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Abstract. We prove the longstanding conjecture that the 3-Moufang condition
for generalized quadrangles is equivalent to the Moufang condition. We mention some
other characterizations of Moufang quadrangles that follow from this result. We also
provide a short proof of Tent’s recent result that every half Moufang quadrangle is
necessarily a Moufang quadrangle.
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1. Introduction. Generalized quadrangles were introduced by Tits [12] as the
natural incidence geometries related to the classical, algebraic and mixed groups of
relative type B2. If we call these the natural examples, then Tits [13] conjectured that the
only generalized quadrangles satisfying the so-called Moufang condition (see below
for precise definitions) are the natural examples. In the finite case, this conjecture was
known to be true by group-theoretic work of Fong and Seitz [5, 6]. A lot of alternative
conditions have been established in the finite case to characterize the natural examples.
Almost all of them were proved by reducing the conditions to the Moufang condition.
This was done by applying some typical finiteness arguments (for instance, counting
and finite group theory).

In the general case, the classification of all Moufang quadrangles was technically
only finished in 1997, when a new and final class was discovered. The classification
and its proof recently appeared in the monograph [16] by Tits and Weiss. Hence people
want to know whether the characterization theorems of the finite case can be extended
to the general case. There are four main global characterizations of all finite Moufang
quadrangles that can be considered here. We quickly review the conditions.

1. The automorphism group of the generalized quadrangle acts flag-transitively, the
stabilizer B of a flag F acts transitively on the ordinary quadrangles containing F, and it
contains a transitive normal nilpotent subgroup U.

Such groups are usually called groups with a split BN-pair of type B2. In the finite
case, they were classified by Fong and Seitz [5, 6]. In the general case, Tent and Van
Maldeghem [8] show that this condition implies the Moufang condition. The converse
was already known to be true, see Tits [15].

2. The half Moufang condition.
In the finite case, Thas, Payne and Van Maldeghem [10] showed that this condition

implies the Moufang condition. In the general case, Tent constructed a proof of this
fact using a certain lemma. This lemma turned out to be wrong when Weiss found
a counterexample (private communication; we will refer to that lemma below as the
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“wrong lemma”). However, the second author could repair Tent’s proof using an
alternative argument (and this is contained in [7]). In fact, all that is needed to prove
the general case is that argument and one observation by Tent. We show how this can
be done at the end of the paper.

3. The k-Moufang condition, k ∈ {2, 3}.
In the finite case, Van Maldeghem, Thas and Payne [18] showed that 3-Moufang

implies Moufang (for generalized quadrangles). Later on, the second author of the
present paper [17] showed that the 2-Moufang condition is equivalent with the 3-
Moufang condition for all generalized quadrangles. In the present paper, we will show
that the 3-Moufang condition implies the Moufang condition for (not necessarily
finite) generalized quadrangles.

For k = 2, there is also the notion of a half 2-Moufang condition. In the finite
case, it has recently been proved by Thas and Van Maldeghem [11] that finite half
2-Moufang quadrangles are automatically Moufang. In the infinite case, this is still
open. The proof in the finite case again relies heavily on finiteness techniques.

4. The automorphism group of the generalized quadrangle acts distance-transitively
on the point set of the quadrangle.

In the finite case, this condition implies the Moufang condition, as has been
showed by Buekenhout and Van Maldeghem [2] using the classification of finite simple
groups, in particular the classification of primitive rank 3 groups. This result implies all
previous characterizations in the finite case. There is no hope for a proof in the general
case as there are free constructions of quadrangles with an automorphism group acting
transitively on ordered ordinary quadrangles starting with a point, see [14] (cp. also
[17, 4.7.1]). In fact, the proof in the finite case does not give any information or insight.

As mentioned above, in this paper we will show that the 3-Moufang condition
implies the Moufang condition for an arbitrary generalized quadrangle. This problem
was open since 1992. We will also mention some corollaries, and give a short proof of
the implication half Moufang to Moufang.

Finally, to conclude this introduction, we mention that all notions can be put
in the general framework of generalized polygons. The situation there is, however,
not so satisfying as in the case of quadrangles, although in the finite case most
characterizations can be generalized from quadrangles to polygons. In the infinite
case there are only some sporadic and partial results.

2. Definitions, notation and results. A generalized quadrangle of order (s, t), s, t ∈
N ∪ {∞} is an incidence structure S = (P,L,I) in which P and B are disjoint (non-
empty) sets of objects called points and lines respectively, and for whichI is a symmetric
point-line incidence relation satisfying the following properties.

(i) Each point is incident with t + 1 lines (t ≥ 1) and two distinct points are
incident with at most one line.

(ii) Each line is incident with s + 1 points (s ≥ 1) and two distinct lines are incident
with at most one point.

(iii) If (x, L) is a non-incident point-line pair then there is a unique point-line pair
(y, M) for which xIMIyIL.

If s, t ≥ 2 we call our geometry thick. Non-thick generalized quadrangles are
rather trivial geometries, called grids and dual grids. From now on, we only consider
thick generalized quadrangles.

We first remark that for generalized quadrangles we have the principle of duality.
That means that, if we interchange the roles of the point set and the line set in a
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theorem, we obtain another theorem (which may or may not be different from the
original theorem).

We will use the following terminology and notation. Let S = (P,L, I ) be a thick
generalized quadrangle. In Condition (iii) the point y and the line M are called the
projection of x onto L and of L onto x, respectively, and denoted by projLx and projxL,
respectively. Two points x, y incident with a common line are collinear, and two lines
L, M incident with a common point are concurrent. We write this as x ⊥ y and L ⊥ M.
If x �= y, then the line incident with them is unique and denoted by xy; similarly if
L �= M, then L ∩ M is the unique point incident with both. Two points or two lines
which are not collinear or concurrent, respectively, are called opposite. If S is a set of
points or lines, then S⊥ denotes the set of points or lines collinear or concurrent with
every point or line of S, respectively. A k-path, k ≥ 0, is a sequence (x0, x1, . . . , xk) of
points and lines of S such that xi−1Ixi, 1 ≤ i ≤ k, and such that xi−1 �= xi+1, 1 ≤ i < k.
An incident point-line pair is a flag. A subquadrangle S ′ of S consists of a point set
P ′ ⊆ P and a line set L′ ⊆ L such that, if we denote by I ′ the restriction of I to P ′ ∪ L′,
the structure S ′ = (P ′,L′, I ′) is a generalized quadrangle. The subquadrangle S ′ is
called full (ideal) if for every line L′ ∈ L′ (point x′ ∈ P ′) all points (lines) of S incident
with L′ (x′) belong to S ′. An apartment is a set of 4 points and 4 lines which form a
subquadrangle of order (1, 1).

A collineation of S is a permutation of P ∪ L inducing permutations of P and
L, and preserving incidence and non-incidence. We denote by G a collineation group
of S. With regard to permutation groups, we always use right action and exponential
notation (so the image of an element x under the collineation u is written as xu).
The commutator [u, v] of two collineations is u−1v−1uv and acts on x as x[u,v] =
(((xu−1

)v
−1

)u)v. The conjugate uv is equal to v−1uv. We will always denote the identity
by id, and for a group H, we denote H× = H \ {id}.

Consider a (k − 2)-path C = (x1, . . . , xk−1), with 2 ≤ k ≤ n, in the generalized
quadrangle S and let x0, xk ∈ P ∪ L be such that C̄ = (x0, x1, . . . , xk−1, xk) is a k-
path. If the group G[x1,...,xk−1] of collineations fixing every element incident with an
element of C acts transitively on the set of apartments containing the k-path C̄, then C
is called a Moufang path (with respect to G). We easily check that this is independent
of the choice of x0 and xk. If every (k − 2)-path is a Moufang path, then S is called a
k-Moufang quadrangle (with respect to G). Note that it is well known that, for k ∈ {3, 4},
the group G[x1,...,xk−1] generally acts semi-regularly on the set of apartments containing
C̄ (see for instance [17, 4.4.2]). A 4-Moufang quadrangle is also called a Moufang
quadrangle.

For k ∈ {2, 4}, there are 2 kinds of (k − 2)-paths: those containing fewer lines than
points, and those containing fewer points than lines. If all (k − 2)-paths of one type
are Moufang paths, then we call S half k-Moufang. A half 4-Moufang quadrangle is
also called a half Moufang quadrangle.

We can now state our main result.

MAIN RESULT. Every 3-Moufang generalized quadrangle with respect to some
collineation group G is a Moufang generalized quadrangle with respect to G.

We mention a few consequences.

COROLLARY 1. Every 2-Moufang generalized quadrangle with respect to some
collineation group G is a Moufang generalized quadrangle with respect to G.
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An elation point x of a generalized quadrangle S is a point such that G[x] contains
some subgroup H acting regularly on the set of points opposite x, where this time, G
is the full collineation group. Dually, one defines an elation line.

COROLLARY 2. A generalized quadrangle is a Moufang quadrangle if and only if it
has at least two opposite elation points and two opposite elation lines.

Let x, y be two opposite points of the generalized quadrangle S. Then we say
that S is {x, y}-transitive if, for some (and hence for every) line L incident with x
the collineation group G[x] ∩ G[y] (where again G is the full collineation group) acts
transitively on the set of points incident with L, but distinct from x and projLy. It is
easy to see that this definition is symmetric in x and y. Dually, one defines {L, M}-
transitivity, for opposite lines L, M.

COROLLARY 3. If a generalized quadrangle is {x, y}-transitive for all pairs of opposite
points x, y, and {L, M}-transitive for all pairs of opposite lines L, M, then it is a Moufang
quadrangle.

We remark that not every Moufang quadrangle contains opposite points or lines
a, b such that it is {a, b}-transitive. But it is not so hard to deduce from the classification
of Moufang quadrangles and the information on their collineation groups provided in
[16] that exactly the ones whose “root groups” are all parametrized by skew fields satisfy
the hypotheses of the above corollary (the “root groups” are the groups G[x1,x2,x3], for
2-paths (x1, x2, x3)).

In the finite case, Thas [9] showed that {x, y}-transitivity for all pairs of opposite
points x, y implies the Moufang condition (and, up to duality, every finite Moufang
quadrangle is {x, y}-transitive, for all pairs of opposite points x, y). The above corollary
is not yet as strong as this finite analogue, but it is the first of its kind valid for infinite
generalized polygons.

In the next Section we prove our main result by showing that every 3-Moufang
quadrangle is a half Moufang quadrangle. In Section 4 we prove the corollaries, and
in Section 5 we provide a short proof of the fact that half Moufang quadrangles are
Moufang quadrangles.

3. Proof of the main result. In this section, we denote by S = (P,L, I) a thick
generalized quadrangle satisfying the 3-Moufang condition. We choose an arbitrary
apartment � and put � = {x0, X1, x2, . . . , x6, X7}, where we read the subscripts
modulo 8, with x2iIX2i±1, for all i ∈ � mod 8. As the notation suggests, we view
the x2i as points and the X2i+1 as lines.

LEMMA 1. The group G acts transitively on each type of 2-paths in S.

Proof. Since the 3-Moufang condition is self-dual, we may restrict to 2-paths
containing two points and one line. Let x′

6 be an arbitrary point collinear with x0.
Since S is thick, we may assume without loss of generality that x′

6 is not incident
with X1. Hence, there is a unique apartment �′ containing the points x′

6, x0, x2 and
projX3

x′
6. By the 3-Moufang condition, there is a collineation u ∈ G[x1,x2] mapping �

to �′, and hence x6 to x′
6. First of all, this implies that G is transitive on the point set

P of S; secondly, this shows that the stabilizer of the point x0 acts transitively on the
2-paths containing x0 and some further point. The lemma is proved. �
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In fact, it is not hard to see that G acts transitively on each type of 4-paths of S.
This implies that everything we prove or assume for one 2- or 4-path automatically
holds for every 2- or 4-path of the same type. For instance, if G[x2,X3]

X5
is abelian, then

G[x2i,X2i+1]
X2i+3

is abelian for all i modulo 8. We will use things like that freely in the sequel.

LEMMA 2. Let u ∈ G[x2,X3]
X5

and suppose that u fixes some line X ′
5 concurrent with X3,

but not incident with x2 or with x4. Then u ∈ G[x4]. Hence, by symmetry, if x′
4 = X ′

5 ∩ X3,
then also u ∈ G[x′

4].

Proof. Let w ∈ G[x4,X5] be such that it maps X1 to X ′
5 (and so it maps x2 to x′

4).
Then [u−1, w] belongs to G[X3,x4,X5] and fixes additionally X1. Hence [u−1, w] = id. So
u = uw. But uw ∈ (G[x2,X3])w = G[xw

2 ,Xw
3 ] = G[x′

4,X3], hence u fixes all lines through x′
4.

Similarly, u also fixes all lines through x4. The lemma is proved. �

LEMMA 3. Suppose that U3 := G[x2,X3]
X5

is nonabelian. Then there exists a nontrivial
element u ∈ G[x2,X3]

X5
fixing all lines concurrent with X3.

Proof. Let u3, u′
3 ∈ U3 be arbitrary but such that u = [u3, u′

3] is nontrivial. This
is possible by our assumption. Choose an arbitrary point x′

2 �= x4 incident with X3.
Let w ∈ G[x4,X5] be such that it maps x2 to x′

2. Then uw
3 has the same action on the

set of points incident with X5 as u3. Hence [uw
3 , u′

3] has the same action on the set of

points incident with X5 as [u3, u′
3]. Moreover, [uw

3 , u′
3] ∈ G[x2,X3]

x5 ∩ G[x′
2,X3]

X5
. So, using the

semi-regularity of the action of G[x2,X3] on the set of apartments containing X1 and x4,
we deduce that u = [uw

3 , u′
3] ∈ G[x′

2]. We conclude that, since x′
2 was arbitrary, u fixes all

lines concurrent with X3, except possibly those incident with x4. But Lemma 2 now
guarantees that also all these lines are fixed. The lemma is proved. �

LEMMA 4. If {X3, X7}⊥⊥ contains at least three elements, then S is half Moufang.

Proof. Recall that {X3, X7}⊥⊥ is the set of all lines concurrent with every line that is
concurrent with both X3 and X7. Since by assumption there are at least three such lines,
we may choose one, say X ′

7, which is different from both X3 and X7. Let u ∈ G[x0,X1]
X3

be
arbitrary. Since u fixes X3 and X7, it stabilizes {X3, X7}⊥⊥ setwise. But X ′

7 is the unique
element of {X3, X7}⊥⊥ incident with the point X ′

7 ∩ X1, which is fixed by u. Hence u
fixes X ′

7 and Lemma 2 implies u ∈ G[x0,X1,x2], from which we conclude that G[x0,X1,x2]

acts transitively on the set of apartments containing X7, X1 and X3. An application of
Lemma 1 completes the proof. �

We can now finish the case where U3 := G[x2,X3]
X5

is nonabelian. Indeed, let u ∈
G[x2,X3]

X5
be nontrivial and such that it fixes all lines concurrent with X3 (see Lemma 3).

Then X ′
7 := Xu

7 is concurrent with every line that meets both X3 and X7, and hence
belongs to {X3, X7}⊥⊥. Lemma 4 implies that S is half Moufang, and hence a Moufang
quadrangle by [7] (see also Section 5).

From now on we may assume that the groups G[x2,X3]
X5

and G[X1,x2]
x4 are abelian.

Note that these groups act sharply transitively on the elements of S incident with
X5 and x4, respectively, distinct from x4 and X3, respectively. Also, it is clear that
[G[x2,X3]

X5
, G[x4,X3]

X1
] ≤ G[x2,X3]

X5
∩ G[x4,X3]

X1
, hence G[x2,X3]

X5
and G[x4,X3]

X1
normalize each other.

About regular abelian groups normalizing each other, there is the following result
(which is weak version of the “wrong lemma” mentioned in the introduction). The
proof is an easy exercise, but we provide one for completeness’ sake.
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LEMMA 5. Let (H,�) be a permutation representation and let Hi ≤ H, i = 1, 2,
be two abelian subgroups acting regularly on �. Suppose [H1, H2] ≤ H1 ∩ H2 (in other
words, H1 and H2 normalize each other). Let x ∈ � be arbitrary, and suppose that h1 ∈ H1

and h2 ∈ H2 are such that xh1h2 = x. Then |xH1∩H2 | > 1 and yh1h2 = y, for all y ∈ xH1∩H2 .

Proof. It is well known that, if [H1, H2] is trivial, then H1 = H2 (as permutation
groups acting on X), see for instance [4]. In this case, clearly yh1h2 = y, for all y ∈ �,
since h1 = h−1

2 . Hence we may assume that [H1, H2] is nontrivial, and hence H1 ∩ H2

is nontrivial.
Pick y ∈ xH1∩H2 arbitrary, and let h1 and h2 be as in the statement of the lemma.

Let h ∈ H1 ∩ H2 be such that xh = y. Then yh1h2 = xhh1h2 = xh1h2h = xh = y (since h
centralizes both H1 and H2).

The lemma is proved. �

We now complete the proof of our main result.
We may assume that S is not a half Moufang generalized quadrangle, hence,

without loss of generality, there exists a nontrivial element u ∈ G[x2,X3]
X5

\ G[x4,X3]
X1

. Let
� be the set of all apartments containing X1, X3 and X5. Note that � ∈ �. By the
foregoing lemma there are an element u′ ∈ G[x4,X3]

X1
\ G[x2,X3]

X5
, and a subset �′ ⊆ �

containing �, with |�′| > 1, such that u−1u′ fixes all elements of �′.
If �′ �= �, then u−1u′ fixes {X3, X7}⊥ and at least three, but not all elements of

{X5, X1}⊥. We claim that all lines of {X5, X1}⊥ that are fixed under u−1u′ belong to
{X3, X7}⊥⊥. Indeed, if not, then let us consider a line L ∈ {X5, X1}⊥ fixed under u−1u′,
but not belonging to {X3, X7}⊥⊥. Put L ∩ X1 = x′

0. Hence there is a line Q in {X3, X7}⊥
which is not concurrent with L. Thus L and Q are opposite, so x′

0 is not incident with
Q. Since u−1u′ fixes all elements of {X3, X7}⊥, it fixes Q. Therefore u−1u′ fixes the unique
3-path from x′

0 to Q. Consequently, u−1u′ fixes at least three lines incident with x′
0. This

implies that it fixes a thick full subquadrangle, implying (by [17, Proposition 1.8.1])
that all points incident with X1 are fixed. This contradicts our assumption �′ �= �.
The claim is proved. But now Lemma 4 shows that S is a half Moufang quadrangle.

Hence we may assume that u−1u′ fixes all lines X1, X3, X5, X7 pointwise, but does
not act trivially on the set of lines incident with x2. It is more convenient to argue with
the dual situation. Dually, we have a collineation w fixing all lines incident with the
points x0, x2, x4, x6, but not fixing all points of the line X1. In fact, we may re-name
the points incident with X1 in such a way that w maps x0 onto x2, and w fixes all
lines incident with some points x′

2 and x′
0, with x′

2IX1Ix′
0. We now take an arbitrary

element v ∈ G[x0,X1]
X3

. Since we assume that S is not half Moufang, we can choose v

such that it does not fix all lines incident with x2. Now consider the commutator
[v,w]. It certainly fixes all lines incident with x′

2 and those incident with x′
0, and it

fixes all points incident with X1. Now, v−1 does not fix all lines incident with x2.
Also, w−1 maps the lines incident with x2 onto the lines incident with x0. Finally,
v fixes all these lines. So we see that [v,w] does not fix all lines incident with x2.
Lemma 2 implies that [v,w] cannot fix any line incident with x2. But this contradicts
X [v,w]

3 = Xw−1vw
3 = ((Xw−1

3 )v)w = Xw−1w
3 = X3.

The proof of the Main Result is complete.

4. Proof of the corollaries. Corollary 1 follows directly from the fact that
2-Moufang quadrangles are automatically 3-Moufang quadrangles (see [17]).
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Concerning Corollary 2, we first remark that any elation point x defines a Moufang
0-path (x). If x, y are two opposite elation points, then all points that are opposite x or
y are elation points (by transitivity). It is now easy to see that every point is an elation
point. Similarly every line is an elation line. Consequently every 0-path is a Moufang
0-path and the quadrangle is 2-Moufang.

Now suppose S satisfies the assumptions of Corollary 3. Let L be any line of S.
Let M and M′ be two lines opposite L. If we show that there is a collineation u ∈ G[L]

mapping M to M′, then (L) is a Moufang 0-path and, together with the dual argument,
S is 2-Moufang, proving the corollary.

If M is different from, concurrent with M′, then let x be the unique point incident
with both M and M′. Remark that we may assume that there are at least 4 lines incident
with a given point by [9] and [3]. Hence there is some line N /∈ {M, M′, projxL} incident
with x. The {L, N}-transitivity implies that there is some collineation in G[L] mapping
M to M′. If M is not concurrent with M′, then by a result of Cuypers stated in [1] (see
also [17, 1.7.15]), there is a sequence of � lines (M = M1, M2, . . . , M� = M′) such that
Mi ⊥ Mi+1, for all i ∈ {1, 2, . . . , � − 1}, and all Mi are opposite L. The result is now
clear.

5. Half Moufang quadrangles. In this section, we show that half Moufang
quadrangles are always Moufang quadrangles. The proof we present differs from
the one in [7] in that we almost exclusively use the argument of the second author that
replaced the “wrong lemma” in [7]. We will indicate the place where we actually borrow
an argument of [7].

First, let us mention the following well known result [8]. We keep the notation of
Section 3 regarding the apartment � and its elements.

LEMMA 6. Let S be a half Moufang quadrangle and suppose all 2-paths containing
two lines satisfy the Moufang condition. Then S is a Moufang quadrangle whenever the
following condition is satisfied. Let x �= x0 be arbitrary on the line X1, and let Y �= X1 be
arbitrary through x. Then the action of the collineation group G[X1,x,Y ] on the set of lines
incident with x0 does not depend on the choice of x, Y. �

Furthermore, we know from elementary group theory that, if K and K ′ are two
groups acting regularly on a set �, and if K and K ′ centralize each other, then, without
loss of generality, we may identify � with K such that the action of K on � = K is
given by right multiplication. Moreover, K ′ ∼= K , with the action of h′ ∈ K ′ on � = K
given by left multiplication with h′−1. We will denote that action of K ′ on � by Kopp.
We will also use this notation if both K and K ′ fix an element ω ∈ � and act regularly
on � \ {ω}.

We assume that S is a half Moufang quadrangle and prove it is a Moufang
quadrangle. We use the same notation as in Section 3, and as in Lemma 6 above (as it
suffices to show that the conditions of that lemma are satisfied).

So we have to show that the action of G[X1,x,Y ] on the lines incident with x0 does not
depend on x, Y . This is clear if x = x2, because the half Moufang conditions implies
the existence of a collineation fixing all lines incident with x0 and mapping X3 to Y in
this case. So we may assume x �= x2, and Y concurrent with X5. Put U2 := G[X1,x2,X3]

and U ′
2 := G[X1,x,Y ]. Let � be the set of all lines of S incident with x0. For a subgroup

H of the stabilizer of x0 in S, we denote by H� the permutation group induced by H on
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�. We first show that (U2)� and (U ′
2)� normalize each other. We borrow the argument

from [7]. Let u2 ∈ U2 and u′
2 ∈ U ′

2 be arbitrary, and let u8 ∈ G[X7,x0,X1] be such that
Xu′

2u8

3 = X3. Clearly [u′
2u8, u2] ∈ U2. But the action of [u′

2u8, u2] on � coincides clearly
with the action of [u′

2, u2] on �, since u8 acts trivially on �. Similarly, the action of
[u′

2, u2] on � is the same as that of some element of U ′
2 on �. Hence the actions of U2

and U ′
2 on the set � normalize each other.

Put U6 := G[X5,x6,X7]. The group H := 〈U6, U2〉 fixes the set {x4, x0} pointwise.
Clearly U6 and U2 are conjugate in H. Also, it is clear that, given u2 ∈ U×

2 , there exists
u6 ∈ U6 such that Uu2u6

6 = U2. Hence if (U2)� ∩ (U ′
2)� is nontrivial, then we may take

u2 ∈ U×
2 such that its action on � coincides with an element u′

2 of U ′
2
×. We thus obtain

(U2)� = (Uu2u6
6 )� = (Uu′

2u6

6 )� = (U ′
2)�.

So we may assume that (U2)� and (U ′
2)� only share the identity (hence |�| > 4).

This immediately implies that (U2)� centralizes (U ′
2)�. Since both U2 and U ′

2 act
regularly on � \ {X1}, we obtain (U ′

2)� = (U2)opp
� .

Consider any line X̃1 incident with x0, but different from X1 and X7, and define x̃2

and X̃3 as X̃1Ix̃2IX̃3Ix4. Put Ũ2 = GX̃1 ,̃x2,X̃3 . Let u6 ∈ U×
6 map X1 to X̃1. We see that

(Ũ2)� is conjugate to (U2)� in 〈(U2)�, (U6)�〉 (via the action of u6, but also via any
element of 〈(U2)�, (U6)�〉 mapping X1 onto X̃1). Similarly, (U2)� is the conjugate of
(U6)� in 〈(Ũ2)�, (U6)�〉 by each element of the latter mapping X7 onto X̃1. Now define
X̃1Ix̃′

2IX̃ ′
3IprojX5

x. Put Ũ ′
2 = GX̃1 ,̃x′

2,X̃
′
3 . Then, similarly as in the previous paragraph,

either (Ũ ′
2)� = (Ũ2)�, or (Ũ ′

2)� = (Ũ2)opp
� . In the former case we see, similarly as

above, that (U2)opp
� is conjugate to (U6)� in 〈(Ũ ′

2)�, (U6)�〉 = 〈(Ũ2)�, (U6)�〉, implying
by the observation above that (U2)� and (U2)opp

� are conjugate by any element of
〈(Ũ2)�, (U6)�〉 fixing X1, clearly a contradiction (as we can choose the identity!).
Hence (Ũ ′

2)� = (Ũ2)opp
� . This implies that (U6)� belongs to 〈(U2)opp

� , (Ũ2)opp
� 〉 and is in

fact conjugate to (U2)opp
� by any element of 〈(U2)opp

� , (Ũ2)opp
� 〉 mapping X1 onto X7.

Now we know that there are at least five lines incident with x0, so we may consider
a line X7 incident with x0, not belonging to {X1, X7, X̃1}. Define X7Ix6IX5Ix4. We
denote U6 := GX7,x6,X5 . We interchange the roles of X7 and X7, and at the same
time of Y and Y := projxprojx4

X7. We obtain, as in the previous paragraph, and
using the fact that (U ′

2)� does not depend on Y , but only on x, that (U6)� belongs to
〈(U2)opp

� , (Ũ2)opp
� 〉 and is in fact conjugate to (U2)opp

� by any element of 〈(U2)opp
� , (Ũ2)opp

� 〉
mapping X1 onto X7. It is now clear that, combining this with the conclusion of the
previous paragraph, the group 〈(U6)�, (U6)�〉 contains (U2)opp

� , conjugate to (U6)� by
any element of 〈(U6)�, (U6)�〉 mapping X7 to X1. But of course U2 is conjugate to U6

by a (unique) element of U6, contradicting the fact that (U2)� �= (U2)opp
� .

The assertion is proved.

REFERENCES

1. A. E. Brouwer, The complement of a geometric hyperplane in a generalized quadrangle
is usually connected, Finite geometry and combinatorics, Edited by F. De Clerck et al., London
Math. Soc. Lecture Note Series No. 191 (Cambridge University Press, 1993), 53–57.

2. F. Buekenhout and H. Van Maldeghem, Finite distance transitive generalized polygons,
Geom. Dedicata 52 (1994), 41–51.

3. P. Cameron, Orbits of permutation groups on unordered sets. II. J. London Math. Soc.
(2) 23 (1981), 249–264.

4. J. D. Dixon and B. Mortimer, Permutation groups (Springer-Verlag, 1996).
5. P. Fong and G. M. Seitz, Groups with a (B,N)-pair of rank 2, I, Invent. Math. 21 (1973),

1–57.

https://doi.org/10.1017/S0017089504001818 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001818


MOUFANG GENERALIZED QUADRANGLES 343

6. P. Fong and G. M. Seitz, Groups with a (B,N)-pair of rank 2, II, Invent. Math. 21 (1974),
191–239.

7. K. Tent, Half Moufang implies Moufang for generalized quadrangles, J. Reine Angew.
Math., to appear.

8. K. Tent and H. Van Maldeghem, BN-pairs with affine or projective lines, J. Reine
Angew. Math. 544 (2002), 223–236.

9. J. A. Thas, The classification of all (x, y)-transitive generalized quadrangles, J. Combin.
Theory Ser. A 42 (1986), 154–157.

10. J. A. Thas, S. E. Payne and H. Van Maldeghem, Half Moufang implies Moufang for
finite generalized quadrangles, Invent. Math. 105 (1991), 153–156.

11. K. Thas and H. Van Maldeghem, Geometrical characterizations of some Chevalley
groups of rank 2, submitted.
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