On a Tauberian Theorem of G. Ricci.¹

By C. T. RAJAGOPAL

(Received 12th March, 1948. Read 7th May, 1948.)

1. I prove in this note some theorems on Rieszian and Dirichlet summabilities involving a Tauberian hypothesis with gaps. One of the theorems (§ 2, Theorem A) has been proved by Ricci [4, § 6]^{*} in a slightly less general form. Another theorem (§ 3) contains a Riesz version of a (C, k)-summability problem studied by Meyer-König [1, Satz 1].

The principal difference between Ricci's work and mine is that the former is based on a Tauberian technique of Vijayaraghavan while the latter employs a technique of Bosanquet as embodied in one of my Theorems [2, Theorem A] combined with an extension of a theorem of Szász [3, Theorem 1].

In what follows, $\sum_{n=0}^{\infty} a_n$ represents a real series and $\{\lambda_n\}$ a sequence

such that

$$0 \leq \lambda_0 < \lambda_1 < \dots, \qquad \lambda_n \to \infty ;$$

$$\sigma_0 (x) = A (x) \equiv \sum_{\substack{\lambda_\nu < x \\ \lambda_\nu < x}} \alpha_\nu,$$

$$\sigma_k (x) = \frac{k}{x^k} \int_0^x (x-t)^{k-1} A (t) dt \qquad (k>0);$$

$$f (s) = \sum_{n=0}^\infty \alpha_n e^{-\lambda_n s} \qquad \text{is convergent for } s > 0$$

2. In this notation my main theorem assumes the form:

THEOREM A.³ If there is a constant $\tau \ge 0$ and a set of points E in $(0, \infty)$ such that

¹ I wish to express my gratitude to Dr L. S. Bosanquet who drew my attention to an error in my original statement of Theorems A, a.

² Numbers in **bold** face type within [] indicate the references given at the end of this note.

³ This result and the others which follow supplement the concluding remarks of my paper "On some extensions of Ananda Rau's converse of Abel's theorem," *Journal London Math. Soc.*, 23 (1948), 38-44.

 $\{A(y) - A(x)\} \ge -\tau$ lim lim bound A (ia) $n \rightarrow 0$ $x \rightarrow \infty$ over E x < y < x(1 + n) $\{A(x) - A(y)\} \ge -\tau],$ lim [or alternatively, lim bound $\eta \rightarrow 0$ $x \rightarrow \infty$ over $E = x(1 - \eta) < y < x$ $\sigma_k(x) - \sigma_{k+1}(x) = O_L(1), \qquad x \to \infty,$ A (ib) for some $k \ge 0$, $\lim_{s \to +0} f(s) = S,$ A (ii) $\lim_{x \to \infty} A(x) \leq S + \tau$ then $\lim A(x) \ge S - \tau$ [or alternatively]. $x \rightarrow \overline{\infty}$ over E

Ricci has proved this theorem with the hypothesis A (ia) more particularised and A (ib) replaced by the hypothesis:

A(y) - A(x) > -K, $x < y \leq x(1+H)$, K > 0, H > 0. The last hypothesis implies

 $\sigma_0(x) - \sigma_1(x) > -K(1 + H^{-1}),$

as we can see from a lemma of Szász [5, Hilfssatz 1, (14) with $\beta = 0$] and is therefore included in A (ib).

Theorem A can be proved by the use of

THEOREM a. If there is a constant $\tau \ge 0$ and a set of points E in $(0, \infty)$ such that

a (i)

$$\lim_{\eta \to 0} \lim_{x \to \infty} \lim_{\sigma \text{ over } E} \sup_{x < y < x(1+\eta)} \{A(y) - A(x)\} \ge -\tau$$
[or alternatively,
$$\lim_{\eta \to 0} \lim_{x \to \infty} \lim_{\sigma \text{ over } E} \lim_{x(1-\eta) < y < x} \{A(x) - A(y)\} \ge -\tau$$
],

a (ii)
$$\sum a_n$$
 is summable $R(\lambda_n, k)$ to S_n

then

$$\begin{array}{c} \overbrace{lim}{A}(x) \leq S + \tau \\ x \rightarrow \infty \text{ over } E \end{array}$$
[or alternatively
$$\begin{array}{c} \overbrace{lim}{A}(x) \geq S - \tau \\ x \rightarrow \infty \text{ over } E \end{array}$$
].

This theorem which need only be proved for integral k is deducible from a combination of the following lemmas which appear elsewhere [2, Theorem A; (3), (4)] with some minor differences.

LEMMA 1. Let

$$\overline{\sigma}_p = \lim_{x \to r} \sigma_p(x) \qquad (p = 1, 2, ...).$$

https://doi.org/10.1017/S0013091500002704 Published online by Cambridge University Press

Then, in the notation set forth in § 1,

$$\begin{array}{l} \overline{\lim}_{x \to \infty \text{ over } E} \quad A(x) \leq \frac{\widehat{\mathcal{A}}_{p}(\eta) \overline{\sigma}_{p} + \widehat{\mathcal{B}}_{p}(\eta) \sigma_{p}}{\widehat{\mathcal{A}}_{p}(\eta) + \widehat{\mathcal{B}}_{p}(\eta)} \\ \quad - \frac{p}{\eta} \int_{1+\eta-\eta/p}^{1+\eta} \lim_{x \to \infty \text{ over } E} \frac{\text{bound}}{x < y < tx} \left[\{A(y) - A(x)\} dt \right]
\end{array}$$

where $\mathcal{A}_{p}(\eta)$, $\mathcal{B}_{p}(\eta)$ are polynomials of degree p in η .

LEMMA 2. In the notation of Lemma 1,

$$\lim_{x \to \overline{\infty} \text{ over } E} A(x) \geq \frac{\mathcal{O}_p(\eta) \overline{\sigma}_p + \mathcal{D}_p(\eta) \sigma_p}{\mathcal{O}_p(\eta) + \mathcal{D}_p(\eta)} + \frac{p}{\eta} \int_{1-\eta}^{1-\eta+\eta/p} \lim_{x \to \overline{\infty} \text{ over } E} \frac{\text{bound}}{tx < y < x} \{A(x) - A(y)\} dt,$$

where $\mathcal{Q}_{p}(\eta)$, $\mathcal{D}_{p}(\eta)$ are polynomials of degree p in η .

In Theorem a, $\bar{\sigma}_p = \sigma_p = S$ for some p, so that the conclusion of the theorem follows at once from the conclusions of Lemmas 1, 2 when we let $\eta \to +0$ in the latter, using the hypothesis **a** (i).

After this it is obvious that to prove Theorem A we have merely to appeal to the lemma stated below and proved in another note of mine [3, Corollary 1 under Theorem 1].

LEMMA 3. The conditions $\lim_{s \to +0} f(s) = S$ and $\sigma_k(x) - \sigma_{k+1}(x) = O_L(1), \quad x \to \infty$, for some $k \ge 0$, together ensure $\lim_{x \to \infty} \sigma_{k+1}(x) = S$. 3. The Tauberian hypothesis A (ia) or a (i) may be presented in the classical Hardy-Landau form as in the following

DEDUCTION FROM THEOREMS A, a. Replace A (ia) in Theorem A and a (i) in Theorem a by the supposition that there is a constant $\omega > 0$ and two sequences of integers h_r , k_r (r = 1, 2...), $h_r < k_r < h_{r+1}$ $(h_r \rightarrow \infty)$ such that

(1)
$$\lambda_{k_r} > \lambda_{h_r} (1 + \omega), a_n \ge -K \frac{\lambda_n - \lambda_n - 1}{\lambda_n} \text{ for } h_r < n \le k_r \quad (r = 1, 2...);$$

(2) either $\lim_{n \to \infty} a_n \ge 0$ or $\lim_{n \to \infty} (\lambda_n / \lambda_{n-1}) = 1$ for $h_r < n \le k_r$ (r = 1, 2, ...).

Then, provided there is no other change in the hypotheses of Theorems A and a, the conclusion of either theorem takes the form

$$\lim_{r \to \infty} A(\lambda_{h_r}) \leq S = \lim_{r \to \infty} A\left(\frac{\lambda_{h_r} + \lambda_{k_r}}{2}\right) \leq \lim_{r \to \infty} A(\lambda_{k_r}),$$

the part of the conclusion $\lim_{r\to\infty} A(\lambda_{hr}) \leq S$ being independent of (2).

https://doi.org/10.1017/S0013091500002704 Published online by Cambridge University Press

C. T. RAJAGOPAL

PROOF. Since (1) gives $A(\lambda_{h_r} 1 + \eta) - A(\lambda_{h_r}) \ge -K\eta$,¹ the first alternative of A (ia) or a (i) is satisfied with $\tau = 0$ when E is $\{\lambda_{h_1}, \lambda_{h_2}, \ldots\}$. Therefore $\overline{\lim} A(\lambda_{h_r}) \le S$.

Next, since (1) and (2) together give $A(\lambda_{k_r}) - A(\lambda_{k_r} \overline{1-\eta}) > -K\eta/(1-\eta) + O_L(1), \quad r \to \infty$,² the alternative within [] of A (ia) or a (i) holds with $\tau = 0$ and $E: \{\lambda_{k_1}, \lambda_{k_2}, \ldots\}$. Consequently $\lim_{r \to \infty} A(\lambda_{k_r}) \ge S$.

Finally, since (1) and (2) together make both alternatives of A (ia) or a (i) true with $\tau = 0$ and $E: \left\{\frac{\lambda_{h_1} + \lambda_{k_1}}{2}, \frac{\lambda_{h_2} + \lambda_{k_2}}{2}...\right\}$, we have

$$\lim_{r\to\infty} A\left(\frac{\lambda_{h_r}+\lambda_{k_r}}{2}\right) \leq S \leq \lim_{r\to\infty} A\left(\frac{\lambda_{h_r}+\lambda_{k_r}}{2}\right) \text{ or } S = \lim_{r\to\infty} A\left(\frac{\lambda_{h_r}+\lambda_{k_r}}{2}\right).$$

The last conclusion, under the hypothesis of Rieszian summability, belongs to the same order of ideas as the theorem of Meyer-König referred to at the outset.

$$A \left(\lambda_{h_{r}} \overline{1+\eta}\right) - A \left(\lambda_{h_{r}}\right) = \sum_{\lambda_{h_{r}} < \lambda_{n} < \lambda_{h_{r}}(1+\eta)} \alpha_{n} \ge -K \Sigma \frac{\lambda_{n} - \lambda_{n} - 1}{\lambda_{n}}$$

$$> -\frac{K}{\lambda_{h_{r}}} \Sigma \left(\lambda_{n} - \lambda_{n-1}\right) \ge -K \eta.$$

$$P \left(\lambda_{k_{r}}\right) - A \left(\lambda_{k_{r}} \overline{1-\eta}\right) = \sum_{\lambda_{k_{r}} (1-\eta) < \lambda_{n} < \lambda_{k_{r}}} \alpha_{n} = \alpha_{l_{r}} + \sum_{l_{r+1} < n < k_{r}} \frac{1}{l_{r+1} < n < k_{r}}$$

$$\ge \alpha_{l_{r}} - \frac{K}{\lambda_{l_{r}}} \Sigma \left(\lambda_{n} - \lambda_{n-1}\right) \ge \alpha_{l_{r}} - K \frac{\eta}{1-\eta}$$

REFERENCES.

1. Werner Meyer-König, "Limitierungsumkehrsätze mit Luckenbedingungen I," Math. Zeitschrift, 45 (1939), 447-478.

2. C. T. Rajagopal. "On the limits of oscillation of a function and its Cesaro means," Proc. Edinburgh Math. Soc. (2), 7 (1946), 162-167.

3. C. T. Rajagopal, "On Riesz summability and summability by Dirichlet's series," American J. of Math., 59 (1947), 371-378.

4. G. Ricci, "Sui teoremi Tauberiani," Annali di Matematica (IV), 13 (1935), 287-308.

5. O. Szasz, "Über einige Satze von Hardy and Littlewood," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen (Mathematisch-Physikalische Klasse, 1930), 315-333.

MADRAS CHRISTIAN COLLEGE, TAMBARAM, S. INDIA.