\right\} \tag{4.10}
\end{equation*}
$$

The formula (4.9) can be simplified. As v approaches $-i$ from the origin along the imaginary axis, $\zeta \rightarrow-\mathrm{i} \infty$. Indeed, if $\zeta=-\mathrm{i} \eta$ and $\eta>0$,

$$
\eta^{2}+\alpha^{2} \ln \eta \sim-\ln (1-\mathrm{i} v)
$$

Hence, when $v \rightarrow-\mathrm{i}$, it is evident from (3.12) that $q_{+}(\zeta)$ tends to zero like $(1-\mathrm{i} v)^{\lambda / 2}$ when the behaviour of r_{m} and s_{m} at infinity is borne in mind. On the other hand, it is transparent from (3.13) that $q_{-}(\zeta)$ becomes infinite like $(1-\mathrm{i} v)^{-\lambda / 2}$. But, as $v \rightarrow-\mathrm{i}$,

$$
F\left(\frac{1}{2}-\mu, \mu+\frac{1}{2} ; \lambda+1 ; \frac{1}{2}(1-\mathrm{i} v)\right) \rightarrow 1
$$

which is inconsistent with (4.9) and (2.12) unless the term in $q_{-}(\zeta)$ is absent. In other words, consistency requires that $A_{1}=A_{3}$ or

$$
\begin{equation*}
1+\sum_{m=0} \frac{s_{m}^{\prime}(0)}{\lambda^{m+2}}=\frac{A_{2}}{A_{1}}=\left(\frac{\alpha^{2}}{1-\sigma^{2}}\right)^{1 / 2} \frac{\left(\frac{1}{2} \lambda+\frac{1}{2} \mu-\frac{1}{4}\right)!}{\left(\frac{1}{2} \lambda+\frac{1}{2} \mu-\frac{3}{4}\right)!\lambda^{1 / 2}} \tag{4.11}
\end{equation*}
$$

from (4.10), (3.23) and (3.24).
The expression for $q(\zeta)$ now reduces to

$$
\begin{equation*}
q(\zeta)=A_{1} q_{+}(\zeta) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(\frac{1}{2}-\mu, \mu+\frac{1}{2} ; \lambda+1 ; \frac{1}{2}(1-\mathrm{i} v)\right) \sim(1-\mathrm{i} v)^{-\lambda / 2}(1+\mathrm{i} v)^{\lambda / 2}\left(\frac{\zeta^{2}-\alpha^{2}}{\sigma^{2}\left(1+v^{2}\right)-1}\right)^{1 / 4} A_{1} q_{+}(\zeta) \tag{4.13}
\end{equation*}
$$

An additional check on (4.13) is provided by allowing v and ζ to tend to infinity along the positive real axis, taking into account the largeness of the parameters.

Note that it has now been verified that putting $A_{1}=A_{2}$ in (3.27) does offer a tolerable first approximation.

It follows from (1.9) and (4.13) that, as $\nu+\mu \rightarrow \infty$,

$$
\begin{align*}
& I\left(\nu, \mu-\frac{1}{2}, \mu-\frac{1}{2}, \frac{\mathrm{i} v-1}{\mathrm{i} v+1}\right) \\
& \quad \sim \frac{\nu!\left(\mu-\frac{1}{2}\right)!(1+\mathrm{i} v)^{\lambda / 2-\mu+1 / 2}}{\left(\frac{1}{2} \lambda+\frac{1}{2} \mu-\frac{1}{4}\right)!(1-\mathrm{i} v)^{\lambda / 2}}\left(\frac{1-\sigma^{2}}{\alpha^{2}}\right)^{1 / 4} 2^{\mu / 2-\lambda / 2-1 / 4}\left\{\frac{\zeta^{2}-\alpha^{2}}{\sigma^{2}\left(1+v^{2}\right)-1}\right\}^{1 / 4} q_{+}(\zeta) \tag{4.14}
\end{align*}
$$

When μ is an odd half integer, F is a polynomial in $1-\mathrm{i} v$. For these values of μ, the polynomial will supply more convenient values for I than (4.14) so long as μ is not too large.

Asymptotic formulae for other hypergeometric functions can be deduced from (4.13) by means of the well-known relations between hypergeometric functions but details are omitted.

References

1. D. S. Jones, Asymptotics of the hypergeometric function, Math. Meth. Appl. Sci. $\mathbf{2 4}$ (2001), 369-389.
2. F. W. J. Olver, Uniform asymptotic expansions of solutions of linear second-order differential equations for large values of a parameter, Phil. Trans. R. Soc. Lond. A 250 (1958), 479-517.
3. F. W. J. Olver, Asymptotics and special functions (Academic Press, 1974).
4. F. W. J. Olver, Second-order linear differential equations with two turning points, Phil. Trans. R. Soc. Lond. A 278 (1975), 137-174.
