AN INEQUALITY IMPLICIT FUNCTION THEOREM

KUNG-FU NG

(Received 3 September 1986; revised 23 February 1987)

Communicated by B. Mond

Abstract

Let \(f \) be a continuous function, and \(u \) a continuous linear function, from a Banach space into an ordered Banach space, such that \(f - u \) satisfies a Lipschitz condition and \(u \) satisfies an inequality implicit-function condition. Then \(f \) also satisfies an inequality implicit-function condition. This extends some results of Flett, Craven and S. M. Robinson.

Following Rockafellar [13], by a convex process is meant a map \(T \) of points in a Banach space \(X \) into the subsets of another Banach space \(Y \) such that \(0 \in T0 \), \(T(\lambda x) = \lambda Tx \) and \(Tx_1 + Tx_2 \subseteq T(x_1 + x_2) \) for all \(\lambda > 0 \), \(x_1 \), \(x_2 \) and \(x \) in \(X \). This is the case if and only if the graph \(G(T) \) of \(T \) is a convex cone in \(X \times Y \). \(T \) is a closed convex process if \(G(T) \) is a closed convex cone. If \(T \) is also onto \(Y \) (in the sense that for each \(y \in Y \) there exists \(x \in X \) such that \(y \in Tx \)) then it is an open mapping (see [10, Theorem 2] and also [5, page 182], [8, Theorem 1]), that is, there exists a constant \(k > 0 \) with the following property: for each \(y \in Y \) there is \(x \in X \) with \(||x|| \leq k||y|| \) such that \(y \in Tx \). (In this case we say that \(T \) is \(k \)-open.)

Suppose \(K \) is a closed convex cone in \(Y \). Then, for any continuous linear map \(u \) from \(X \) into \(Y \), we can associate a closed convex process \(U \) by putting

\[
U(x) = u(x) + K \quad (x \in X).
\]

Thus, if \(U \) is onto \(Y \), then \(U \) is \(k \)-open for some \(k > 0 \). The following Theorems 1 and 2 were proved by Flett [4, Lemmas 1 and 3] in the special case that \(K = \{0\} \) (see also Craven [2], and [3, page 147]).
THEOREM 1. Let U be k-open for some $k > 0$. Let f be a continuous (not necessarily linear) map from a subset of D of X containing 0 into Y such that $f(0) = 0$ and

$$||\{f(x_1) - u(x_1)\} - \{f(x_2) - u(x_2)\}|| \leq (\eta/k)||x_1 - x_2||$$

for some $\eta \in (0,1)$ and all $x_1, x_2 \in D$. If $z \in X$ and D contains the ball B with centre z and radius R with $R > (\eta/(1-\eta)||z||$, then there exists $x \in B$ such that $u(z) \in f(x) + K$.

The proof is based on the following contraction lemma, essentially due to Robinson [11] who considered Hausdorff distance ρ_H instead of unbalanced d (our proof is also simpler then that given in [11]). See also [7]. For subsets A, B of a metric space (Ω, ρ) and $x \in \Omega$, we define $d(x, B) := \inf\{\rho(x, b): b \in B\}$, $d(A, B) := \sup\{d(a, B): a \in A\}$, and $\rho_H(A, B) := \max\{d(A, B), d(B, A)\}$.

LEMMA 1. Let (Ω, ρ) be a complete metric (or semi-metric) space, and let $T: \Omega \to 2^\Omega$ satisfy

$$d(Tx_1, Tx_2) \leq \eta\rho(x_1, x_2)$$

for some $\eta \in (0,1)$ and all x_1, x_2 in a subset D of Ω. Suppose D contains a ball B with centre x_0 and radius $R > d(x_0, Tx_0)/(1 - \eta)$. Then there exists $x \in B$ with $x \in Tx$.

PROOF. Take $\varepsilon > 0$ such that $R > d(x_0, Tx_0)/(1 - \eta) + \varepsilon$, and let $\sigma = d(x_0, Tx_0) + \varepsilon(1 - \eta)$. Since $d(x_0, Tx_0) < \sigma$, there exists $x_1 \in Tx_0$ such that $\rho(x_0, x_1) < \sigma$. By (2),

$$d(x_1, Tx_1) \leq d(Tx_0, Tx_1) \leq \eta\rho(x_0, x_1) < \eta\sigma,$$

so there is $x_2 \in Tx_1$ such that $\rho(x_1, x_2) < \eta\sigma$. Suppose that x_1, \ldots, x_n from B have been selected respectively from Tx_0, \ldots, Tx_{n-1} such that $\rho(x_{k-1}, x_k) < \eta^{k-1}\sigma$ for all $k \leq n$. Then, since

$$d(x_n, Tx_n) \leq d(Tx_{n-1}, Tx_n) \leq \eta\rho(x_{n-1}, x_n) < \eta^n\sigma,$$

one can select $x_{n+1} \in Tx_n$ such that $\rho(x_n, x_{n+1}) < \eta^n\sigma$. Note that $\rho(x_0, x_{n+1}) < \sigma(1 + \eta + \cdots + \eta^n) < \sigma/(1 - \eta) = d(x_0, Tx_0)/(1 - \eta) + \varepsilon$; in particular $x_{n+1} \in B$. In this way, we have a Cauchy sequence, which converges, say to v. Then $d(x_0, v) \leq d(x_0, Tx_0)/(1 - \eta) + \varepsilon$ so $v \in B$. The proof that $v \in Tv$ is similar to [10]: take $\gamma > 0$ and a positive integer n. Then there is $y \in Tv$ such that $\rho(x_n, y) < d(x_n, Tv) + \gamma$ so

$$\rho(x_n, y) < d(Tx_{n-1}, Tv) + \gamma \leq \eta\rho(x_{n-1}, v) + \gamma.$$
and
\[d(v, T v) \leq \rho(v, y) \leq \rho(v, x_n) + \rho(x_n, y) \leq \rho(v, x_n) + \eta \rho(x_{n-1}, v) + \gamma. \]
Letting \(n \to \infty \) and \(\gamma \to 0 \), we see that \(v \in T v \).

We now turn to the proof of Theorem 1. We shall apply Lemma 1 to \(\Omega = X \) with \(\rho \) the usual metric induced by the norm. The inverse \(U^{-1} \) of the multivalued function \(U \) is defined by
\[U^{-1}y = \{ x \in X : y \in Ux \} \quad (y \in Y). \]

By assumption each \(U^{-1}y \) is non-empty. We will show that
\[d(U^{-1}y_1, U^{-1}y_2) \leq k ||y_1 - y_2|| \quad (y_1, y_2 \in Y). \]
In fact, let \(x_1 \in U^{-1}y_1 \). Since \(U \) is \(k \)-open, there is \(x \in X \) with \(||x|| \leq k ||y_2 - y_1|| \) such that \(y_2 - y_1 \in Ux \). Then
\[y_2 = (y_2 - y_1) + y_1 \in u(x) + K + u(x_1) + K = u(x + x_1) + K = U(x + x_1) \]
because \(K \) is a convex cone. Therefore \(x + x_1 \in U^{-1}y_2 \), and
\[d(x_1, U^{-1}y_2) \leq \rho(x_1, x + x_1) = ||x|| \leq k ||y_2 - y_1||. \]

Since \(x_1 \) is arbitrary in \(U^{-1}y_1 \), (3) is proved.

Now define \(T \) on \(D \) by \(Tw = U^{-1}(g(w)) \) where \(g(w) := u(z) - f(w) + u(w) \).
By (1), we have, for all \(w_1, w_2 \in D \), that
\[||g(w_1) - g(w_2)|| = ||\{ f(w_2) - u(w_2) \} - \{ f(w_1) - u(w_1) \}|| \leq \eta / k ||w_1 - w_2||; \]
it follows from (3) that \(d(Tw_1, Tw_2) \leq \eta ||w_1 - w_2|| \). Moreover, since \(g(0) = u(z) \),
\[z \in U^{-1}(u(z)) = T0, \]
we have
\[d(z, Tz) \leq d(T0, Tz) \leq \eta ||z - 0|| = \eta ||z||. \]

By the Contraction Lemma, there exists \(x \in B \) such that \(x \in T x \). Take a sequence \(\{ x_n \} \) in \(Tx \) convergent to \(x \). Then \(g(x) \in U(x_n) = u(x_n) + K \), that is,
\[u(z) - f(x) + u(x) \in u(x_n) + K. \]
Since \(K \) is closed it follows that \(u(z) \in f(x) + K \).

Theorem 2. Let \(C \) be a closed convex cone in \(Y \), and \(Q \) a subset of \(Y \) such that \(Q + C \subseteq Q \) and \(\lambda Q \subseteq Q \) for all \(\lambda \in [0, 1] \). Let \(f \) be a \(C^1 \)-function at 0 from an open set in \(X \) containing 0 into \(Y \), with \(f(0) = 0 \) and \(f'(0) = u \). Define \(U \) by \(U(x) = u(x) - C \) for all \(x \in X \). If \(U \) is onto \(Y \), then \(U^{-1}(Q) \) is contained in the tangent cone of \(f^{-1}(Q) \) at 0.

Proof. It is known that \(U \) is \(k \)-open for some \(k > 0 \) as noted before. Let \(h \in U^{-1}(q) \) with \(||h|| = 1 \) and \(q \in Q \). Then \(q \in U(h) = u(h) - C \) so \(u(h) \in C + Q \subseteq Q \).
and consequently \(u(\lambda h) \in Q \) for all \(\lambda \in [0,1] \). Take \(\eta \in (0,1) \); then there exists \(\xi > 0 \) such that \(||f'(x) - u|| \leq \eta/k \) for all \(x \) in \(\xi B_X \) the \(\xi \)-ball with centre 0 in \(X \). By the Mean Value Theorem, \((1) \) of Theorem 1 holds with \(D := \xi B_X \). Take \(\lambda > 0 \), small enough that \(D \) contains the open ball with centre \(\lambda h \) and radius \(2\eta\lambda/(1-\eta) \). Applying Theorem 1 there is \(x \in X \) with \(||x-\lambda h|| \leq 2\eta||\lambda h||/(1-\eta) \) such that \(u(\lambda h) \in f(x) - C \), that is, \(f(x) \in u(\lambda h) + C \subseteq Q + C \subseteq Q \).

Do the above for all \(\eta = 1/n \) with integers \(n > 3 \) and choose \(\lambda = \lambda_n > 0 \) such that \(\lambda_n \to 0 \) as \(n \to \infty \); we write \(x_n \) for \(x \) accordingly constructed above. Note that \(x_n \neq 0, x_n \in f^{-1}(Q) \), \(x_n \to 0 \) and

\[
||x_n||x_n||^{-1} - \lambda_n h||\lambda_n h||^{-1}|| \leq 2||x_n - \lambda_n h||||\lambda_n h||^{-1}
\leq 4\eta/(1-\eta) \to 0 \text{ as } n \to \infty,
\]

where we have used the elementary inequality \(||a||a||^{-1} - b||b||^{-1}|| \leq 2||a - b|| ||b||^{-1} \) for non-zero elements in a normed space, which is true because

\[
||(a||b|| - a||a|| - b||a|| + a||a||)||a|| ||b||^{-1}|| \leq 2||a|| ||b - a||(||a|| ||b||)^{-1}.
\]

Therefore \(h \) is in the tangent cone of \(f^{-1}(Q) \) at 0.

Remark. A related result has been given by Robinson [12, Corollary 2] where he considered the case \(Q = C \). Applications of results of this type to Optimization Theory, have been given in [1], [2], [3], [4], [6], [9], [12] and [14].

References

Department of Mathematics
The Chinese University of Hong Kong
Hong Kong