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Axioms for constructive fields

John Staples

In constructive mathematics the Dedekind cut definition of real

number is not equivalent to the definition of real number by

Cauchy sequences, and the Dedekind real numbers do not satisfy

Heyting's axioms for constructive fields. A more general notion

of constructive field is proposed which includes the Dedekind

real numbers; some linear algebra is given which applies to

such fields.

1. Introduction

It was observed in [4] that Hey+ing's axioms for constructive fields

as given in [2] cannot be satisfied by the Dedekind real numbers. Heyting

defines a field K to be a commutative ring with unity on which an

apartness relation, # , is defined between field elements, which satisfies

the following axioms: for all a, b, a £ K ,

(i) a tt b , a = b are mutually exclusive,

(ii) a tt b implies for all a that a tt a or b tt c ,

( i i i ) not {a tt b) implies a = b ,

(iv) b § o implies a + b § a + a ,

(v) 1 # 0 ,

(vi) a ft 0 implies there is b such that ab = 1 ,

(vii) b ft c , a # 0 implies ab # ao .

The following are consequences of the above;

(vi i i ) ab § 0 implies a § 0 and b ft 0 ,
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(ix) a § b if and only if b § a .

Heyting's motivation, [2, p. 5], for the introduction of this new-

primitive relation is that a § 0 provides a sufficient condition for the

existence of an inverse for a . Since however the condition is also

necessary (from (i i) and (viii)) the reason for i ts introduction must be

sought elsewhere.

Inspection of the theory which Heyting develops shows that i t relies

heavily on axiom ( i i ) and on the (equivalent) property: a + b # 0 implies

a § 0 or b # 0 . It is fair to say that the introduction of such an

apartness relation has three purposes:

(a) i t ensures stability of equality, that is

not(not x = y) implies x = y ;

(b) i t ensures that zero is the only non-invertible element;

(c) i t provides a means for writing axiom (ii) neatly.

To see that these are i t s only functions, suppose that K is a commutative

ring with unity and stable equality which satisfies the axiom

(x) x i- 0 implies not (for all y, xy t l) .

Define x # y to mean

there is z such that (x-y)z = 1 ;

then al l except ( i i ) of axioms (i) to (ix) are satisfied.

Hence we adopt the following definition; a field is a commutative

ring with unity which satisfies axiom (x). If i t also has a stable

equality then we call i t a stable field. Apartness is equivalent to the

negation of equality for fields with decidable equality; the same is true

for the following field (classically equivalent to the real numbers) even

though i ts equality relation is not decidable.

Define a set K to have as elements all subsets s of the set of

Dedekind real numbers which satisfy the conditions

(a) a t 0 , and not (not x i s) implies x £ 3 ,

(b) a, b € 8 implies a = b .

Addition of elements of K is defined by
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s1 + s2 = {t : t± € sx and * 2 € sg implies t = t± + t2) .

Similarly the additive inverse of s and the product of s1 and s^ are

defined by

-s = {t : u € s implies t = -M}

and

S1"S2 = i* : *i € s i a n d *2 € S2 i m P l i e s * = *i"*2^ '

The unity 1 and zero 0 of K are defined to be {l} and {0}
A A

respectively, and equality on K is the usual equality of sets. One can

check, using the stability of equality for Dedekind reals, that with these

definitions K forms a field.

For s € K we define a set s* by

s* = it : u i s implies tu = l) .

If s t 0 then s* € X and ss* = 1 ; thus K is a stable field in

which apartness is equivalent to inequality.

2. Matrices and determinants

It is simple to check the usual ring-theoretic properties of matrices

over a field; that i s , that matrices of a given size form an additive

group, and multiplication of compatible matrices is associative and

distributive.

Likewise the elementary properties of determinants can be verified by

direct computation, as for example in the first chapter of Mi rsky [3] (his

method of proving the alternating property does not apply to fields in

general but the result follows by direct computation from the definition of.

determinant). We shall not l i s t or prove these results but will use them

as necessary: a basic result is-that any square matrix A with

det(4) # 0 has an inverse, computed by the usual formula.

3. Linear algebra

In Heyting's development, [2], vectors are n-tuples of scalar

coordinates for some natural number n , and apartness of vectors is a

central notion which is defined in terms of the coordinates. We shall
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treat vectors axiomatic ally and do not need to define apartness for

vectors.

As in Bishop, [7, p. 2l+lt], a vector space is an abelian group with a

scalar multiplication by field elements which satisfies the usual axioms.

An arbitrary field K of scalars is fixed throughout.

A subspace 5 of a vector space V is a subset of V which is

closed under addition and scalar multiplication. The span of a finite

sequence i t of vectors in a space V is the set of vectors of

V of the form

where a. € K , i = 1, . . . , k . An element of this span is said to bea.

(linearly) dependent on x , ..., x, .

A finite sequence a;., • • • , x-, of vectors in V is called mutually

free (in V ) if there is a fc-linear alternating function d from v to

K such that

A limitation of this definition should be noted. If vectors which are

mutually free in a subspace S of an arbitrary vector space V are

necessarily free in V , then Markov's principle holds. To see this we

take Markov's principle in the following equivalent form:

for all Cauchy real numbers x , x + 0 implies x # 0 .

For an arbitrary Cauchy real x i- 0 , x is mutually free in the span of

x , since for any y = ax , a a Cauchy real, a is uniquely determined

by y and so we can define a linear map d by d(y) = a . If x is

free in the Cauchy reals then d'(l) is defined for some linear function

d' on the Cauchy reals such that d'(x) = 1 .

Hence 1 = d'(x) - d'(x-l) = x.d'(i) ; so x is invertible, that i s ,

x # 0 as required.

A basis of a subspace 5 of a vector space V is defined to be a

finite sequence x, , . . . , x, of elements of S , mutually free in V ,
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whose span is S . Such a basis i s also called a basis in V of S . If

5 c W c V are vector spaces then a basis in V of S i s a basis in W

of S . A basis in V of V i s called simply a basis of V .

PROPOSITION 1. Any two bases for a vector space V have the same

number of elements.

Proof. If V has bases a^, • • . , xfe and y±, ..., ym , k, m > 1 ,

we get a contradiction as follows from the assumption k < m .

Write d for an al ternat ing m-linear function such that

k
d [y. y ) = 1 , and suppose y. = 7 r\. JX . , i = 1, .. . , m . We

subst i tute for y. , i = 1, . . . , m and expand by the m-linearity of d

to obtain from ^j . (j<j> • • • » y ) a s u m ° f scalar multiples of scalars of

the form d a . , ..., x . Since k < m at leas t two p . ,

i = 1, ..., m are ident ical so -v\~n » -••> ~n
*• 1 m

0 = d, (w, , . . . , w ) = 1 > a c o n t r a d i c t i o n as r eq u i r ed .4/ w 1 m

I t follows from Proposition 1 that any two bases for a subspace of V

have the same number of elements. Hence i f a subspace S of V has a

basis of k elements we say that S has dimension k .

PROPOSITION 2. Any k vectors of a k-dimensional subspace S of

V which are mutually free in V form a basis in V of S .

Proof. If x , . .. , x. (. S are mutually free in V , we have only to
•J- K,

prove that S i s the span of a;,, • • • , x, so we may assume V = S .

Suppose then that y 1 , . . . , y-, i s a basis of S and that d i s an

fe-linear al ternating function such that

k
We can w r i t e x . = £ y. .y . , i = 1 , . . . , k and s u b s t i t u t e i n d t o

obta in
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where A i s the determinant of the coordinates of x. , . . . , x, with

respect t o y,, . . . , y, . Hence A i s inver t ib le , so the matrix of

coefficients of x, , • . . , X-, is invert ible and y. , ..., y, can therefore

be expressed as l inea r combinations of x , , . . . , x, , giving the resul t

required.

An m x n matrix A of field elements has columns which can be

regarded as elements of K ; we say A has (column) rank r i f r of

these columns are mutually free in A and a l l other columns are dependent

on them.

PROPOSITION 3. If the m x n matrix A has rank r then the

solutions of the homogeneous equation Ax = 0 form a finite-dimensional

subspaae of Kn of dimension n - r 3 with a basis x + . , . . . , x which

can be extended to a basis x , ..., x for if1 such that Ax , . . . , Ax

is a basis in A for the space

{y : there is x € K such that y = Ax] .

Proof. The case r = n is trivial from the definition of rank, since

n
i f A = [a , . . . , a } and J a.y. = 0 and d i s an rc-linear

1 n i=i l ^

alternating function on A such that d[a , . . . , a ) = 1 , then

X. = d[av ..., V l , J ^ a.X.,

ai-X>

Hence in th i s case we can take the canonical basis of A

' xn

Now consider the case r < n . We can assume without loss of

general i ty that a , . . . , a are mutually free in A7" and that
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r
a. = I a.-a. , i = r+1, ..., n . Write X-, > • • • > X- f o r t h e

t- •__ _ *^3 t} -*- *̂

coordinates of x . Note that Ax = 0 if and only if

r n n n

3=1 ° ° i=r+l % i=r+l 3=1 v3 °

so Ax = 0 i f and only i f

n
X-* ~ ~ L £ 7 ^ ' 3 ~ 1 J • • • , r .

The n - r solutions x given by

•A3' = 5. . , n-r+1 S i , j < n

are mutually free in I?1 since they can be extended to n vectors with

determinant of coefficients equal to 1 by

y\3' = 6. . , 1 5 3 < n-r , 1 5 i ± n .

It is clear from the above that x , n-r+1 5 'j £•« , span the space of

solutions, and that a. = Ax1 , i = 1, ..., r , are mutually free in A777

and span the range of A as required.

To conclude our discussion of linear equations we observe that , as

classically, the general solution of the nonhomogeneous equation Ax = b

is obtained by adding to a fixed solution an arbitrary solution of

Ax = 0 . Hence we give conditions that Ax = b have a solution. Writing

A = [a. , . .. , a ) again, clearly the existence of a solution is

equivalent to the dependence of b on a. , ..., a , so

PROPOSITION 4. If the ranks of ^ a j , [a±, ..., a^, b)

are defined and equal then [a. , ..., a )x = b has a solution. Conversely

if the rank, r say, of [a., ..., a ) is defined and [a., . . . . a )x = b

has a solution then the rank of (a , . . . , a , b) is defined and equals
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Proof. If both ranks are defined and equal r , we may suppose that

a.., . . • , a are free in A ; hence they are free in the r-dimensional

space spanned by a , . .. , a , b , so a.,...,a form a basis of th i s

space, hence b i s dependent on them as required.

I f conversely [a , ... , a ) has rank r , and supposing again that

a a are free in A , since (a , . . . , a )x = b has a solution

b i s dependent on a . , . . . , a , hence on a , . . . , a^ and

[a_ , . . . , a , b) has rank r as required.

We now consider br ie f ly linear maps on vector spaces; a l inear map

f : V -*• W is by defini t ion an isomorphism i f i t has an inverse, and an

injection i f f(x) = f(y) implies x = y .

PROPOSITION 5. The image under an isomorphism f : V •* V of a basis

of V is a basis of W .

Proof. Since / i s onto, / (a^j f[x ) spans W i f

xl' "' ' ' xn s P a n s v • I f x i> •••> x a r e a basis for V they are also

mutually f ree, so every y € W has a unique expression in the form

n n

y = I \f(xi) ' f o r i f a130 y = I tif{.xi) . ther>
i=X i=i

n
so 0 = [ [r\.-E.)x. , since / i s an injection. Since a;,, ..., x are

i=\ % % v \ n

mutually free, n. = g. , i = 1, . . . , n as required.

Hence an n- l inear al ternating function d from w" to A" is

defined by dy{f [xj , . . . , / ( x J J = 1 , so / ( x j , . . . , / ( x j form a basis

of C as required.

The rowfe of a l inea r map f : V -*• W is defined to be the number ( i f

one exis ts) n such that / has a basis vi , ..., v^ such that
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f{vl) »' • • • » f[v ) a r e free in W and form a basis for the range of / .

Any such number r is unique since i t is the dimension of the range of

/ , so rank is well-defined.

PROPOSITION 6. If W is a finite-dimensional vector space then the

linear map f : V •* W has rank r if and only if there are bases of V

and W such that the matrix of f with respect to these bases has rank

r .

The proof is immediate from the definitions. From Proposition 3 we

therefore have

COROLLARY. If W is finite-dimensional then the linear map

f : V •* W has rank r if and only if the nullspace of f has dimension

n - r (where n is the dimension of V ) and has a basis which can be

extended to a basis of V .

The statements of Propositions 3 and 6 hint at a difficulty which we
have managed to avoid above; i t is not clear in general how mutually free
vectors in a finite-dimensional vector space can be extended to a basis of
that space. In one simple case however, this can always be done:

PROPOSITION 7. If x , . . . , x ,_ 1 are mutually free vectors in a

k-dimensional space V , then there is a vector x, in V such that

x. , . . . , x, form a basis for V .
1 K

Proof. Write d for a (fe-l)-linear alternating function from v"

to K such that d[x, , ... , x, ,) = 1 ; write y y, for a basis
1 K—1 ' 1 K

k
of V , and x. = J Y- .y . , and observe that

v J=l Y ' J °

" "1*1* P i * * * * * * 1*—1 1

If 1 5 p 5 n and j , . .. , j\ > <?-• » • • • » Rf. a r e both permutations

of 1, ...,p, . . . , n , then

since d is alternating, so we can define x, = (xj, _) > 1 - p - n , by
K K.,p
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xk D = Ei i vd\yi ' • " ' yi

where j ' , . . . , j , , i s some permutation of 1, ..., p, ..., n . The

determinant of the coordinates of x . , . . . , x, with respect t o

y , .. . , y, i s therefore

i x i

I
Vf e=l

= 1 ,

e. • • 4 . , . . . , y.
3 3 * J J

hence the determinant of coefficients of an n-tuple of vectors of V with

respect to the basis y , ..., y, is an n-linear alternating function, as

required to show x .̂, . . . , x, are mutually free.

The extension of mutually free vectors in a finite dimensional space

to a basis of the space is straightforward if the underlying field of

scalars is the Bedekind real or complex numbers , in view of the following

result.

PROPOSITION 8. If K i.8 ike Dedekind real or complex numbers and A

is a matrix with entries from K , then there is a square, invertible

matrix B such that BA is upper triangular.

Proof. If A = [a. .) i s an n x k matrix, we may assume n > 2 .

We show f i r s t tha t i t i s sufficient to be able, given arbi t rary a, b 6 K ,

i 2 21t o find o, 8 € K such tha t ao - bs = 0 and \c +s \ = 1 .

In that case we can f i r s t put b = a , a = a and premultiply

A by [&..}, 1 2 i , j £ n where g. . = 6. . except for i = n - 1 , n

and j = n - 1 , n and where
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a 8

-s an,n~l ^n,n

We get by th is means an n x k matrix A' = (a1. .) with a' = 0 . By
t-, 3 '*,-*-

successive similar rotations we obtain a matrix A' with a1. . = 0 ,
3 >••-

j = 2, . . . , n ; further rotations give also a'. = 0 , 3 - 3 - n , and
3 i<-

s o on u n t i l f i n a l l y a'. . = 0 f o r i > j , I S i S r t , 1 £ j £ fe . The
t ,3

product of these rotations in the order indicated i s the required matrix

B .

Hence we find a map K x K •* K x K , say (a, b) t—»• (a, e) , such that

ae = bs and le +s I = 1 . For b tt 0 we define

= a//|a2
+i2| .

This map extends to domain K x K t o give the map required. We

sketch the argument for the real case.

For arbi trary b we can define by the lower bound theorem a function

sgn(fo) on K , such that b = sgn(2>).|i| • The map (a, b) *-*• (a, s)

defined by

extends to K x K by continuity, so we define the required map by

a = sgn(fc).e' , s = sgn(a) .s ' .

For the complex case the argument i s s imilar , since we can define on

K a function arg such that for z € K , z = | s | . a rg2 .

4. Discussion

The results given show that some basic linear algebra is available in

the absence of an apartness relation which satisfies Heyting's axioms; but

they do not support particularly the definition of field we have given.

Indeed inspection shows that, except for Proposition 8, the work on linear

algebra holds for modules over an arbitrary commutative ring with unity.

The main case for our particular definition of field is i ts

generality. It could be held that i t is too general since the sole axiom
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which distinguishes f ie lds from general commutative rings with unity i s the

negative assert ion (x): but the obvious strengthening of th i s axiom, to

(VJ/)(XJ/ # 1 ) implies x = 0

is so strong as to imply the stability of equality. Indeed it clearly

gives

~1 (x # 0) implies x = 0 ;

On the other hand ~~\ ~l (x = 0) implies ~~\ (x # 0) , so we have s t ab i l i t y

of equality as s ta ted.
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