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CENTRAL LIMIT THEOREM FOR ABSOLUTE 
DEVIATIONS FROM THE SAMPLE 

MEAN A N D APPLICATIONS 

BY 

D . L. McLEISH 

1. Introduction. The following type of argument is rendered almost believable 
by its frequent occurrence in elementary courses in statistics. Let ê be a sequence 
of independent identically distributed random variables with means jx variances 
a2. Then 1/crVn YA=I (ê ~ &) converges in law to the standard normal distribu
tion. Since Çn = l/n YA=I ê is a consistent (and fairly rapidly converging) 
estimator of JUL, this result should remain essentially unchanged if we replace /x 
above by £n. What, in fact, occurs is that normality is preserved, but the 
variance is affected. In this case, the sum turns out to be identically 0, i.e. the 
normal distribution with mean and variance both 0. The defect in the above 
argument clearly is that £n —> JLL only at the same rate that 1/Vn —» 0. Indeed, if 
we replace jx by £2n, convergence to the normal (0, ̂ ) variate obtains, and if it 
is replaced by £n2, again we obtain convergence to the standard normal. These 
are all rather trivial consequences of an invariance principle (cf Billingsley [3, 
Theorem 24.2]). 

In this note we wish to investigate another example of the same phenomenon 
and some of its applications. Consider the sums YA=I (ê ~ d£n)I(ê >d£n) and 
YA=I &&(&) where 1(A) represents the indicator random variable, d is some 
positive constant and gy(x) = min(x, y). We show that each of these sums is 
asymptotically normal; the asymptotic mean can be found simply by replacing 
£n by jut, but the asymptotic variance can not. Applications of these results are 
then mentioned. The first sum above can be applied to demonstrating con
vergence of Zr=i lê""èil> a statistic that may be used as a somewhat more 
robust estimate of scale than the sample variance. Let Yl9 Y 2 , . . . , Yn be 
non-negative independent identically distributed random variables from the 
one parameter family P{Yi>x} = F(x/6). F is some known distribution func
tion, which may behave quite regularly (e.g. is exponential) for most values of 
x, except for some probability mass a long distance from the mean, usually as 
the result of the presence of outliers. One way of attempting to identify and 
reduce the noisy effect of these outliers is by Winsorizing all sample points 
more than a certain distance from the sample mean; i.e. by replacing each Yt 
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by gdYn(Yi)- This seems in some cases to be a clearer and more efficient way of 
identifying outliers than the usual practice of Winsorizing a fixed proportion of 
the observations. 

The first sum is also applied to random sets generated in the following way. 
Let xl9 x2,..., xn_! be the order statistics from a uniform sample of size rc - 1 
on [0,1]. Suppose each Xt defines a ball of centre Xt and radius d/2n. Then the 
total coverage (i.e. the measure of the union of the balls) in the unit interval is 
1— YA=O (xi+1 — xt — d/n)I(xi+1 — xt> d/n), where, for convenience, we take x0 = 
0, xn = 1 and consider these points as covered by a ball as well.* 

It is well-known that (xl5 x 2 , . . . , xn_i) has the same joint distribution as 
(sjsn, s2/sn,..., sn_i/sn) where s, =Y!i=i ê a n d the ê are independent expo
nentially distributed random variables. Therefore the above coverage has the 
same distribution as the variable 

(i.i) i--t(èi-dDm>di). 
Sn i - 1 

The density of this variable was found by Votaw (1946) for finite n and 
Londhe (1976) found moments and attempted to prove asymptotic normality. 
Using different methods than his, we show in this paper that convergence to 
normality holds. This variable may arise in practice in military applications (e.g. 
bombs are dropped at random points along a railway line) or in biological ones 
(e.g. seeds are distributed at random points along a trench of length /). If each 
plant eventually covers an interval of length dl, then l/sn YA=I (èi~dÇn)I(iji> 
d£n) represents the proportion of the total trench that remains uncovered). For 
this latter example, it may be useful to permit the length of the covered 
segment d to depend on its position (xt ~ i/n) because of variation in fertility. 
This justifies our subscripting d as dni in the results. 

2. Results. Our main theorem is the following: 

2.1. THEOREM. Let £1? §2, . . - .£„• • • be i.i.d. positive random variables with 
mean 1, F(x) = P(^1>x) and $Q xF(x) dx<™. For any 0 < w < i ; < o ° define 
l*<(u) = $Z F(x) dx and 

b(u,v) = 2 tF(t)dt-fjL(v){u + v + tJL(u)}. 

Let {dni ; i = 1, 2 , . . . , n, n = 1, 2 , . . . } be a triangular array of positive constants 
for which the following conditions hold; 

(a) There exists a fc<oo and a neighbourhood of {dni; i < n , n > k} on which 
F(x) is continuous. 

* The results will hold with or without including these endpoints. 
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(b) With tn = 1/ft YA=I dniFidni) we have that the sequence 

(T2
n = -t{Hdnhdni)-2tnb(0,dni)} + t2

nb(0,0)^cr2 as n ^ o o . 

(c) max^ n d n i =o(n) . 
(d) 1/n YA=I rm i s uniformly bounded. 

Then the sum 

( 2 . 1 . 1 ) 4 " t { ( ê - ^ l n ) I ( è > ^ n i l n ) - f x ( d n i ) } 

v n i = 1 

is asymptotically distributed as a normal (0, a2) random variable. 

Proof. We rewrite (2.1.1) as the following sum: 

v n t r i vn 

where 

M n = V n ( l - | n ) 

1 n 

t n = - Z «U^Ki) 

t / n = - Z ^ U ( ê > d n i ) - i 7 K i ) } 
« i = l 

vn = -J- Z (6 ~ <ULX«è > <Un) - « 6 > dni)}. 

For some e > 0 to be specified later, set An={<o; |fn '—l]<e}; Bni ={<o; & is 
between dni and dnifn}. 

We have 

[ \Vn\dP^t f Ifi-dni&ldP 

^ -Z^n i f Vn||n-l|dP 

It is easy to show that Mn is uniformly integrable for indeed J5Mn is 
bounded. Moreover, P(AnBni)<F(dni(l-e) — F(dni(l + E)). Since F is continu
ous in an open interval containing all the dni, there is a closed subset S of this 
region containing the dni as interior points. In addition for arbitrary -n > 0, we 
can find a finite k such that F(k)<r). Then F is uniformly continuous on the 
compact region S H [0, k] so that for a sufficiently small e, 

sup[F(d n i ( l - e ) ) -F(d h i ( l + e))]<r, 
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This, the uniform integrability of Mn and the uniform boundedness of 1/n £ dm 
insures that JAn | Vn| dP can be made arbitrarily small by choosing s sufficiently 
small. Moreover, since P(An)-^> 1 for any e, we have shown that Vn —»p0. 

Note also that 

^4Î^(4)[1-F(4)] 

m a x j d j 

n 

which converges to 0. Therefore MnUn - > p 0 . 
Finally, since tn is uniformly bounded and for any positive d, 

J (£i-dfdP<\ ÇfdP->0 as c-*oo, 
J(€i-d)2>c 4 2 > c 

the Lindeberg condition must hold for the array 

4-(é-dn iU(ê>4 i)+4Ld-é) 
vn vn 

and therefore convergence to the N(0, cr2) distribution follows, from the 
Lindeberg-Feller central limit theorem. Q.E.D. 

2.2 COROLLARY. Let gd(x) = min(x, d). Then under the conditions of Theorem 
2.1 with or2 replaced by the assumed existent limit 

er i= l im( l + t j 2 b ( 0 , 0 ) - ^ ^ £ b(0,dni)+- £ 6 ( 4 * 4 * ) , 

we haue that 

converges to a normal, N(0, cr|) variate. 

Proof. 

I 6= I (6-dniÔ«é>dlU|l)+ Ê &^(ô). 

Therefore, as in Theorem 2.1 

7 r I & B Â ( 6 ) = >/'«êt—T I (6 -dn i )K6>dni ) -^Mn+Oi , ( l ) 
vM v n | = j 

where by op(l) we mean a sequence of random variables converging in 
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probability to zero. Adding 1/Vn YA=I M<(dm)~~^n to both sides gives 

- 7 - Z { ( l + O ( e - D - ( e - d n i U ( e > d n i ) + ^ ( d n i ) } + 0 p ( l ) 

which clearly converges to the N(0, or|) distribution. 

3. Applications. Let 4, i = 1 ,2 , . . . be i.i.d. random variables (not necessar
ily positive) with mean JUI, variance or2. Let o-3 = Var{(£ — fx)[I(|>|x) — 

**(£> M')]}- Then as in Theorem 2.1, if F(x) is continuous at jx (which we assume 
w.l.o.g. to be 1), 

4-î(l6-i. |-E|6-i|) Vn 
2 

=-rI(6-l.)i(6>ê.)-jt(i) 
VU j = 1 

= 7^ L «6 - ltf(6 > D-»i(l)-F(l)(fi - l)}+op(l) 

Therefore, this converges to the normal (0,4crf) distribution. 

RANDOM SETS. Let D(x) be a non-negative Riemann integrable function on 
[0,1] and F(x) = e~x. In this case ju,(u) = e_ u and b(u,v) = e'v{2-e-") for 
0 < u < v. Therefore if d,,, = D(i/n) for i = 1,2, 3 , . . . , 

t„ = i £ D^)e- D ( i / "> -* t = ^D(x)e-DM dx. 

Therefore, 

converges to N(0, cr2) distribution with 

a2 - < 2 - 2 , ) ( > . > * - ( ' . - * • * - * 

Convergence of the total coverage, 

°e. °e 
v ^ Z xt+i ~ xi J W i ~ xt> 

follows from this and (1.1). 

OPTIMAL WINSORIZING. Suppose F is known and i.i.d. random variables 
xl9 x2,..., Xn are observed with the same distribution as 0£i where 6 is some 
unknown parameter. Our purpose is to estimate the mean Exx = 6 when F is 
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such that Winsorizing may improve efficiency (consider for example the dis
tribution F(x) = £(0.9)/(y) + (0.1)g(y)dy where /(y), g(y) are the Gamma 
densities with a = 1, (3 =è, and a =55 , jS^O.l respectively. We may wish to 
use the consistent estimate 

1 " 

n ( l - ^ ( d ) ) i t i & s " ( X i ) 

where d is a constant chosen to minimize the asymptotic variance 

V a rl W(d) 1 
_(l + dF(d))2b(0,0)-2(l + dF(d))b(0,d) + b(d,d) 

( l - fx(d)) 2 

As an example, we choose the mixture of exponential distributions defined by 

F(x) = 0.9e~2x + 0.1 min(e- (x-4 5), 1) for x > 0, 

F(x) = 1 for x < 0 . In this case 

n(d) = 0A5e-2d + 0A(5.5-d). 

The asymptotic variance of the estimator above was computed for various 
values of d using a hand calculator (Hp- 67) with the minimum at d = 1.63, 
the corresponding variance 1.6079. The resulting asymptotic efficiency as 
compared with the sample mean (variance = 2.575) is 160%. Moreover, the 
correct choice of d is not critical; values of d between 1 and 2.5 all yield 
asymptotic efficiencies of at least 145%. 
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