Ergod. Th. & Dynam. Sys. (1988), **8**, 633–636 Printed in Great Britain

Examples of discrete groups of hyperbolic motions conservative but not ergodic at infinity

MASAHIKO TANIGUCHI

Department of Mathematics, Kyoto University, Japan

(Received 24 September 1987 and revised 18 December 1987)

Abstract. For every $n \ge 2$, a discrete subgroup of isometries of the hyperbolic *n*-space, which is conservative but not ergodic on the sphere at infinity, is constructed.

1. Introduction

Let G be a discrete group of isometries of the hyperbolic *n*-space \mathbb{H}^n with $n \ge 2$. When we take $B^n = \{x \in \mathbb{R}^n : |x| < 1\}$ as the model space of \mathbb{H}^n , we can visualize the sphere at infinity of \mathbb{H}^n as $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$. And the horospherical limit set $L^h(G)$ of G is defined as follows;

 $L^{h}(G) = \{p \in S^{n-1}: \text{ for every horosphere } S \text{ in } B^{n} \text{ based } \}$

at p, there is a $g \in G$ such that $g(0) \in S$,

where 0 is the origin of \mathbb{R}^n . Recently, D. Sullivan obtained several deep results on this horospherical limit set in [5]. In particular, he showed that $L^h(G)$ has full measure on S^{n-1} if and only if G is conservative on S^{n-1} ([5, IV. Theorem IV]). If G is ergodic on S^{n-1} , then G is conservative, as he noted in [5, IV. Note]. And one may think that ergodicity is equivalent to conservativity (cf. [1, Introduction]). But this is false. In fact, the main purpose of this note is to show the following

THEOREM. For every $n(\geq 2)$, there is a discrete group G of isometries of \mathbb{H}^n which is conservative but not ergodic on S^{n-1} .

2. Construction. First we note the following¹

LEMMA 1 ([4], § 4). For every $n (\ge 2)$, there is a torsion-free discrete group G_0 of isometries of \mathbb{H}^n such that $M = \mathbb{H}^n/G_0$ is a compact manifold containing mutually disjoint compact (totally geodesic) submanifolds N_1 , N_2 and N_3 of codimension one such that $M - (N_1 \cup N_2 \cup N_3)$ is connected.

Remark. When n = 2, we can take as M a compact surface of genus 3, and as $\{N_k\}_{k=1}^3$ mutually disjoint loops in a canonical homology base of M.

¹ The author wishes to thank Professor S. Kojima (Tokyo Institute of Technology) for teaching him about Millson's work.

Fix such G_0 as in Lemma 1, and let M' be the compact manifold with boundary obtained from $M - (N_1 \cup N_2 \cup N_3)$ by attaching six borders $\{N_k^+, N_k^-\}_{k=1}^3$ corresponding to $\{N_k\}_{k=1}^3$. Next, consider copies $\{M'(h, i, j)\}_{h,i,j\in\mathbb{Z}}$ of M', and gluing canonically the border N_k^+ of M'(h, i, j) to that of N_k^- of $M'(h + \delta_{1k}, i + \delta_{2k}, j + \delta_{3k})$ for every h, i, j and k, where δ_{mk} is Kronecker's delta. Then we have a complete hyperbolic manifold M_1 , which is a torsion-free abelian cover of M of rank 3. Equivalently, we have a normal subgroup G_1 of G_0 such that $M_1 = \mathbb{H}^n/G_1$ and G_0/G_1 is a torsion-free abelian group of rank 3.

Next let N be the submanifold of M_1 of codimension one corresponding to N_1^+ of M'(0, 0, 0), and fix a positive integer K greater than one. Using K copies of $M_1 - N$, we can construct in the same way as above, an abelian cover M_2 of M_1 of order K, i.e. a normal subgroup G_2 of G_1 such that $M_2 = \mathbb{H}^n/G_2$ and G_1/G_2 is isomorphic to $\mathbb{Z}/K \cdot \mathbb{Z}$, which is a desired group as is shown in the next section.

3. Proof of theorem

Let π_1 be the natural projection of M_2 to M_1 and T be an isometry of M_2 of order K such that $\pi_1 \circ T = \pi_1$. Then attaching K points $\{e_k\}_{k=1}^K$ to M_2 , we have the Kerékjártó-Stoilow's compactification $\overline{M}_2 = M_2 \cup (\bigcup_{k=1}^K \{e_k\})$ of M_2 such that T can be extended to an automorphism of \overline{M}_2 by setting $T(e_k) = e_{k+1}$ for every k (with $e_{K+1} = e_1$).

Let π_2 be the natural projection of \mathbb{H}^n to $M_2 = \mathbb{H}^n/G_2$. Fix $x \in \mathbb{H}^n$, and set

 $E_k(x) = \{p \in S^{n-1}: \text{ letting } L(x, p) \text{ be the geodesic ray } \}$

from x tending to p, $\pi_2(L(x, p))$ converges

to e_k in \overline{M}_2 }

for every k. Then we have the following

LEMMA 2. $E_k(x)$ is a G_2 -invariant measurable set not depending on x.

Proof. First we show that $E_k(x)$ does not depend on x. For any other $x' \in \mathbb{H}^n$, $\pi_2(L(x, p))$ and $\pi_2(L(x', p))$ are mutually asymptotic for every $p \in S^{n-1}$. Hence we can see that $p \in E_k(x)$ if and only if $p \in E_k(x')$.

In particular, $E_k(x) = E_k(g(x))$, or equivalently $E_k(x) = g^{-1}(E_k(x))$ for every $g \in G_2$; and since measurability of $E_k(x)$ is routine, we have the assertion.

In the sequel, we will write simply E_k instead of $E_k(x)$.

LEMMA 3. It holds that

$$E_k \cap E_{k'} = \emptyset \quad \text{if } k \neq k',$$

$$m(E_k) > 0 \quad \text{for every } k, \text{ and}$$

$$m\left(S^{n-1} - \bigcup_{k=1}^{K} E_k\right) = 0,$$

where m is the canonical measure on S^{n-1} . In particular, G_2 is not ergodic on S^{n-1} .

634

Proof. It is clear that $E_k \cap E_{k'} = \emptyset$ if $k \neq k'$. Let g^* be an element of G_1 such that the class of g^* in G_1/G_2 corresponds to T, then $g^*(E_k) = E_{k+1}$ for every k, hence $m(E_k) > 0$ if and only if it does so for some k.

Now for every $p \in S^{n-1} - \bigcup_{k=1}^{K} E_k$, we can see from the definition that there is a compact set A in M_2 and a sequence $\{x_n\}_{n=1}^{\infty}$ of points on L(x, p) tending to p such that $\pi_2(x_n) \in A$ for every n, which in turn implies that there is a sequence $\{g_m\}_{m=1}^{\infty}$ of mutually distinct elements of G_2 such that the hyperbolic distances between $g_m(0)$ and L(x, p) form a bounded sequence. Hence by definition, p belongs to the conical limit set $L^c(G_2)$ of G_2 .

On the other hand, since M_1 admits Green's function by [3, Theorem 4], hence since M_2 does so, we can see that $m(L^c(G_2)) = 0$ by [5, Corollary III] (cf. [2, VII.7 and VII.8 Theorem 1]). Thus we have

$$m\left(S^{n-1}-\bigcup_{k=1}^{K}E_{k}\right)\leq m(L^{c}(G_{2}))=0,$$

hence $m(E_k) > 0$ for every k. Since every E_k is G_2 -invariant by Lemma 2, G_2 is not ergodic on S^{n-1} .

Now we say that a G_2 -invariant set E on S^{n-1} is non-decomposable if either m(E') = 0 or m(E - E') = 0 for every G_2 -invariant subset E' of E. Then we have the following

LEMMA 4. Every E_k is non-decomposable.

Proof. Assume that E_k is decomposable, and let E be a G_2 -invariant subset of E_k such that m(E) > 0 and $m(E_k - E) > 0$. Set $F = \bigcup_{k=1}^{K} (g^*)^k(E)$, where g^* is as in the proof of Lemma 3, then F is G_1 -invariant, m(F) > 0 and $m(S^{n-1} - F) > 0$. Then the Poisson's integral

$$f(t) = \int_{F} \left((1 - |t|^2) / |t - y|^2 \right)^{n-1} dm(y)$$

induces a non-constant bounded harmonic function on M_1 (cf. [2, Theorem V.9]), which contradicts [3, Theorem 1].

LEMMA 5. $m((S^{n-1}-L^h(G_2))\cap E_k)=0$ for every k. Moreover G_2 is conservative on S^{n-1} .

Proof. Suppose that $m((S^{n-1}-L^h(G_2))\cap E_k)>0$ for some k. Then by [5, IV. Theorem III], this set is contained in the dissipative part of G_2 , hence is decomposable (which follows at once from the definition of the dissipative part). This contradicts Lemma 4, and we have the first assertion.

Moreover, Lemma 3 and the first assertion imply that $m(S^{n-1} - L(G_2)) = 0$, hence the second assertion follows by [5, IV. Theorem IV].

Remark. We have constructed a group G_2 such that S^{n-1} is divided into a set of measure zero and $K G_2$ -invariant sets of positive measure. The author conjectures that a group G^* is conservative on S^{n-1} if and only if S^{n-1} is divided into a set of measure zero and (at most countable) non-decomposable G^* -invariant sets of positive measure.

M. Taniguchi

REFERENCES

- [1] S. Agard. A geometric proof of Mostow's rigidity theorem for groups of divergence type. Acta Math. 151 (1983), 231-252.
- [2] L. Ahlfors. Möbius transformations in several dimensions. Ordway Prof. Lectures in Math. (1981).
- [3] T. Lyons & D. Sullivan. Function theory, random paths and covering spaces, J. Diff. Geom. 19 (1984), 299-323.
- [4] J. Millson. On the first Betti number of a constant negatively curved manifold. Ann. of Math. 104 (1976), 235-247.
- [5] D. Sullivan. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Ann. of Math. Studies 97 (1981), 465-496.