Examples of discrete groups of hyperbolic motions conservative but not ergodic at infinity

MASAHIKO TANIGUCHI
Department of Mathematics, Kyoto University, Japan

(Received 24 September 1987 and revised 18 December 1987)

Abstract. For every $n \geq 2$, a discrete subgroup of isometries of the hyperbolic n-space, which is conservative but not ergodic on the sphere at infinity, is constructed.

1. Introduction

Let G be a discrete group of isometries of the hyperbolic n-space \mathbb{H}^{n} with $n \geq 2$. When we take $B^{n}=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ as the model space of \mathbb{H}^{n}, we can visualize the sphere at infinity of \mathbb{H}^{n} as $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$. And the horospherical limit set $L^{h}(G)$ of G is defined as follows;

$$
\begin{aligned}
L^{h}(G)= & \left\{p \in S^{n-1}: \text { for every horosphere } S \text { in } B^{n}\right. \text { based } \\
& \text { at } p, \text { there is a } g \in G \text { such that } g(0) \in S\},
\end{aligned}
$$

where 0 is the origin of \mathbb{R}^{n}. Recently, D. Sullivan obtained several deep results on this horospherical limit set in [5]. In particular, he showed that $L^{h}(G)$ has full measure on S^{n-1} if and only if G is conservative on S^{n-1} ([5, IV. Theorem IV]). If G is ergodic on S^{n-1}, then G is conservative, as he noted in [5, IV. Note]. And one may think that ergodicity is equivalent to conservativity (cf. [1, Introduction]). But this is false. In fact, the main purpose of this note is to show the following

Theorem. For every $n(\geq 2)$, there is a discrete group G of isometries of \mathbb{H}^{n} which is conservative but not ergodic on S^{n-1}.
2. Construction. First we note the following ${ }^{1}$

Lemma 1 ([4], §4). For every $n(\geq 2)$, there is a torsion-free discrete group G_{0} of isometries of \mathbb{H}^{n} such that $M=\mathbb{H}^{n} / G_{0}$ is a compact manifold containing mutually disjoint compact (totally geodesic) submanifolds N_{1}, N_{2} and N_{3} of codimension one such that $M-\left(N_{1} \cup N_{2} \cup N_{3}\right)$ is connected.

Remark. When $n=2$, we can take as M a compact surface of genus 3 , and as $\left\{N_{k}\right\}_{k=1}^{3}$ mutually disjoint loops in a canonical homology base of M.

[^0]Fix such G_{0} as in Lemma 1, and let M^{\prime} be the compact manifold with boundary obtained from $M-\left(N_{1} \cup N_{2} \cup N_{3}\right)$ by attaching six borders $\left\{N_{k}^{+}, N_{k}^{-}\right\}_{k=1}^{3}$ corresponding to $\left\{N_{k}\right\}_{k=1}^{3}$. Next, consider copies $\left\{M^{\prime}(h, i, j)\right\}_{h, i, j \in \boldsymbol{Z}}$ of M^{\prime}, and gluing canonically the border N_{k}^{+}of $M^{\prime}(h, i, j)$ to that of N_{k}^{-}of $M^{\prime}\left(h+\delta_{1 k}, i+\delta_{2 k}, j+\delta_{3 k}\right)$ for every h, i, j and k, where $\delta_{m k}$ is Kronecker's delta. Then we have a complete hyperbolic manifold M_{1}, which is a torsion-free abelian cover of M of rank 3. Equivalently, we have a normal subgroup G_{1} of G_{0} such that $M_{1}=\mathbb{H}^{n} / G_{1}$ and G_{0} / G_{1} is a torsion-free abelian group of rank 3.

Next let N be the submanifold of M_{1} of codimension one corresponding to N_{1}^{+} of $M^{\prime}(0,0,0)$, and fix a positive integer K greater than one. Using K copies of $M_{1}-N$, we can construct in the same way as above, an abelian cover M_{2} of M_{1} of order K, i.e. a normal subgroup G_{2} of G_{1} such that $M_{2}=\mathbb{H}^{n} / G_{2}$ and G_{1} / G_{2} is isomorphic to $\mathbb{Z} / K \cdot \mathbb{Z}$, which is a desired group as is shown in the next section.

3. Proof of theorem

Let π_{1} be the natural projection of M_{2} to M_{1} and T be an isometry of M_{2} of order K such that $\pi_{1} \circ T=\pi_{1}$. Then attaching K points $\left\{e_{k}\right\}_{k=1}^{K}$ to M_{2}, we have the Kerékjártó-Stoilow's compactification $\overline{\boldsymbol{M}}_{2}=\boldsymbol{M}_{2} \cup\left(\cup_{k=1}^{K}\left\{e_{k}\right\}\right)$ of \boldsymbol{M}_{2} such that T can be extended to an automorphism of \bar{M}_{2} by setting $T\left(e_{k}\right)=e_{k+1}$ for every k (with $e_{K+1}=e_{1}$).

Let π_{2} be the natural projection of \mathbb{H}^{n} to $M_{2}=\mathbb{H}^{n} / G_{2}$. Fix $x \in \mathbb{H}^{n}$, and set

$$
\begin{aligned}
E_{k}(x)= & \left\{p \in S^{n-1}: \text { letting } L(x, p)\right. \text { be the geodesic ray } \\
& \text { from } x \text { tending to } p, \pi_{2}(L(x, p)) \text { converges } \\
& \text { to } \left.e_{k} \text { in } \bar{M}_{2}\right\}
\end{aligned}
$$

for every k. Then we have the following
Lemma 2. $E_{k}(x)$ is a G_{2}-invariant measurable set not depending on x.
Proof. First we show that $E_{k}(x)$ does not depend on x. For any other $x^{\prime} \in$ $\mathrm{H}^{n}, \pi_{2}(L(x, p))$ and $\pi_{2}\left(L\left(x^{\prime}, p\right)\right)$ are mutually asymptotic for every $p \in S^{n-1}$. Hence we can see that $p \in E_{k}(x)$ if and only if $p \in E_{k}\left(x^{\prime}\right)$.

In particular, $E_{k}(x)=E_{k}(g(x))$, or equivalently $E_{k}(x)=g^{-1}\left(E_{k}(x)\right)$ for every $g \in G_{2}$; and since measurability of $E_{k}(x)$ is routine, we have the assertion.

In the sequel, we will write simply E_{k} instead of $E_{k}(x)$.
Lemma 3. It holds that

$$
\begin{gathered}
E_{k} \cap E_{k^{\prime}}=\varnothing \text { if } k \neq k^{\prime}, \\
m\left(E_{k}\right)>0 \quad \text { for every } k, \text { and } \\
m\left(S^{n-1}-\bigcup_{k=1}^{K} E_{k}\right)=0,
\end{gathered}
$$

where m is the canonical measure on S^{n-1}.
In particular, G_{2} is not ergodic on S^{n-1}.

Proof. It is clear that $E_{k} \cap E_{k^{\prime}}=\varnothing$ if $k \neq k^{\prime}$. Let g^{*} be an element of G_{1} such that the class of g^{*} in G_{1} / G_{2} corresponds to T, then $g^{*}\left(E_{k}\right)=E_{k+1}$ for every k, hence $m\left(E_{k}\right)>0$ if and only if it does so for some k.

Now for every $p \in S^{n-1}-\bigcup_{k=1}^{K} E_{k}$, we can see from the definition that there is a compact set A in M_{2} and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points on $L(x, p)$ tending to p such that $\pi_{2}\left(x_{n}\right) \in A$ for every n, which in turn implies that there is a sequence $\left\{g_{m}\right\}_{m=1}^{\infty}$ of mutually distinct elements of G_{2} such that the hyperbolic distances between $g_{m}(0)$ and $L(x, p)$ form a bounded sequence. Hence by definition, p belongs to the conical limit set $L^{c}\left(G_{2}\right)$ of G_{2}.

On the other hand, since M_{1} admits Green's function by [3, Theorem 4], hence since M_{2} does so, we can see that $m\left(L^{c}\left(G_{2}\right)\right)=0$ by [5, Corollary III] (cf. [2, VII. 7 and VII. 8 Theorem 1]). Thus we have

$$
m\left(S^{n-1}-\bigcup_{k=1}^{K} E_{k}\right) \leq m\left(L^{c}\left(G_{2}\right)\right)=0
$$

hence $m\left(E_{k}\right)>0$ for every k. Since every E_{k} is G_{2}-invariant by Lemma $2, G_{2}$ is not ergodic on S^{n-1}.

Now we say that a G_{2}-invariant set E on S^{n-1} is non-decomposable if either $m\left(E^{\prime}\right)=0$ or $m\left(E-E^{\prime}\right)=0$ for every G_{2}-invariant subset E^{\prime} of E. Then we have the following

Lemma 4. Every E_{k} is non-decomposable.

Proof. Assume that E_{k} is decomposable, and let E be a G_{2}-invariant subset of E_{k} such that $m(E)>0$ and $m\left(E_{k}-E\right)>0$. Set $F=\bigcup_{k=1}^{K}\left(g^{*}\right)^{k}(E)$, where g^{*} is as in the proof of Lemma 3, then F is G_{1}-invariant, $m(F)>0$ and $m\left(S^{n-1}-F\right)>0$. Then the Poisson's integral

$$
f(t)=\int_{F}\left(\left(1-|t|^{2}\right) /|t-y|^{2}\right)^{n-1} d m(y)
$$

induces a non-constant bounded harmonic function on \boldsymbol{M}_{1} (cf. [2, Theorem V.9]), which contradicts [3, Theorem 1].

Lemma 5. $m\left(\left(S^{n-1}-L^{h}\left(G_{2}\right)\right) \cap E_{k}\right)=0$ for every k. Moreover G_{2} is conservative on S^{n-1}.
Proof. Suppose that $m\left(\left(S^{n-1}-L^{h}\left(G_{2}\right)\right) \cap E_{k}\right)>0$ for some k. Then by [5, IV. Theorem III], this set is contained in the dissipative part of G_{2}, hence is decomposable (which follows at once from the definition of the dissipative part). This contradicts Lemma 4, and we have the first assertion.

Moreover, Lemma 3 and the first assertion imply that $m\left(S^{n-1}-L\left(G_{2}\right)\right)=0$, hence the second assertion follows by [5, IV. Theorem IV].
Remark. We have constructed a group G_{2} such that S^{n-1} is divided into a set of measure zero and $K G_{2}$-invariant sets of positive measure. The author conjectures that a group G^{*} is conservative on S^{n-1} if and only if S^{n-1} is divided into a set of measure zero and (at most countable) non-decomposable G^{*}-invariant sets of positive measure.

REFERENCES

[1] S. Agard. A geometric proof of Mostow's rigidity theorem for groups of divergence type. Acta Math. 151 (1983), 231-252.
[2] L. Ahlfors. Möbius transformations in several dimensions. Ordway Prof. Lectures in Math. (1981).
[3] T. Lyons \& D. Sullivan. Function theory, random paths and covering spaces, J. Diff. Geom. 19 (1984), 299-323.
[4] J. Millson. On the first Betti number of a constant negatively curved manifold. Ann. of Math. 104 (1976), 235-247.
[5] D. Sullivan. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Ann. of Math. Studies 97 (1981), 465-496.

[^0]: ${ }^{1}$ The author wishes to thank Professor S. Kojima (Tokyo Institute of Technology) for teaching him about Millson's work.

