On a Tauberian Theorem of G. Ricci. ${ }^{1}$

By C. T. Rajagopal

(Received 12th March, 1948.
Read 7th May, 1948.)

1. I prove in this note some theorems on Rieszian and Dirichlet summabilities involving a Tauberian hypothesis with gaps. One of the theorems (§2, Theorem A) has been proved by Ricci [4, §6] ${ }^{2}$ in a slightly less general form. Another theorem (§ 3) contains a Riesz version of a (C, k) -summability problem studied by Meyer-König [1, Satz 1].

The principal difference between Ricci's work and mine is that the former is based on a Tauberian technique of Vijayaraghavan while the latter employs a technique of Bosanquet as embodied in one of my Theorems [2, Theorem A] combined with an extension of a theorem of Szász [3, Theorem 1].

In what follows, $\sum_{n=0}^{\infty} a_{n}$ represents a real series and $\left\{\lambda_{n}\right\}$ a sequence such that

$$
\begin{aligned}
& 0 \leqq \lambda_{0}<\lambda_{1}<\ldots, \quad \lambda_{n} \rightarrow \infty \\
& \sigma_{0}(x)=A(x) \equiv \sum_{\nu}<x a_{v}, \\
& \sigma_{k}(x)=\frac{k}{x^{k}} \int_{0}^{x}(x-t)^{k-1} A(t) d t \quad(k>0) \\
& f(s)=\sum_{n=0}^{\infty} a_{n} e^{-\lambda_{\mathbf{n}} s} \quad \text { is convergent for } s>0
\end{aligned}
$$

2. In this notation my main theorem assumes the form:

Theorem A. ${ }^{3}$ If there is a constant $\tau \geqq 0$ and a set of points E in $(0, \infty)$ such that

[^0]

Ricci has proved this theorem with the hypothesis A (ia) more particularised and A (ib) replaced by the hypothesis:

$$
A(y)-A(x)>-K, \quad x<y \leqq x(1+H), \quad K>0, \quad H>0
$$

The last hypothesis implies

$$
\sigma_{0}(x)-\sigma_{1}(x)>-K\left(1+H^{-1}\right)
$$

as we can see from a lemma of Szász [5, Hilfssatz 1, (14) with $\beta=0$] and is therefore included in A (ib).

Theorem A can be proved by the use of
Theorem a. If there is a constant $\tau \geqq 0$ and a set of points E in $(0, \infty)$ such that

[or alternatively, $\left.\lim _{\eta \rightarrow 0} \underset{x \rightarrow \infty \text { over } E}{\lim _{x(1-\eta)<y<x}} \underset{\text { bound }}{ }\{A(x)-A(y)\} \geqq-\tau\right]$,
a (ii) $\quad \Sigma a_{n}$ is summable $R\left(\lambda_{n}, k\right)$ to \mathbb{S},
then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty \text { over } E} A(x)
\end{aligned} \leqq S+\tau
$$

This theorem which need only be proved for integral k is deducible from a combination of the following lemmas which appear elsewhere [2, Theorem A; (3), (4)] with some minor differences.

Lemma 1. Let

$$
\bar{\sigma}_{p}=\varlimsup_{x \rightarrow r} \sigma_{p}(x) \quad(p=1,2, \ldots)
$$

Then, in the notation set forth in § 1 ,

$$
\varlimsup_{x \rightarrow \infty \text { orer } E} A(x) \leqq \frac{\mathscr{A}_{p}(\eta) \bar{\sigma}_{p}+\mathcal{A}_{p}(\eta) \sigma_{p}}{\mathscr{A}_{p}(\eta)+\mathscr{B}_{p}(\eta)} \quad \begin{aligned}
& -\frac{p}{\eta} \int_{1+\eta-\eta / p}^{1+\eta} \underset{x \rightarrow \infty \text { orer } E}{ } \frac{\text { bound }}{x<y<t x}
\end{aligned}[\{A(y)-A(x)\} d t,
$$

where $\mathscr{A}_{p}(\eta), \mathcal{B}_{p}(\eta)$ are polynomials of degree p in η.
Lemma 2. In the notation of Lemma 1,

$$
\begin{aligned}
\lim _{x \rightarrow \infty \text { over } E} A(x) & \geqq \frac{\bigodot_{p}(\eta) \bar{\sigma}_{p}+\mathscr{D}_{p}(\eta) \sigma_{p}}{\mathcal{C}_{p}(\eta)+\mathscr{D}_{p}(\eta)} \\
& +\frac{p}{\eta} \int_{1-\eta}^{1-\eta+\eta / p} \lim _{x \rightarrow \infty \text { over } E} \frac{\text { bound }}{t x<y<}{ }_{x}\{A(x)-A(y)\} d t
\end{aligned}
$$

where $\bigodot_{p}(\eta), \mathscr{D}_{p}(\eta)$ are polynomials of degree p in η.
In Theorem a, $\bar{\sigma}_{p}=\sigma_{p}=S$ for some p, so that the conclusion of the theorem follows at once from the conclusions of Lemmas 1, 2 when we let $\eta \rightarrow+0$ in the latter, using the hypothesis a (i).

After this it is obvious that to prove Theorem A we have merely to appeal to the lemma stated below and proved in another note of mine [3, Corollary 1 under Theorem 1].

Lemma 3. The conditions $\lim _{s \rightarrow+0} f(s)=S$ and $\sigma_{k}(x)-\sigma_{k+1}(x)$ $=O_{L}(1), \quad x \rightarrow \infty$, for some $k \geqq 0$, together ensure $\lim \quad \sigma_{k+1}(x)=S$.
3. The Tauberian hypothesis A (ia) or a (i) may be presented in the classical Hardy-Landau form as in the following

Deduction from Theorems A, a. Replace A(ia) in Theorem A and a (i) in Theorem a by the supposition that there is a constant $\omega>0$ and two sequences of integers $h_{r}, k_{r}(r=1,2 \ldots), \quad h_{r}<k_{r}<h_{r+1}$ ($h_{r} \rightarrow \infty$) such that
(1) $\quad \lambda_{k r}>\lambda_{h r}(1+\omega), a_{n} \geqq-K \frac{\lambda_{n}-\lambda_{n-1}}{\lambda_{n}}$ for $h_{r}<n \leqq k_{r} \quad(r=1,2 \ldots)$;
(2) either $\underset{n \rightarrow \infty}{\lim } a_{n} \geqq 0$ or $\lim _{n \rightarrow \infty}\left(\lambda_{n} / \lambda_{n-1}\right)=1$ for $h_{r}<n \leqq k_{r}(r=1,2, \ldots)$.

Then, provided there is no other change in the hypotheses of Theorems A and a, the conclusion of either theorem takes the form

$$
\varlimsup_{r \rightarrow \infty} \mathrm{~A}\left(\lambda_{h r}\right) \leqq S=\lim _{r \rightarrow \infty} A\left(\frac{\lambda_{h r}+\lambda_{k r}}{2}\right) \leqq \underset{r \rightarrow \infty}{\lim _{r \rightarrow \infty}} \mathrm{~A}\left(\lambda_{k r}\right)
$$

the part of the conclusion $\overline{\lim } A\left(\lambda_{h r}\right) \leqq S$ being independent of (2).

Proof. Since (1) gives $A\left(\lambda_{h_{r}} \overline{\overline{+}} \eta\right)-A\left(\lambda_{h_{r}}\right) \geqq-K \eta,{ }^{1}$ the first alternative of A (ia) or a (i) is satisfied with $\tau=0$ when E is $\left\{\lambda_{h_{1}}, \lambda_{h_{2}}, \ldots\right\}$. Therefore $\overline{\lim }_{r \rightarrow \infty} A\left(\lambda_{h_{r}}\right) \leqq S$.

Next, since (1) and (2) together give
$A\left(\lambda_{k_{r}}\right)-A\left(\lambda_{k_{r}} \overline{\bar{I}-\eta}\right)>-K \eta /(1-\eta)+O_{L}(1), \quad r \rightarrow \infty,{ }^{2}$ the alternative within [] of A (ia) or a (i) holds with $\tau=0$ and $E:\left\{\lambda_{k_{1}}, \lambda_{k_{z}}, \ldots\right\}$. Consequently $\underset{r \rightarrow \infty}{\lim _{\rightarrow \infty}} A\left(\lambda_{k_{r}}\right) \geqq S$.

Finally, since (1) and (2) together make both alternatives of A (ia) or a (i) true with $\tau=0$ and $E:\left\{\frac{\lambda_{h_{1}}+\lambda_{k_{i}}}{2}, \frac{\lambda_{h_{2}}+\lambda_{k_{z}}}{2} \ldots\right\}$, we have $\varlimsup_{r \rightarrow \infty} A\left(\frac{\lambda_{k r}+\lambda_{k r}}{2}\right) \leqq S \leqq \lim _{r \rightarrow \infty} A\left(\frac{\lambda_{h r}+\lambda_{k r}}{2}\right)$ or $S=\lim _{r \rightarrow \infty} A\left(\frac{\lambda_{l r}+\lambda_{k r}}{2}\right)$.

The last conclusion, under the hypothesis of Rieszian summability, belongs to the same order of ideas as the theorem of Meyer-König referred to at the outset.

$$
\begin{aligned}
& 1 A\left(\lambda_{h_{r}} \overline{1+\eta}\right)-A\left(\lambda_{h_{r}}\right)=\lambda_{\lambda_{h_{r}}<\lambda_{n}<\lambda_{h_{r}}(1+\eta)}^{\sum} \alpha_{n_{n}} \geqslant-K \Sigma \frac{\lambda_{n}-\lambda_{n}-1}{\lambda_{n}} \\
& >-\frac{K}{\lambda_{h_{r}}} \Sigma\left(\lambda_{n}-\lambda_{n-1)}>-K_{\eta} .\right. \\
& { }^{2} A\left(\lambda_{k_{r}}\right)-A\left(\lambda_{k_{r}} \overline{\mathbf{I}-\eta}\right)=\underset{\lambda_{k_{r}}(1-\eta)<\lambda_{n}<\lambda_{k_{r}}}{\mathbf{\Sigma}} \boldsymbol{a}_{n}=\boldsymbol{a}_{l_{r}}+\underset{l_{r+1} \leqslant n<k_{r}}{\mathbf{\Sigma} \ldots} \\
& >a_{l r}-\frac{K^{\eta}}{\lambda l} \Sigma\left(\lambda_{n}-\lambda_{n-1}\right)>a_{l r}-K \frac{\eta}{1-\eta}
\end{aligned}
$$

REFERENCES.

1. Werner Meyer-König, "Limitierungsumkehrsätze mit Lüuckenbedingungen I," Math. Zeitschrift, 45 (1939), 447-478.
2. C. T. Rajagopal" "On the limits of oscillation of a function and its Cesaro means," Proc. Edinburgh Math. Soc. (2), 7 (1946), 162:167.
3. C. T. Rajagopal, "On Riesz summability and summability by Dirichlet's series,' American J. of Math., 59 (1947), 371-378.
4. G. Ricci, "Sui teoremi Tauberiani," Annali di Matematica (IV), 13 (1935), 287-308.
5. O. Szász, " Über einige Satze von Hardy and Littlewood," Nachrichten von der Gesellschaft der Wissenschaften ::u Göttingen (Mathematisch-Physikalische Klasse, 1930), 315-333.

Madras Christian College,
 Tambaram, S. India.

[^0]: ${ }^{1}$ I wish to express my gratitude to Dr L. S. Bosanquet who drew my attention to an error in my original statement of Theorems A, a.
 ${ }^{2}$ Numbers in bold face type within [] indicate the references given at the end of this note.

 3 This result and the others which follow supplement the concluding remarks of my paper "On some extensions of Ananda Rau's converse of Abel's theorem," Journal London Math. Soc., 23 (1948), 38-44.

