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On some results concerning integral equations.

By PIERRE HUMBERT.

(Bead 12th December 1913. Received 23rd January 1914).

1. Description of the paper.

It is proposed in this paper to show now the well-known
Laplace's transformation,

y(z) = \\^v{t)dt,
Jo

which is of great help in finding the solution of linear differential
equations, gives also interesting results concerning the theory of
integral equations. In §2 we shall study its application to certain
differential equations, and find a large class of equations which
remain unchanged by this transformation. Then, (§3), taking
instead of eazt, a more general function of the product zt, we shall
find a solution for some homogeneous integral equations ; in § 4 we
shall describe a method of solving a very general type of integral
equation of the first kind, namely,

= J f(zt)$>(t)dt ;

a further extension to integral equations with the kernel ef{z)/m is
the object of §5. Then, studying an extension of Euler's trans-
formation, we shall (§ 6) consider equations such as

y(z) =\ f{t- z)y{t)dt,
J —«

which will prove to be singular; and finally, in § 7, we shall give
other examples of singular integral equations.

2. Laplace's transformation.

Let us consider a linear differential equation of the ntb order
F(y, y\ y",...,</">, z) = 0 (1)

and try to solve it by putting
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If the limits a and b are conveniently chosen, we obtain for v a
linear differential equation of the rath order,

G(v, v\ v", ... vt">, t) = Q (3)

Between a solution yx of (1) and a solution vl of (3) exists the
relation (2), which is an integral equation of the first kind. If
in particular we have

2/i = V i

where Ax is a constant, y, will be a solution of the homogeneous
integral equation

for the value A, of A. This case will always occur if, the equation
(1) being of the first order, the equation (3) turns out to be
precisely the same as (1).

If the two equations are the same, but of order n, then we
shall have a relation such as

cii/i + c22/» + • • • + cnVn — ^ e<tt[ci yl + Cj' v , + . . . + cn' yn}dt,
J .

which is an integral equation, generally of the first kind.
If we now consider the most general linear differential equation

of order p, in which the coefficients are polynomials of degree p
with respect to z, we can enquire what form these coefficients must
have in order that they may remain unchanged by Laplace's
transformation.

If we write the equation in the following form

, - . . ) •

dz"
(4)

it can be easily seen, by forming the coefficient of the term
dp~'v

t" ., in the transformed equation (n and j being arbitrary

integers), that the equation will remain unchanged if, between the
(p+ I)2 coefficients of (4) there exist the following (p+ I)2 relations,
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where the symbol {Cr stands for the number of combinations of r
numbers i at a time

2)...(n +j)an+i, , \
j - \)an+j_h ^ \ (5)

where n and./ take all the values 0, 1, 2, ...p,

With these formulae, it is possible to form the most general
equation such as (4), of any order, which remains unaltered by
Laplace's transformation.

Many remarks can be made from the formulae (5).
For instance, making

j = 0 n=p,
we obtain

«P.P = ( - 1 ) X P

which shows that, if p is an even number, ap p can be taken
arbitrarily. But, if p is an odd number, aPi p = 0.

In the same way, making
n = 0 j=p

we find that a0 „ is always arbitrary.

These results give for the equation of the second order

K s22 + a2. o)y" + 2<»5,2«y + ( o X os2 + «o. o )y = o,

and for the equation of the third order,

+ ( - o-X, z3 + 2«2,, z)y' + [<xV( - 3a3,, + a2i 0) + a0,0]y = 0.

The above equation of the second order comprises, as a parti-
cular case, the well-known Euler's equation; it shows that our

integral equation can be satisfied by the root y(z) = ——- ; but we
v z

do not insist now upon this result, which we shall soon consider in
a more general case.

The case of the parabolic cylinder equation is also a particular
case of this above equation ; such is also the equation

whose solution can be expressed by the aid of Bessel's functions.
We shall now extend Laplace's transformation to integral

equations with a more general kernel.
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3. Extension of Laplace's transformation.
In the differential equation

2zy' + y = 0
let us make the following change of variable

y(z) = \ f{zt)v(t)dt

where f is an arbitrary function of the product zt. As we have

y'(z)=[ f{zt)tv(t)dt,
J a

J:
our equation becomes

dt[2zf'(zt)tv(t) +/(zt)v(t)] = 0.
a

But we have, by integrating by parts,

2f zf'(zt)tv(t)dt = \y(zt)lv(t)~f -2 [f{zt)[tv' +v)it.
J a L Jo J a

Let us take now for a and b the values 0 and +oo, if for these
values

Then the differential equation which we obtain for v is
2tv' + v = 0,

and so is the same as the original equation for y. This equation

having the solution v — —-=, we find that the homogeneous integral
V t

equation

has, for a certain value of A, the solution y =

This value of A. is obtained by making 2=1, which gives

* Jolo ' J t '
By a change of variable, we find also that the integral equation

y{z) = A J o
± 0 7[ (* - a) (< - a)]y(t)dt

where —- = ~ f\t - a] has the solution y = - . .
A J o sj t — a *J z — a
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4. Application of the method to integral equations of the first
kind.

Instead of the above differential equation, let us now consider
the following

zy' — ny = 0
whose solution is

y = z".
If we make the same change of variable, namely

- f
J 0' 0

we find in the same way that the transformed equation for v is
tv' + v( — n - 1) = 0

which has the solution
v = t~l~*.

So we find this result, that the homogeneous integral equation
of the first kind

: f f(zt)v(t)dt
J 0

has the solution

where Xn is a constant determined by

K Jo
If we now consider an integral equation of the first kind

F(*)= \ f{zt)3>(t)dt,
Jo

where F is known, and 4> unknown, we can find its solution in the
following way:

Let us expand the function F(c), for points s within an annulus
whose centre is at the origin, in a Laurent series, multiplied by a
fractional power of z, if necessary, to allow for multiformity: so

F(z) = z*[o0 + a,s: + ô z2 + . . .+ 6
Then the unknown function #(<) will be

where the X's are given by the formula

Jo
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As an example of this, we can take the integral equation

and it can be immediately seen that its solution, obtained by this
method, is

5. further extension.

Let us consider now the equation

where,/is an arbitrary function of z, and make the transformation

y(z)= \\'wmv{t)dt.
J a

It becomes, after dividing hyf(z),

\'dt e'"'m[f(z)f(t)v(t) - av(t)].
J a

On the other hand, we have

f
Jo

So that if we take for a and b two roots of f(t) = 0, the differential
equation for v will be

f(t)f{ty+V[(i + A)/"(o -/(«)/"«] = o.

This equation is not the same as the original one; and, if we
choose the function f in order to make it the same, we shall find
nothing but

which gives only a particular case of the kernel studied in §2.
However, we can go on with these differential equations. The
solution of the equation for y is

and for v,
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So that we have the result that, a and b being two roots of f{t),
(or also values making e/(<) = 0, i.e. f(t) — — «>), the homogeneous
integral equation of the first kind

[/(z)]A= I" e'Wv(t)dt
J a

has the solution

where AA is a constant determined by

AA Jo

We can extend this result, in the same way as in the preceding
section, to an integral equation

F[/(z)] = f e'<»'<«*(0<fc
J a

where F can be developed in powers of f(z):

*[/(*)] = «o + aj(z) + aj\z) + ....

We shall have then

the X's being determined by the above formula.

6. Other transformations.

Euler has used the transformation

y{z)= f (t-z)»v(t)dt

to solve linear differential equations; we can extend it, as we did
Laplace's, to the theory of integral equations.

Let f(u) be an even function of u, which is zero for u — ±00 ;
put

y(*)=\+"f(.t-z)v{t)dt.

3 Vol. 32
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The kernel is, as required in the ordinary theory, symmetrical,
/ being even. We have then

- \+"f'(t-x)v(t)dt
J - 0 0

f+
J - G

•j:
so that, if we consider the equation

y' -ay = 0,
it becomes, by this change of variable,

v' — av = 0.
The solution of this equation being v = eM, we find in that way

that the homogeneous integral equation of the second kind

[
J

has, for a'certain value of A, the solution y = e".
The question is now, what is this value of A.
We obtain it as we did before, and find

x-J>>•eMdt.

But a is an arbitrary constant, to which we can give an infinity
of values; to each of these values corresponds a value of A., and
inversely, to a given value of A. corresponds a quantity a, and
therefore a solution e°* for the integral equation. This equation
appears then to be a singular integral equation, not having, as in
the general case, a limited number of auto-values for the parameter
A, but having an infinity of them; in fact, any given number is
an auto-value. The relation between the given A and the corre-
sponding a is the above. I t can also be pointed out that to a
chosen A correspond two values of a, namely a and — a, for

\+"e"/(t)dt= r°e
J — » J —00

But these are not the only singularities of that equation. The
special value of A corresponding to a = 0, i.e. A,,, where

= 2
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is remarkable in another way. For if we consider the integral

1= \+"/(t-z)tdt,
J - 0 0

we can, to find its value, make the change of variable t
so that

r+°° r+co z
I = f(u)udu + z f(u)du = —,

J - 00 J - 00 A o

for, owing to the fact of f being even, the first of these two integrals
is equal to nothing. So, for the particular value A = Ao, our equation
is satisfied not only by y(z) = const., but also by y(z) = z. I t can be
shown in a similar way that if the integral

+ 00

f(u)u?du
— 00

is equal to nothing, the equation possesses also the root y(z) = z2, for
the same value of A. And then, in this case, as

I+<°f(u)v?du = 0,

it has also the root y(z) = z3, and so on.
Remarks of the same kind can be made on the subject of the

integral equation

2/(*) = A. [+°° f(z + t)y(t)dt,
J -00

which can be connected with the differential equation

and is a singular integral equation, any value of A being an auto-
value ; and the two values

having special properties.

We can also extend our method to integral equations of the
type

with convenient limits ; they can be connected to the equation
y'-af'(z)y = O,
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and we obtain the integral equation of the first kind

As we did in some of the preceding sections, we can apply this
result to the case of a function such as

But this transformation, as well as the similar one,

is of no use to obtain roots for new types of integral equations of
the second kind.

7. Singular integral equations.
This brings us to say some few words about homogeneous

singular integral equations. I t is well known that the equation
,»

y(z) = A cosz< . y(t)dt
J o

has, for the special value X = A/—, an infinite number of solutions,

owing to the fact that the integral
r00'

/ ( z ) = coszt<f>(t)dt
Jo

possesses an inversion formula, which is Fourier's formula,
2 r2 r
— coazt/(t)dt.
"• J n'o

We can extend this as follows :
Let us consider the integral equation

where K(s, t) is a symmetrical kernel, g(t) a known function, and
4>(t) an unknown one, and suppose that an inversion formula exists
for this integral, and is of the type

where A is a constant. (Fourier's formula is a particular case of
this inversion).
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Then let us consider the function

Replacing f and <£ by their expressions as integrals, we have

W«)-f *K(«,%(<)U(<)+ N/A/(<)]= V A | dtK(z, t)g(t)+(l).

We obtain thus an integral equation of the first kind. Let us
make the change of variable

where 6 is defined by

Let us put also z = x(«), and denote ^[x(w)] by *¥(u). Our
integral equation becomes an integral equation of the second kind

and, for this special value V A of the parameter, it has an infinite
number of roots, namely,

] + 4=
V A

A remarkable example of this happening is given by using
Hankel's formula

/ (* )= [ Jn(zt)t4>(t)dt, # * ) - [ Jn(zt)t/(t)dt;
Jo Jo

it shows that the integral equation
»»

${z)= Jn(2 Jz7

has an infinite number of solutions.
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