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Abstract

The problem considered is that of approximating irrationals a by rationals p/q where p and
q avoid certain congruence classes mod 2* for certain integers k. Results are obtained which give
close bounds on a number c such that |a — p/q ] < c/q2 has infinitely many solutions where p and
q can be expressed as the sum of three squares.

1. Introduction

Scott (1940) considered the problem of approximating real irrational
numbers a by rationals p/q where p and q are of given parity. Others (see
section 47.6 of Lekkerkerker (1969)) have generalized this to the case p = r
(mod m), q = s (mod m) where (r,s,m)= 1. The problem to be discussed
here is the complementary problem, namely the restriction p^r (mod m),
q ̂  s (mod m), in the cases m = 4,8 and 16. We define k(r, s,m) to be the
infimum of the values of k for which, for every real irrational a, the inequality

(1) q\qa-p\<k

has infinitely many solutions in integers p,q with q > 0 satisfying

(2) p¥^r (mod m), q ̂  s (mod m).

In Section 2 we prove

THEOREM 1. For m = 4 or 8 and r and s both odd

k(r,s,m) = 2/V5

and this is an attained minimum.
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THEOREM 2. k(0,1,8) = 7V2/12 is not attained.

It can be seen from the proofs that the constants 2/V5 and 7V2/12 are
isolated, but in each case the irrationals a requiring the critical value of k do
not form a full equivalence class. The contrast between the two results is a
little surprising. The method of proof used here enables k(r,s,m) to be
evaluated for most triples (r, s, m), but it appears that a general proof giving
k (r, s, m) as a specific function of r, s, m will not exist. Indeed the actual value
of k(r,s,m) seems almost to occur by accident. We shall also prove the
following result.

THEOREM 3. For every irrational a > 0 there are infinitely many solutions
of (1) with k = 27/2V145 and p and q sums of three squares.

It should be noted that this value of k is not shown to be best possible.
However by combining this with the result of Theorem 1, remembering that
numbers congruent to 7 mod 8 cannot be written as the sum of three squares,
we have the inequality:

COROLLARY. The infimum K of the values of k for which (1) has infinitely
many solutions with p and q being sums of three squares satisfies

2/V5=SK S 27/2 V145.

It will be noted that the proof of Theorem 1 also holds for the case
m = 16, rs = ± 1 mod 16 with little modification. The proof of Theorem 3
uses the well-known result that a positive integer can be written as the sum of
three squares if and only if it is not of the form 4" (8b + 7) for integers a and b.
At one stage much of the strength of this result is used, though for the rest of
the proof the simple fact that numbers 4" (8b + 7) are congruent to 0, 4 or 7
mod 8 is sufficient.

The proofs of Theorems 1, 2 and 3 seek a for which the convergents (to
the simple continued fraction of a ) violate the congruence condition. The
convergents investigated include not only the primary convergents but also
the secondary, and even "tertiary" convergents.

2.

In the proof of Theorems 1 and 2, we assume a > 0, for if a < 0 we just
consider - a and replace r by - r mod m. The proofs depend on the theory
of simple continued fractions and we list the results needed from the standard
theory in the following lemmas, proofs of which are essentially to be found in
chapter 1 of Lang (1966).
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LEMMA 1. Let a have continued fraction [ao,a,, a2, • • • ], and let pn and
qn be defined inductively for n =£ 0 by the equations

p,,= an, pl = a,a»+\, pn = anpn-, + pn-2,

q « = l , q, = a,, qn = anqn-, + qn -2.

Furthermore, for n s 0, define

Then if (p, q) = 1 and q | qa - p \ < 1 either
(i) (p,q)= (pn,qn) for some n g 0, or

(ii) (p,q) = (Pn, On) or (P'n,Q'n) for somen^O.
Furthermore (i) must /io/d if q \ qa — p | < 1/2.

LEMMA 2. Lef «„ = [an*,, an+2, • • •] and a '„ = [0, an, an-i, • • \ a,]. Then
with the notation o/ Lemma 1

(i) q B | q B a - p B | = l / ( a n + a : ) = k » ,
(ii) On
(iii) o :

( a n . , - l ) ( a : + , + l)/(an. l + a;+,) = kn, and

na - P n | = (<*„., + 1 - an + 2)(«:+ l + an,2- !)/(«„., + « :

From the formula

k^= l - ( 2 - a » * , + l /a;+ ,) /( l + a,M/a;+i)

it is clear that k^> 1 unless

[an+2, an+i, • • • ] < 2 + [ a n i l , a n , • • •, a t ] .

Similar ly f rom t h e f o r m u l a

k : = 1 - (2 + aK.2 - I / a i*2)/(l + an+2/a i+ 2)

it is c l ea r t ha t k " > 1 un le s s

[an*2 , a n * i , - - • , a , l < 2 + [ a n i , , a , * v • • ] .

F r o m t h e s e t w o f o r m u l a e w e a l so h a v e k^,+ k"_, < 2.

L E M M A 3 . (i) Let a = [an, • • \ a,, a r T , , • • • ] , and /3 = [a<>, • • •, ar, br+x, • • •].

Then a < (3 if ar^, < fcrT, and r is odd or if ar^i > br+, and r is even.
(ii) [a,,, a,, • • •, ar] < [an^i, • • •, ar, • • • ] < [a 0 , a , , • • •, ar + 1] if r is even,

otherwise the reverse inequalities hold.

We can use these results to show that, for rs odd, k (r, s, 8) s 2/V5 as
follows.

https://doi.org/10.1017/S1446788700020802 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020802


428 R. T. Worley [4]

LEMMA 4. Let rs be odd, and let a = [a0, a,, • • •] be such that for some

integer I the following conditions hold.

(i) an = 4 for n § / + 2,
(ii) p, = r (mod 8) and q^, = s (mod 8), and
(iii) both q, and pl + , are even.

Then there are infinitely many pairs (p,q) of integers with q >0 satisfying (1)
and (2) with m = 8 and k = 2/V5, but (here are on/y finitely many pairs when
k < 2/V5.

PROOF. Let p and q satisfy (1) with k ^ 2/V5. Then by Lemma 1 one of
the following must be true.

(') G M ) = (P-,<?n) and q |qa - p | = kn,
(ii) (p,q) = (Pn,Qn) and q |qa - p | = fc^,

(iii) (p,q) = (P:,<?;) and q | q a - p | = IC
(iv) (p,q) = (tpn, tqn) and q |qa - p | = f 2kn g 4k,,.

Now [4,4] = 2 + V5, so since

limk:= limk':=41imkn = 2/V5

it is clear that with k < 2/V5 equations (1) and (2) can have at most finitely
many solutions arising from cases (ii), (iii) and (iv). In addition since for n =g /
we have either pn=r (mod 8) or qn = s (mod 8) only finitely many solutions of
(1) and (2) can arise from case (i) when k < 2/V5. To complete the proof of
the lemma it remains to show that (p,q) = (2pn,2qn) satisfies (1) and (2) with
k = 2/V5 infinitely often. This is a trivial consequence of the fact that for
n £ / , 4kn <2/V5 if a : > V 5 - 2 and 4kn + 1<2/V/5 if a'n< V 5 - 2 .

It must of course be noted that it is possible to construct, for each choice
of odd r and s, an irrational satisfying these conditions: for example for
(r,s) = (l , l) we can take a =[8,4], for (r,s) = (l,3) we can take a =
[0,1,1,1,4]. Essentially all that is required is to choose that one of rs + 1,
rs - 1 that is divisible by 4 and let ab be a factorization of that number into
even factors. Then r/a, b/s are consecutive convergentsp,/q,, pi + i/q,+, of some
finite continued fraction [ao,a,, • • •, a, + 1] which can be found by reversing the
continued fraction algorithm. Setting a = [a0, a,, • • -,am,4] satisfies the
requirements.

It can also be verified that if rs = ±1 mod 16 and we choose a and b both
divisible by 4 such that ab = rs ± I then the above procedure yields an a that
satisfies conditions (i), (ii) and (iii) of the lemma where the congruences in (ii)
are now modulo 16, and in (iii) both qt and pi + i are divisible by 4. Following
the proof of the lemma through yields k (r, s, 16) g 2/V5 for rs = ± 1 mod 16.
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To show k (r, s, 8) = 2/V5 for rs odd it remains to show the following
result.

LEMMA 5. Let rs be odd, m = 4 and k = 2/V5. Then equations (1) and
(2) have infinitely many solutions.

PROOF. If a = [a0, a,, a2, • • • ] then one of the following possibilities
must occur.

(i) a , ^ 5 for infinitely many n,
(ii) fl,^3 for all sufficiently large n,
(iii) an = 4 for all sufficiently large n,
(iv) an g 4 for all sufficiently large n and either

(a) an-i = 1 or an + , = 1 for infinitely many n for which an = 4, or
(b) an_i g 2 and an+i S 2 for all sufficiently large n for which an = 4

and a , i , S 3 for infinitely many of these n.
The result for case (iii) follows by taking (p, q) = (2pn, 2qn) as in the proof

of Lemma 4, while in cases (i), (iv)(a) and (iv)(b) we only need to take
(p,q) = (2pn,2qn) for infinitely many n for which Jen < 1/2V5. In case (i) we
have kn < 1/5 for the infinitely many n for which an + , § 5, in case (iv)(a) we
have

k n
1 >4 + [0,l,l] + [0,4,l] = 4.7

infinitely often, and in case (iv)(b) we have

k -' > [4,3,1,5] + [0,4,2,5] > 4.48

infinitely often. We are therefore left with case (ii).
Let / be chosen so that a, g 3 for n =£ /. For n > I

and setting (p,q) = (pn,qn) gives infinitely many solutions to (1) and (2) with
k = 2/V5 unless (pn, qn) does not satisfy (2) for all n greater than some /0. We
therefore assume from now on that /' (= I) is such that for all n > /' either
pn = r (mod 4) or qn = s (mod 4).

For the present we shall also assume that r = s = 1 and denote by h an
integer greater than V + 6. We let Th denote the matrix

Ph q
~>u + i q h

where each entry has been reduced mod 4 to lie in {0,1,2,3}. Using the
conditions (a) ph = 1 (mod 4) or qh = 1 (mod 4) and (b) \phqh+\ - Ph+iqh | = 1,
this latter being a standard property of continued fractions, either S, = Th or
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S* = Th where S ? denotes S{ with transposed columns and S* denotes one of
the following matrices:

S,=
1 0
1 1

s5

s,-

s,

1 0

1 3
1 2

S,=
1 1
1 2

1 3
1 0

S4 =
1 2

•-> 10 ~~
1 0
3 1

1 2
s , 5 - o

S,2 =

S,6 =

U 3/

'"12 1/

13 VO 1/

Since Th+1 = ( IT), (mod 4) and a h + 2 § 3 we can form the following
\i tth+2/

graph, where Sf —»Sr denotes that if Tj, is S, or ST then Th + , = Sr or S*> if
ai, + 2 = ;'•

3

1 2
0 1

1 2
2 1 / '

- s 4

>

S,4- -s6—

\ l

• S5 > S n

It will be noted that S7, S8, S10 and S13 disappear from consideration. Using
Lemma 3 we find that ah+l S [2,3,3,2,2, •••] and a i+1 S [0 ,1 ,3 ,2 ,2 ,1 , •••]
when T h = S 3 or Sf, and ah+1 g [2 ,3 ,3 ,1 ,1 , • ••] and a'h+1 ^ [0,1,3,1,3,2, • • • ]
when Th=Sn or STi- Thus since kL is a maximum when both ah+, and ai+i
are a maximum we have that k'h< .755 whenever ThESf = {S3,S*, Sn,S*i}.
Now (p,q) = (Ph, Qh) satisfies (2) whenever T h G^ , and so if ThE.Sf for
infinitely many /i we get infinitely many solutions of (1) and (2) with
k = 2/V5. We therefore assume that ThE.y for only finitely many h, that is
for h g h0, Th or T* cycles around the subgraph

Since [2] = 1 + V 2 we have X\mh-~~k'h - 2 ^<0.71. This means that, since
Th=S,6 or S*6 implies fhat (p,q) = (Ph,Qh) satisfies (2), we again have
infinitely many solutions of (1) and (2) with k = 2/V5.
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This completes the discussion of case (ii) for r = s = 1. The same proof
applies for the other three cases on letting Th denote, respectively, the matrix

\ -qh

reduced mod 4 in the cases (r,s) = (1,3), (3,3), (3,1).
Theorem 1 now follows as a consequence of Lemma 4 and Lemma 5. The

proof of Theorem 2 is basically similar, though it is more complicated since
(2p, 2q) will not always satisfy (2). To save repetition we shall from now on
take r = 0, s = 1, m = 8 in (2).

LEMMA 6. //, for some I > 0, an = 1 for n § I then q \qa - p\< 0.82 has
infinitely many solutions satisfying (2).

PROOF. If n § / then one of the pairs (ph, qh), h = n,n + l,n +2 satisfies
(2), for it is easily verified that the equations

(a) pn + , + pn = 0 (mod 8) or qn+i + qn = 1 (mod 8),
(b) pn+, = 0 (mod 8) or qn + , = 1 (mod 8),
(c) pn = 0 (mod 8) or qn = 1 (mod 8),
(d) |pnqn + i -p n + I q n | _= l

have no solution. Now [i] = |(1 + V5) and kn -» 1/V5, so clearly q |qa - p | <
0.82 must have infinitely many solutions (p, q) = (pn, qn) satisfying (2).

In the following Lemmas 7-10 we mean by assumptions (A) the
following: q | qa - p | < .82 has finitely many solutions satisfying (2), and / is
chosen such that none of the solutions is of the form (dpn, dqn) with n g /. In
the proof of the lemmas we make frequent use of the standard result
|pn +iqn-pnqB + i| = l.

L E M M A 7 . Under assumptions ( A ) let h>l be such that a U i = 2 ,
qi, =qh+i = 1 mod 8, and ph+i ^ 0 mod 8. Then

(i) o k + 2 S4 and ph +2 = 0 mod 8 if ph+if^0 mod 4, or
(ii) ah+2 = 8 i/ ph + , = 4 mod 8.

PROOF, (i) Suppose ph + i ^ 0 mod 4. We have ah+2 = 4 immediately, for
(2ph+i,2qh+l) satisfies (2), implying 4kh+i § .82. Now suppose that ph+2^0
mod 8. Since qh+2 = ah+2 + 1 it is clear that (ph+2, qh+2) satisfies (2), so kh+i = -82.
This is impossible unless ah+2 = 4, ah+3 = 1 and ah+4 = 50. But now (ph+3, qh+3)
satisfies (2) and kh+3<l/50, contrary to assumptions (A). This proves that
ph+2 = 0 mod 8.

(ii) Suppose ph + i = 4 mod 8. Then ah+2=10, for 9kh + i^ .82 since
(3ph+i,3qh+i) satisfies (2). Now suppose ah+2^ 8. Then (ph+2,qh+2) satisfies (2),
so kh+2§.82, from which it follows, since a h + 2 > l / l l , that ah+3=l and
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a h + 4 5 7. But now (2ph+3,2qh+3) satisfies (2) and 4kh + 3<4/7 contradicting (A).
This proves that ah+2 = 8, as desired.

COROLLARY. Under the assumptions of Lemma 7, ifph + i = 4 mod 8, then
a h + 3 S 4 and ph+3 = 0 mod 8.

PROOF. Apply the lemma with h replaced by h + 1, since not both ph+1

and ph+2 can be even.

LEMMA 8. Under assumptions (A) let h g / foe such that ah+2 = 2. TTien
there exists j § h such that either p, = 0 mod 8 and qj+, = l mod 8 orqt = 1 mod
8 and p; + 1 = 0 mod 8.

PROOF. Since fch < 1/2 we either have ph — 0 mod 8 or qh = 1 mod 8.
Suppose firstly that ph = 0 mod 8. We show that we may take / = h, for
suppose to the contrary that qh+i ^ 1 mod 8. Then (ph+l,qh+i) satisfies (2), so
k h + 1 s . 82 , ah+2= 1 a n d a h + 2 g 4 . Now (2ph+2,2qh+2) satisfies (2), so 4kh + 2g .82
and ah+3 ^ 4, i.e. ah+3 = 4. Furthermore as kh+2 < .82 we have qh+2 = 1 mod 8
since ph+2 is odd. This implies qh+i is even, so (ph+3,qh+3) satisfies (2). For
k h + 3 g .82 we require ah+4 = 1 and ah +5§50. However 2ph+4 = 4 mod 8 since
ph+4 = 6ph+, mod 8, so (2ph +4,2qh +4) satisfies (2) and 4kh + 4<.82. This con-
tradiction shows that we may take j = h, as claimed.

We now suppose that qh = 1 mod 8. Since we could set j = h if ph + 1 = 0
mod 8, and ;' = h + 1 or / = h + 2 if qh+l = 1 mod 8 (by Lemma 7 and its
corollary) we assume p h + i ^ 0 mod 8 and qh + 1?M mod 8. Now (ph + i,qh+i)
satisfy (2), so kh+, =£ .82, ah+2 = 1 , ah+1 g 4 and ah+3 g 4. Since khi2 < -82 it is
clear that (ph+2, qh+2) cannot satisfy (2). We assume qh+2 = 1 mod 8, for ph+2 = 0
mod 8 would imply we could take ; = h + 2 by the first part of this proof.
Repeating the above argument with h replaced by h + 2 we can take ah+i = 1,
ah+s = 4 and <jh+4 = 1 mod 8. Now qh+, = qh+2 - qh = 0 mod 8 and qh+3 = 0 mod
8 similarly, so ah+3 = 0 mod 8. In particular a h + 3 g 8 and 4kh + 2<.82. Thus
(2ph+2,2qh+2) cannot satisfy (2), so ph+2 = 0 mod 4. Similarly we can show
ph+4 = 0 mod 4, so ph+3 = Ph+4-Ph+2 is also even. However this contradicts
\Ph+2qh+3-Ph+?,qh+i\ = 1, and this is sufficient to prove the lemma.

LEMMA 9. Under assumptions (A) let h >l be such that qh = 1 mod 8
and ph + , = 0 mod 8. Then ah+2 = 0 mod 8 and qh+2—l mod 8.

PROOF. Suppose ah+2f^0 mod 8. Then (ph+2, qh+2) satisfy (2) since phqh+i
is odd, so kh+2 =-82, ah+i= 1, a h + 4 g 4 and ah+2 = 4. Now ph+3 is odd, but
(ph+3,qh+7.) doesn't satisfy (2) since kh+?> < .82, so qh+, = 1 mod 8. This implies
that (2ph+3,2qh+3) satisfies (2). We therefore have ah+4 = 4 and ah+5^2 in
order to have 4k h + 4 § .82. Since qh+4 is even we have (ph+4,qh+t) satisfying (2)

https://doi.org/10.1017/S1446788700020802 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020802


[9] Restricted diophantine approximation 433

and kh+t< 1/2. This contradiction implies that ah+2 = 0 mod 8 as desired.

LEMMA 10. Under assumptions (A) let h > I be such that ph = 0 mod 8
and qh + i = 1 mod 8. Then a h , , s 2 and ah+2 = 4.

PROOF. Since both ph + t and qh are odd, (2ph + 1,2qh + 1) satisfies (2), so
ah^2 = 4 to ensure 4kh + i = -82. Now if ah*2^ 4 we have kh+3< .82, so qh+2 = 1
since ph +2 ^ 0 mod 8. By Lemma 7 we therefore have, since ah +2 must be even,
that ph+3 = 0 mod 8. However since ah+2 = 2 is even ph^3 is odd, so ph+3 = 0
mod 8 is impossible. This leaves only the possibility that ah+2 = 4. Now if
ah*.-, = 1 we would have ph+3 odd, qh+3 even, so (ph+,,qh*3) satisfies (2) yet
k(,+3<.82. This contradiction shows o ^ 3 = 2 as desired.

LEMMA 11. Under the same assumptions as Lemma 10 ah+3 = 8, qh = 5
mod 8, qh+2 = qh+3 = l mod 8, ai,+4 = 4 and ph+4 = 0 mod 8.

PROOF. From Lemma 10 we have kh+2 < 1/2, so either ph+2 = 0 mod 8 or
qh+2 = 1 mod 8. The first alternative cannot hold, since ph+2 is four times an
odd number, so the second alternative holds. Hence qh = 1 - 4 = 5 mod 8, as
desired. Furthermore, by Lemma 7, ah+3 = 8 and again by Lemma 7, since ph+s
is odd, p/,+4 = 0 mod 8 and ah+4 = 4. However ph+4 = 4 + ah+4Ph+3 where ph+i is
odd certainly cannot hold for ah +4 < 4 and ph +4 = 0 mod 8, so we have ah +4 = 4.

COROLLARY. Assumptions (A) imply that for some j > I, pj+4n = 0 mod 8,
q y + 4 n = 5 mod 8, <j;+i,-4n = q;+2+4n =q,+3+4n = 1 mod 8, pj+4n*2 = 4 mod 8,

p,- + i+2n s P, + i, a,+2n = 4 and aj+2n + i = 8 /or o// n § 0.

PROOF. This is just a straightforward application of Lemmas 6, 8 and 9
followed by repeated application of Lemmas 11 and 9.

Now that we have isolated the critical case all that remains is to prove
that this case is critical.

LEMMA 12. Let a = [a0, ah • • • ] be such that for some integer j , q, = 5
mod 8, PJ = 0 mod 8, qi + l = 1 mod 8, ai+2n = 4 for n S 0 and aJ+2n*i = 8 /or
n § 0 . Then (1) and (2) haue infinitely many solutions for k >7V2/12.
However if [8, a,-, • • •, a,] < [8,4] and k = 7V2/12 there are only finitely many
solutions.

PROOF. By Lemmas 1 and 2 we only need to investigate as possibilities
for (p,q) the pairs (ph,qh), (Ph,Qh), (P'h,Q'h) and (dph, dqh). We only consider
h g j since we are looking for infinitely many solutions. There are a number
of cases to be considered.
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(i) The pairs (ph,qh). These never satisfy (2).
(ii) The pairs (2ph,2qh). These satisfy (2) only for h = / + n with n odd.

In this case

4kh = 4/([478] + [0,8, • • •, a,]) > 16/17.

(iii) The pairs (dph,dqh) for d g 3. In this case 9kh > 1.
(iv) The pairs (Ph,Qh) for h =j'• + n with n odd. In this case k'h>\.
(v) The pairs (P'h,QL) for h = j + n with n even. In this case kl>\.

(vi) The pairs (Ph,Qh) for h = j + n with n even. In this case

k J = 1 - (2 - (478) + [8, • • •, a,])/(l + [478] [8, • • •, a,])

tends to 7V2/12 as Ji—>oo. Furthermore kh<7V2/12 if and only if

[8, • • •, a,] > [874], that is [8, a,, • • •, a,] > [8~i].
(vii) The pairs (P'h,QL) for h=j + n with n odd. In this case

kZ-* 7V2/12 as h ^ oo_and k J < 7V2/12 if and only if [4,8, • • • -, a,] < [4T8],
that is [8, ah • • •, a j > [8,4]. The lemma follows immediately from the results
of these cases.

Theorem 2 now follows immediately from the above lemma and
corollary on observing that the hypotheses of Lemma 12 are satisfied by
a = [4,1,4~8].

3.

The proof of Theorem 3 depends on the result that numbers not of the
form 4" (8k + 7) can be written as the sum of three squares. The first point to
note is that 27/2V145 = 1.121... > 1 and we therefore need a modified form
of Lemma 1.

LEMMA 13. Let a be as in Lemma 1 and let p and q be integers such that
(p,q) = 1 and 1 < q |qa — p | < 2. Then either (ii) of Lemma 1 holds or for
some integer n

(iv) (p,q) = (ipn + pn-t,iqn + qn-,) with 0<i < an + l, or
(v) (p,q) = ((2i + l)pn+2pn-l,(2i + l)qn+2qn-l) with 0 g i < a n + 1.

PROOF. Since (p,q)^ (pn,qn) for any n (Lemma 2) there either exists n
such that

pn\lqn-x<plq <pn + jqn+,<a <pn/qn
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or there exists n such that the above holds with all inequalities reversed. We
consider the first possibility only, as the second requires a similar argument.
From the definition of pn + 1, qn + i there exists i, O S i < an + i, such that

where (1)Pn, '"On denote ipn + pn-,, iqn + qn_, respectively. Since
<i+1)Pn

(i)On -(i )Pn
<i+1)On = 1 we have

1 (i-M)p (i)p .
(3) — L^— = r " _ —Li a _-i—

where s =(nQnp - (i)Pn(j > 0 . In addition

where r = (i+1)Pnq - ( i + 1)Qnp SO. Combining (3) and (4) gives

"' '""On < rq <2<i+1)Qn

and so rs < 2. The proof of the lemma is now complete on observing that (iv)
holds if r = 0 and (v) holds if r = s = 1.

We note in passing that if (iv) holds then

q\qa -p\ = (an- i)(a'n+i)/(an +a'n), = (i)kn say,

and if (v) holds then

The following lemma is required to show that certain irrational a can be
approximated by a quotient of sums of three squares sufficiently well.

LEMMA 14. Let a = [a0, au •••] be such that for some integer I the

following conditions hold.

(i) p,_, = 0 mod 8, q,-, = 1 mod 8, p, = q, = 7 mod 8,

(ii) a,+3m + 1 = 2, ai+ 3 m + 2 = 7 and a(+3m = 1 for all integers m =£ 0.

Then there exist infinitely many pairs (p,q) of integers with q > 0 satisfying (1)
with k =27 /2Vl45(= k*, say) and neither p nor q congruent to 0, 4 or 1
mod 8, but there are finitely many such pairs if k < k*.

PROOF. For convenience we shall let (c) denote the condition: neither p
nor q is congruent to 0, 4 or 7. Let (p, q) satisfy (1) with k Sk* and condition
(c). Then by Lemmas 1 and 14 either

(i) (p,q) = (tpn, tqn) for some integer (,
(ii) (p,q) = ((i)Pn,

(i)Qn) with 0< i < an+u or
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(i i i ) (p,q) = (0)Pn + (i^Pj°Qn +(i^Qn) w i t h 0 § i < a B * , .

We therefore need to consider t2kn,
 (i)kn and <ok '„. For convenience we denote

by lim3 k, the limit

Iim ki+3m

with similar notation for (i)k,, (i)k',. We look at three cases.
(a) Consider n ^ / + 2 mod 3. Then possibility (ii) is vacuous and t must

be at least 2 in case (i).
Since lim3k,.2 = 15/2V145 and rim3

(0)k;+2 = 37/2 V145 there are clearly
only finitely many possibilities for (p,q) in this case.

(b) Consider n = / mod 3. Then t must be at least 2 in case (i) and case
(ii) is excluded since P n =0 mod 8. Since lim3k, > j k * , lim3

(O)kl>k* and
lim3

<l)k| > k * there are again only finitely many possibilities (p,q).
(c) Consider n = I + 1 mod 3. Then t must be at least 3 in case (i).

Furthermore lim3ki + , = gk *, lim3
<1)kH.1 = k *, and lim3

(Ok( + 1 and Iim3<oki+1 are
greater than k * in all other cases. Thus we clearly have only finitely many
possibilities for (p, q) in this case when k <k*. However if k = k * there are
infinitely many possibilities for (p,q) since k3 m +i+4<k* whenever
k3m+i+i > k .

To complete the proof of Theorem 3 it remains to prove

LEMMA 15. Let a = [aH, a,, •••] > 0 be such that with k = 1.12 equation

(1) has only finitely many solutions (p, q) such that neither p nor q is of the form

4° (8k + 7). Then a satisfies the conditions of Lemma 14.

PROOF. Before proceeding further it should be mentioned that no a
satisfying the conditions of Lemma 15 actually exists, due to the fact that
numbers congruent to 0 or 4 mod 8 need not be of the form 4" (8k + 7). It is
precisely this fact that makes the reduction of k = 1.12 to say k = 1 extremely
difficult in this approach to the problem. We first observe that if one of pn, qn

is of the form 4° (8k + 7) then unless the other is of the form 2.4" (8k + 7) the
choice (p, q) = (2pn, 2qn) has neither p nor q of the form 4" (8k + 7). Secondly,
for at least one of t = 1, t = 2, t = 3 the choice (p,q) = (tpn,tqn) has neither p
nor q of the form 4" (8k + 7). Consequently, if a is as in the statement of the
lemma, then for all sufficiently large n we must have

(i) At least one of pn, qn is congruent to 0,4 or 7 mod 8,
(ii) an +a'nS9/lA2, and hence a n ^ S 7 ,

(iii) an + a i s 4/1.12, and hence a r t s 3 , unless one of pn,qn is con-
gruent to 7 mod 8 and the other is congruent to 0 or 6 mod 8. Considering
(P'n,Q'n) and (Pn,Qn) we also have for sufficiently large n:
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(iv) At least one of Pn,Qn,P'ni = pn + \ — pn, Oi-i = <!n*i"((» must be
congruent to 0, 4 or 7 mod 8 (since k'n + k'^-i < 2).

(v) If neither pn + i + pn nor qn + t + qn is congruent to 0, 4 or 7 mod 8 then
(pn+1, qn + i) must be one of (0,7), (7,0), (6,7) or (7,6) mod 8. For otherwise we
would have an+2 = 3, and k'n< 1.12 unless an+2 = 3, an*. = an*3 = 1 and an g 5.
But then 4kn+, < 1 and (2pn*,,2qn^t) is valid.

(vi) Similarly if neither pn + , — pn nor qn + , — qn is congruent to 0, 4 or 7
mod 8 then (pn,qn) must be one of (0,7), (7,0), (6,7) or (7,6) mod 8.

The remainder of the proof relies heavily on the above conditions.
If n is sufficiently large there are 236 possibilities for the 4-tuple
Fn=(pn,qn,pn + ,,qn + i) mod 8 satisfying (i) and the condition pnqn+\ — pn + tqn =
± 1 mod 8. Since the roles of p and q can be interchanged without affecting (i)
to (vi) we really only have 118 possibilities to consider. These can be
eliminated one by one till we are left only with the possibility that a satisfies
the conditions of Lemma 14.

The elimination proceeds as follows.
(a) Ten possibilities for Fn can be eliminated immediately because they

do not transform by valid an+2 to valid FB + 1. These are (0,1,1,0), (0,1,1,4),
(0,3,3,0), (0,5,3,0), (0,5,3,4), (1,4,4,7), (3,4,0,5), (4,5,5,0), (4,5,5,4) and
(4,7,7,2). We can now eliminate (1,7,0,1), (1,7,4,3), (1,7,4,5), (2,7,1,4),
(3,7,0,3), (3,7,0,5) and (4,7,7,4), followed by (3,4,1,7), (4,5,7,3), (5,7,7,2)
and (6,7,7,4), since these transform by valid an+2 only into valid Fn+1 that
have already been eliminated.

(b) Condition (iv) enables (0,3,5,0), (0,5,5,0), (1,4,2,7), (1,4,4,1),
(2,7,7,4) and (4,7,1,4) to be eliminated, and consequently (0,7,1,4),
(1,7,2,7), (5,7,0,3), (5,7,4,7), (0,1,7,1), (0,7,7,5) and (3,4,5,7) may be
eliminated as in the second part of (a).

(c) Condition (v) enables (0,3,3,7), (0,3,5,7), (0,5,5,4), (0,7,1,7),
(1,4,0,1), (1,7,5,4), (2,7,1,7), (2,7,3,7), (3,4,3,7), (3,4,7,1), (3,4,7,7),
(3,7,2,7), (3,7,3,4), (4,5,7,1), (4,5,7,5), (4,7,5,7), (5,7,5,4), (6,7,5,7),
(6,7,7,3), (6,7,7,7) and (7,7,3,4) to be eliminated. In addition condition (vi)
enables (0,1,1,7), (0,3,3,4), (0,3,5,4), (0,5,3,7), (0,5,5,7), (1,4,7,5),
(1,7,3,4), (1,7,7,2), (2,7,7,1), (2,7,7,5), (3,4,4,5), (3,7,1,0), (3,7,5,4),
(4,5,1,7), (4,5,7,7), (4,7,1,0), (5,7,0,5), (5,7,3,4), (7,7,0,1) and (7,7,4,5)
to be eliminated. Consequently (0,1,7,0), (0,1,7,2), (0,1,7,4), (0,7,7,2),
(0.7,7,3), (0,7,7,6), (3,4,0,3), (3,4,4,3), (4,5,3,0), (4,5,3,4) and (5,7,4,1)
may be eliminated.

(d) The following table lists in the first column as H,, •••,H32 the
remaining thirty two possibilities for Fn. In the second column opposite H, the
entry H (̂fc) indicates that if Fn=Hi and an+2 = k then Fn^l = Hj. All such
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possibilities are listed. In the third column opposite HL the entry Hy(fc)
indicates that if Fn_, = Hy and an + 1 = k then F,=H, .

Table 1

Fn Transforms to Fn»,(an^2) Transforms from Fn.i(a,,»i)

H, = (0,7,1,0) H2,(3) H,(4), H,o(7)
H2 = (0,7,7,0) H,(l) , H3(4), H,2(7) H7(4), H,,(7), H13(2), H15(6), H16(l), H17(3), H,«(5)
H3 = (0,7,7,4) H9(l), H,4(2) H,(4), Hn(3), H,,(6), H15(2), H16(5), H17(7), H18(l)
H4 = (0,1,7,7) H,,(l), H2O(2) HOT(2), H,,,(l)
H5 = (0,7,7,7) H ^ l ) H,(l), H7(5), H,3(3), H,,(7), H,6(2), H,7(4), H,8(6)
H6 = (1,4,0,7) H,(4) H21(l), H31(2)
H7 = (4,7,7,0) H,2(3), H2(4), H5(5)

H»=(4,7,3,7)
Hlo = (l,7,0,7) H,(7) H12(l)
H,, = (7,7,0,7) H,(3), H12(6), H2(7) H,(l)
H,2 = (0,7,7,1) H,0(l) H2(7), H,(3), H,,(6), H,,(l), H,5(5), H17(2), H,g(4)
H13 = (2,7, 7,0) H12(l), H2(2), H,(3), H,(6)
H14 = (4,7,7,6) H15(4) H,(2), H22(l)
H15 = (6, 7, 7,0) H3(2), H,2(5), H2(6), H5(7) H14(4), H12(7)
H16 = (1,7, 7,0) H2(l), H5(2), H,(5)
H,7 = (3,7,7,0) H,2(2), H2(3), H5(4), H,(7) H8(l)
H18 = (5,7, 7,0) H3(l), H12(4), H2(5), H5(6)
H,» = (3,7,7,6) Hv,(3), H,,(7) H,(l), H2,(2)
H20 = (7,7,6,7) H,,(3), Hx(l) H4(2), H,(l)
H21 = (3,7,4,1) H6(l)
H22 = (3,7,4,7) H,4(l) HM(1)
H2., = (0,1,7,3) H22(l), H19(2) H,(3), H27(2), HM(1)
H24 = (0,l,7,5) H12(l) H28(l)
H25 = (0,1,7,6) H,,(4) H29(l)
H26= (1,4,6,7) H,o(4)
H27 = (l,7,1,0) H23(2)
H28 = (2,7,l,0) H23(l), H24(3)
H2,= (5,7,l,0) H25(1),H4(2)
H^ = (6,7,1,0) H4(l) H,,(3), H2,,(7), H26(4)
H31 = (6,7,1,4) H8(l), H6(2) H,,(7), H2O(3), H25(4)
H32 = (5,7,6,7) H1S(7) H24(l)

Clearly by assuming n sufficiently large the transient states H7, H13, H16,
HIS, H2\, H26, H27, H28, H29, H24, H32 and H25 may be eliminated.

(e) Consider the possibility Fn = Hw. Then Fn+1 = i-f, and Fn+2 = H23. If
Fn + 3 = H22 then k ~n\2 > [3,2] + [0,8] contradicting (iii), so Fn+3 = H19. But now
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fc "i! > [0,1,2,1,1,8] + [7,3,2,7,1,1,2] > 9/1.12

contradicting (ii). Hence H10, and consequently H12, may be eliminated.

(f) Consider the possibility Fn = Hi. We must have

k "i, > [3,2,3,2] + [0,4,2,8] > 4/1.12

contradicting (iii). Thus Hi may be eliminated, followed by H6, H23 and H22.
(g) Consider the possibility Fn = Hl9. We cannot have Fn+1 = H31 for then

kn\, = [7,1,1,- ••] + [0,1,1, •••]>9/1.12

contrary to (ii). Hence Fn + , = H30 and (p,q) = (P'„, Q„) is valid. Since kl is an
increasing function of an+, and a'n+i we have

fc':<[l,l,2,3,2][2,l,l,2]/([3,l,2,3,2] + [0,1,1,2]) < 1.1.

Thus, for sufficiently large n we may eliminate H,9 and consequently H9.
(h) Consider the possibility Fn = H,4. Then (p,q) = (Pn, On) is valid and

since fcn is an increasing function of an+i and an+1 we have

k:<[3,2,2,4][l,2,8]/([4,2,2,4] + [0 ,2 ,8] )<l . l .

Hence for sufficiently large n we may eliminate H14 and consequently H3 and
the transient state Hl5. But now /c „+, = [7,1, •••] + [0,1, •••]> 9/1.12 if
Fn = Hn so we, may also eliminate Hn-

(j) Consider the possibility that Fn = H20 and suppose that Fn + l = HM.
Then (p,q) = (P'n, Q'n) is valid and

k ; < [1,1,1,3,2][2,1,5]/([3,1,1,3,2] +[0,l,5])< 1.1.

This is impossible for sufficiently large n, so for large n we have that if
Fn = H2() then Fn + , = Hx. But then we may eliminate H3l, Hs, Hl7, H2 and H5

as being transient. We are now left only with the possibility that the
conditions of Lemma 14 are satisfied, for H4, H20 and H30 are the only
remaining possibilities.
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