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Axioms for constructive fields

John Staples

In constructive mathematics the Dedekind cut definition of real
number is not equivalent to the definition of real number by
Cauchy sequences, and the Dedekind real numbers do not satisfy
Heyting's axioms for constructive fields. A more general notion
of constructive field is proposed which includes the Dedekind
real numbers; some linear algebra is given which applies to

such fields.

1. Introduction

It was observed in [4] that Heyting's axioms for constructive fields
as given in [Z] cannot be satisfied by the Dedekind real numbers. Heyting
defines a field K +to be a commutative ring with unity on which an
apartness relation, # , is defined between field elements, which satisfies

the following axioms: for all a, b, ¢ € X ,
(i) a#b, a=>b are mutually exclusive,
(ii) a # b implies for all ¢ that a# ¢ or b # e,
(iii) not (a # b) implies a=5% ,
(iv) b # ¢ implies a+b fa+c ,
(v) 1#0,
(vi) a # 0 implies there is b such that ab =1 ,
(vii) b# e, a# 0 implies ab # ac .
The following are consequences of the above;

(viii) @ # 0 implies a # 0 and b # 0 ,
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(ix) a#b if end only if b # a .

Heyting's motjvation, [Z, p. 5], for the introduction of this new
primitive relation is that a # 0 provides & sufficient condition for the
existence of an inverse for a . Since however the condition is also
necessary (from (ii) and (viii)) the reason for its introduction must be

sought elsewhere.

Inspection of the theory which Heyting develops shows that it relies
heavily on axiom (ii) and on the (equivalent) property: a + b # 0 implies
a#0 or b#0 . It is fair to say that the introduction of such an

apartness relation has three purposes:
(a) it ensures stability of equality, that is
not(not x = y) implies x =y ;
(b) it ensures that zero is the only non-invertible element;
(c) it provides a means for writing axiom (ii) neatly.

To see that these are its only functions, suppose that X is a commutative

ring with unity and stable equality which satisfies the axiom
(x) =z #0 implies not(for all y, ay # 1)
Define x # y to mean
there is 2 such that (x-y)z =1 ;
then all except (ii) of axioms (i) to (ix) are satisfied.

Hence we adopt the following definition; a field is a commutative
ring with unity which satisfies axiom (x)}. If it also has a stable
equality then we call it a stable field. Apartness is equivalent to the
negation of equality for fields with decidable equality; the same is true
for the following field (classically equivalent to the real numbers) even
though its equality relation is not decidable.

Define a set K to have as elements all subsets 8 of the set of

Dedekind real numbers which satisfy the conditions
(a) @ # @ , and not(not x € 8) implies =z € 3 ,
(b) a, b € 8 implies a =10 .

Addition of elements of X 1is defined by
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sy +s,={t : t €5 end t,€s

1 1 implies t = ¢, + t2}

2

Similarly the additive inverse of s and the product of 81 and s2 are

defined by

-8 = {t :u € 8 implies t = —u}

§,:8, = {t : t, €s, and t2 €s

5 1 1 implies ¢t =t

1 2 1't2}

The unity 1K and zero OK of K are defined to be {1} ana {0}

respectively, and equality on X is the usual equality of sets. One can
check, using the stability of equality for Dedekind reals, that with these

definitions K forms a field.
For s € K we define a set s* by
s*={¢t : u € s implies tu =1} .

If 8 #0 then 8* € K and ss*=1; thus K is a stable field in

which apartness is equivalent to inequality.

2. Matrices and determinants

It is simple to check the usual ring-theoretic properties of matrices
over a field; that is, that matrices of a given size form an additive
group, and multiplication of compatible matrices is associative and

distributive.

Likewise the elementary properties of determinants can be verified by
direct computation, as for example in the first chapter of Mirsky [3] (his
method of proving the alternating property does not apply to fields in
general but the result follows by direct computation from the definition of
determinant}. We shall not list or prove these results but will use them
as necessary: a basic result is-that any square matrix 4 with

det(4) # 0 has an inverse, computed by the usual formula.

3. Linear algebra

In Heyting's development, [2], vectors are n-tuples of scalar
coordinates for some natursl number »n , and apartness of vectors is a

central notion which is defined in terms of the coordinates. We shall
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treat vectors axiomatically and do not need to define apartness for

vectors.

As in Bishop, [7, p. 24k], a vector space is an abelian group with a
scalar multiplication by field elements which satisfies the usual axioms.

An arbitrary field K of scalars is fixed throughout.

A subspace S of a vector space V is a subset of ¥V which is
closed under addition and scalar multiplication. The span of a finite

sequence X cees Xy of vectors in a space V 1is the set of vectors of

l,
V of the form

k
Z oz,
1=1
where ai €K, 2=1, ..., k. An element of this span is said to be
(linearly) dependent on Tys eees Ty o
A finité sequence Tys wees Ty of vectors in V 1is called mutually

free (in V ) if there is a k-linear alternating function d <from Vk to

K such that

d(xl, cees xk] =1.

A limitation of this definition should be noted. If vectors which are
mutually free in a subspace S of an arbitrary vector space V are
necessarily free in V , then Markov's principle holds. To see this we

take Markov's principle in the following equivalent form:
for all Cauchy real numbers x , x # 0 implies x # O

For an arbitrary Cauchy real x #0 , x is mutually free in the span of
x , since for any y = ox , 0O a Cauchy real, o is uniquely determined
by y and so we can define a linear map d by d(y) =a . If =z is

free in the Cauchy reals then d'(1) is defined for some linear function

d' on the Cauchy reals such that d'(x) =1 .

Hence 1 = d'(z) = d'(x.1) = z.d'(1) ; so x is invertible, that is,

x # 0 as required.

A basis of a subspace S of a vector space V is defined to be a

finite sequence Zys wevs xk of elements of S , mutually free in V ,
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whose span is S . Such a basis is also called a basis in V of § . If
S C WcV are vector spaces then a basis in V of S is a basis in ¥

of S . Abasis in V of V is called simply a basis of V .

PROPOSITION 1. Anmy two bases for a vector space V have the same
number of elements.

Proof. If V has bases Tys wees Ty and Yyo ooes Yy s k,m=1,
we get a contradiction as follows from the assumption k < m .

Write dy for an alternating m-linear function such that

k
dy (yl, cees ym) =1, and suppose y, = jZJ_ g,

sy 2 =1, ..., m . We

substitute for Y; > =1, ..., m and expand by the m-linearity of dy
to obtain from dy [yl, ey ym) a sum of scalar multiples of scalars of

the form d [a:. R J . Since k <m at least two p. ,
y\"p, Py P

=1, ..., m are identical so d[:x:. R ]=O so
3 b y pl, b pm b

0= dy[yl, ceey ym) = 1 , a contradiction as required.

It follows from Proposition 1 that any two bases for a subspace of V
have the same number of elements. Hence if a subspace S of V has a

basis of k elements we say that S has dimension k .

PROPOSITION 2. 4Any k vectors of a k-dimensional subspace S of

V which are mutually free in V form a basis in V of S .

Proof. 1If =z € S are mutually free in V , we have only to

10t xk

prove that S is the span of Tys vees z, SO we may assume V =S5 .

Suppose then that yl, cees Yp is a basis of S and that dx is an

k-linear alternating function such that

dx[:cl, NN :ck) =1.

k
We can write z, = Z Xijyj , =1, ..., k and substitute in dx to

obtain
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1= A-dx(yl, DRI yk) >

where A 1is the determinant of the coordinates of x,, ..., xk with
respect to Yys wves Yy - Hence A 1is invertible, so the matrix of
coefficients of =z, v Ty is invertible and Yy ++-5 Yy can therefore
be expressed as linear combinations of Tys sves Ly giving the result
required.

An m xn matrix A of field elements has columns which can be
regarded as elements of K" ; we say A has (colum) rank r if r of

these columns are mutually free in X" and all other colums are dependent
on them.

PROPOSITION 3. If the m xn matrix A has rank r then the

solutions of the homogeneous equation Ax = 0 form a finite-dimensional

subspace of e of dimension n - r , with a basis Topys s Ty which

z, for K' such that Ax

can be extended to a basis =z . Axr

1, ety l’

is a basis in K" for the space

{y : there is =z € X' such that y = Ax} .

Proof. The case r = n is trivial from the definition of rank, since

n
if A= (a, ---s a) end 1:21 a,x; =0 and d is an n-linear

alternating function on X" such that d(al, cees an) =1 , then

n
X; = d(al, sees @ g izl ajxj, Apys vres G| =

= d(al, > g o, IR o an) =0 .
Hence in this case we can take the canonical basis of ' as
Tys cers X -
Now consider the case r < n . We can assume without loss of

generality that a ar are mutually free in K" and that

I
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r

a. =

; , T=rtl, ..., n . ¥Write Xy e X, for the

a..a.
o1t

coordinates of x . Note that Ax = 0 if and only if

r n n n

jgl % T i=£+1 X% 7o i=£+1 X jzl %4% >
so Ax = 0 if and only if

n
X; = - i=£+1 & X =1, ..., r.
The 7n - r solutions g(j) given by
Xﬁj) =68, ., n-r+l =1, J=n
1,d

are mutually free in Kn since they can be extended to »n vectors with

determinant of coefficients equal to 1 by

xéJ) =8, P j<nr, 1l=isn.
b
It is clear from the above that x(J) s n-r+l =j <n , span the space of

solutions, and that a; = Ax(z) , 21, ..., r , are mutually free in i
and span the range of 4 as required.

To conclude our discussion of linear equations we observe that, as
classically, the general solution of the nonhomogeneous equation Adx = b
is obtained by adding to a fixed solution an arbitrary solution of
Ax = 0 . Hence we give conditions that Az = b have a solution. Writing

A= [al, ey an) again, clearly the existence of a solution is

equivalent to the dependence of b on al, ceey an ,» SO

PROPOSITION 4. If the ranks of (ay, ---»a,) . (a;s --+5 a,, D)

are defined and equal then (al, cees an)x = b has a solution. Conversely
if the rank, r say, of (al, cees an) is defined and (al, ey an)x = b
has a solution then the rank of (al, cees @, b) is defined and equals

r .
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Proof. If both ranks are defined and equal r , we may suppose that

al, vees A are free in Km ; hence they are free in the r-dimensional

space spanned by al, . an, b, so al, ey ar form a basis of this
space, hence b 1is dependent on them as required.

If conversely (al, e an] has rank r , and supposing again that

al, ety

b is dependent on Qs vees @ s hence on Aps oo @, and

a, are free in K" s Since (al, ceey an)z = b has a solution

(a s sers G b] has rank r as required.

We now consider briefly linear maps on vector spaces; a linear map
f : V—>W is by definition an isomorphism if it has an inverse, and an
injection if f{x) = f(y) implies z =y .

PROPOSITION 5. The image wnder an isomorphism f : V > W of a basis

of V is a basis of W .

Proof. Since f 1is onto, f(:cl), ...,f(a:n) spans W if

Zys -+ &, spans V. 1If z), ...,.rn are a basis for V they are also

mutually free, so every y € W has a unique expression in the form

n n
y = 'Z]_ nif(xi) , for if also y = | Eif(xi) > then
= =1

n n
e 1 e A, 0oin)
n
so 0 = igl [ni_gi)xi , since f is an injection. Since Tys eves T, are
mutually free, n, = gi » T =1, ..., n as required.

Hence an n-linear alternating function dW from W' to K is
defined by dw[f(:z:l) s e f'[xn)) =1, so f[zl) y ey f(xn) form a basis
of W as required.

The rank of a linear map f : V + W is defined to be the number (if

one exists) 7 such that V has a basis Yys ++.5 U, such that
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f(vl),- cans f(vr] are free in ¥ and form a basis for the range of f .

Any such number r is unique since it is the dimension of the range of
f » so rank is well-defined.

PROPOSITION 6. If W is a finite-dimensional vector space then the
linear map f : V> W has rank r if and only if there are bases of V
and W such that the matrix of f with respect to these bases has rank

r.

The proof is immediate from the definitions. From Proposition 3 we

therefore have

COROLLARY. If W +is finite-dimensional then the linear map
f:V>W has rank r 1if and only if the nullspace of f has dimension
n-r (vhere n <is the dimension of V ) and has a basis which can be
extended to a basis of V .

The statements of Propositions 3 and 6 hint at a difficulty which we

have managed to avoid above; it is not clear in general how mutually free
vectors in a finite-dimensional vector space can be extended to a basis of

that space. In one simple case however, this can always be done:

PROPOSITION 7. If 2.5 ++., x,_ are mutually free vectors in a
k-dimensional space V , then there is a vector T in V such that
Tys vees Ty form a basis for V .

Proof. Write d for a (k-1)-linear alternating function from yk

to X such that d(xl, RN xk-l) =1 ; write Yo wo0s Yy for a basis
k
of V,and x, = Z X; 4; » end observe that
J=1
1= ) R . . .d[y.,...,y. ]
1j, - ady_qsk D91 202 k=Ladpy I Ip-1

If 1=p=n and ,7'1, oo jk-l sy vees Gy, Bre both permutations

n

of 1, ..., P +.., n , then

€

PRPRE. RS LA AN
1° k-1 1 k-1 1° k-1 1 k-1

since d 1is alternating, so we can define z = (Xk p) s 1=p=n, by
2
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=€, . dly . .. ,
Xkup = CFp 0 ady 0P [le’ Y5, 00
where jl, S, J‘k—l is some permutation of 1, ..., P, ..., n . The
determinant of the coordinates of ml, ey xk with respect to
Yys +o0s Yy "is therefore
€. L x. . .x, .

<; c < dyscessdy Lsd k,gJ
l—Jl,...,Jk—k 1 k 1 k

= ) T . e eee . ,

=k 1"71 k 1"7k—1

AR

k
- E, . . E, , .d[y.,...,y. ]]
(jk=l dpreerady Jyocceady 74 Y

dlz, s «.vs xk—l) =1,

hence the determinant of coefficients of an n-tuple of vectors of V with

respect to the basis yl’ ceey yk is an #n-linear alternating function, as

required to show =z,

IRREE :ck are mutually free.

The extension of mutually free vectors in a finite dimensional space
to a basis of the space is straightforward if the underlying field of
scalars is the Dedekind real or complex numbers, in view of the following
result.

PROPOSITION 8. If K ie the Dedekind real or complex numbers and A
i8 a matrix with entries from K , then there is a square, invertible
matrix B s8uch that BA 18 upper triangular.

Proof. If A = (0‘11 j) is an n x k matrix, we may assume n = 2 .

s
We show first that it is sufficient to be able, given arbitrary a, b € X ,
to find ¢, 8 € K such that ac- bs =0 and |co+s2| = 1 .

In that case we can first put b = % 3,10 27 a1 and premultiply

A . .=6, . £ . = n-1, n
A by (Bi,j) , 11, <n where 81’”7 61"7 except for <% s

and J = n-1, n and where
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Bn—l,n—l Sn—l,n ¢ 8
Bn,n-l Bn,n =5 ¢
We get by this means an n X k matrix A' = {a! .) with o' . =0 . By
1,7 7,1
successive similar rotations we obtain a matrix A' with a3 1 =0,
t]
J=2, ..., n; further rotations give also o’ 5 =0, 3=2gJ=n, and
3
so on until finally aé is 0 for 1 >4, 112 =n, 1=j=<k. The
3
product of these rotations in the order indicated is the required matrix
B .
Hence we find amap K *x K+ K X K , say (a, b)+ (e, 8) , such that
ac = bs and |02+32| =1 . For b # 0 we define

e = b/ |a2+b2| , 8 =a/ |dPw®| .

This map extends to domain X X X to give the map required. We

sketch the argument for the real case.

For arbitrary b we can define by the lower bound theorem a function
sgn(b) on X , such that b = sgn(b).|p| . The map (a, b) — (e, 8)
defined by

e' = |b| VP2, &' = |a] /v a2 for b #0

extends to X X K by continuity, so we define the required map by

e = sganlb).e' , s =sgnla)s' .

For the complex case the argument is similar, since we can define on

K a function arg such that for z € K , =z = |z|.argz .

4. Discussion

The results given show that some basic linear algebra is available in
the absence of an apartness relation which satisfies Heyting's axioms; but
they do not support particularly the definition of field we have given.
Indeed inspection shows that, except for Proposition 8, the work on linear

algebra holds for modules over an arbitrary commutative ring with unity.

The main case for our particular definition of field is its

generality. It could be held that it is too general since the sole axiom
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which distinguishes fields from general commutative rings with unity is the
negative assertion (x): but the obvious strengthening of this axiom, to
(Vy)(zy #1) implies z =0
is so strong as to imply the stability of equality. Indeed it clearly
gives
A (x # 0) implies x =0 ;
On the other hand 171 (x = 0) implies 71 (x # 0) , so we have stability
of equality as stated.
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