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COLLINEATIONS OF POLAR SPACES

DONALD G. JAMES

1. Introduction. The fundamental theorem of projective geometry
describes the bijective collineations between two projective spaces PV and
PJ” of finite dimension (greater than one) over division rings k and k’ in
terms of an isomorphism ¢:k — k’ and a ¢-semilinear bijective mapping
between the underlying vector spaces V and V. Tits [9, Theorem 8.611] has
given an extensive generalization of this theorem to embeddable polar
spaces induced by polarities coming from either (o, €)-hermitian forms or
from (0. €)-quadratic forms with Witt indices at least two. In another
direction, Klingenberg [7] and later André [1] and Rado [8], have
generalized the fundamental theorem by considering non-injective collin-
eations. Now the isomorphism ¢ must be replaced by a place ¢:k — k" U
co and an integral structure over the valuationring 4 = ¢ (k') is induced
into the projective space PV. In [6, XXII] and [10, p. 366], Weisfeiler asks
for analogues of this to other Tits buildings. Recently, Faulkner and
Ferrar [3] gave this for Moufang planes. In [5], generalizing work of Chow
[2], we were also led to this type of theorem for polar spaces defined over
symmetric and alternating forms with maximal Witt index. In the present
work we will consider general embeddable polar spaces with Witt index at
least three.

Let S(§) be a polar space on the underlying finite dimensional k-vector
space V with polarity £ of trace type coming from either a non-degenerate
trace-valued (o, €)-hermitian form f or a non-degenerate (g, €)-quadratic
form g associated with a (o, €)-hermitian form f, with Witt index i(¢) = 3.
Similarly, let S(¢’) be a polar space on the k’-vector space V’ with polarity
& of trace type having Witt index i(§) = 3.

THEOREM. Let m:S(§) — S (&) be a thick collineation between polar spaces
with i(§) = i(¢) = 3. Then there exists a place o:k — k' U oo with
valuation ring A = qfl(k’), an A-module M in V with Mk = V and a
g-semilinear mapping :M — V' such that

7X = B(M N X)k' for all points X in S(§).

Moreover, the hermitian forms [ and f’ associated with the polarities £ and §'
can be chosen so that M has an orthogonal splitting M = M(1) L M(2)
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where M (1) is unimodular and free with rank equal to the dimension of B(M)
over ¢(A), while S(M(2)) = 0, and

o(f(x,9)) = ['(B(x), B(y)) forall x.y € M.

The definition of a thick collineation is given in the following section. In
the above theorem M (2) need not be free. Also, f(M(2), M(2)) S m, the
unique maximal two-sided ideal of 4. If both the polar spaces S(§) and
S(&) are associated with pseudo-quadratic forms then, with the appro-
priate interpretation, ¢’ o 8 = ¢ o g. Conversely, it is fairly easily seen that
any e¢-semilinear mapping B:M — V7, as in the theorem, induces a
collineation. In the symplectic situation where o is the identity and € =
— 1, the above theorem has been completely proved in [5, Theorem 2.1].
When 7 is bijective, the result reduces to Theorem 8.61I in [9]; however,
the proof is entirely different and Tits also includes degenerate forms and
the case i(§) = i(¢) = 2 where there are exceptional situations. In the
bijective case, k = 4 = k', V = M = M(1) = V” and the forms f and f~
are isometric. See also the note added in proof.

If the collineation « is surjective, then ¢(4) = kK’ and B(M) = V".

2. Pseudo-quadratic forms and polar spaces. We give now the definitions
of (o, €)-hermitian forms and pseudo-quadratic forms and the connection
with polar spaces; further details can be found in [9, Section §8]. Let k be a
division ring, V a finite dimensional right k-vector space and o:k — k an
antiautomorphism, that is, an additive automorphism of k such that

(ab)’ = b°a° foralla, b € k.

A function f:V X V — k is called a o-sesquilinear form if it is biadditive
and if

f(xa, yb) = a°f(x,y)b forallx,y € Vanda, b € k.

The form f'is reflexive if the relation f(x, y) = 0 is symmetric for x,y € V.
This condition is equivalent to the existence of a nonzero ¢ € k such

that

f(y, x) = f(x,y)% forall x,y € V.
Necessarily,

o _—1 od -1

€ =€ and 7 = ete forallt € k.

A form f satisfying these conditions is said to be (o, €)-hermitian.
Now assume € # — 1 when o is the identity and the characteristic of k is
not two. Set

koo = {1 — %t € k).
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an additive subgroup of k, and denote by k(g, €) the quotient group k/k_ .
A function ¢:V — k(o, €) is called a (o, €)-quadratic form or a
pseudo-quadratic form relative to o and €, if there exists a o-sesquilinear
form g:V X V — k such that

q(x) = g(x, x) + k,, forallx € V.
Then

g(xa) = d°q(x)a fora € kand x € V.
Also,

gx +y)=qgx) + quy) + (f(x,y) + kg,)

for all x, y € V, where f:V X V — k is the trace-valued (o, €)-hermitian
form detined by

J(xy) = g(x,py) + gy, x)’e

The form f is uniquely determined by ¢. The pseudo-quadratic form ¢ is
determined by the associated form f and the values taken by ¢ on the
elements of a basis of V. A pseudo-quadratic form is called non-
degenerate when the associated hermitian form f is non-degenerate, that
is. f(x. V) = 0 only when x = 0.

A subspace U of V is called torally singular with respect to the
pseudo-quadratic form ¢ if ¢ vanishes on U. If U is totally singular for g,
then U is also rorally isotropic with respect to the associated hermitian
form f, that is, f(U, U) = 0. All maximal totally singular (respectively,
totally isotropic) subspaces of V' have the same dimension called the Witt
index of ¢ (respectively. f). If the characteristic of k is not two, all totally
isotropic subspaces of V' are also totally singular.

The projective space PV of V is the set of all one-dimensional subspaces
of V. Let f be a non-degenerate trace-valued (o. €)-hermitian form on V
with Witt index i(f) = 2. Then f determines a polarity £ of trace type for
the space PV. Denote by S(£) the set of all isotropic points X in PV. Thus
J(X, X) = 0. Then S(§) is the polar space relative to the polarity £ (or form
/). More strictly, S(£) should be defined relative to an equivalence class of
proportional forms, rather than to a representative of the class, as we have
done. Let g be a non-degenerate (o, €)-quadratic form on V with Witt
index i(g) = 2 and f the associated hermitian form. Again, this determines
a polarity £ of trace type. Denote by S () the set of all singular points X in
PV. Thus ¢(X) = 0. Then S(§) is the polar space relative to the
proportionality class of the pseudo-quadratic form q. The linear subspaces of
S (&) are the subspaces of V which are totally isotropic, respectively totally
singular, with respect to the hermitian form f, respectively pseudo-
quadratic form ¢, associated with £, In particular, a line of S(£) is a totally
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isotropic. respectively totally singular. two-dimensional subspace of V. If
X and Y are points in a polar space with f(X, Y) = 0, the line joining X
and Y is denoted by X + Y.

Now let kK’ be a second division ring and S(§) a polar space with
polarity § associated with either a non-degenerate trace-valued (o', €')-
hermitian form f”: 7" X V' — k’ on the finite dimensional k’-vector space
V', or with a non-degenerate (o, €')-quadratic form

q:V — k'(d, €)

with associated (¢’, € )-hermitian form f’. Assume i(§') = 2. A collineation
between the polar spaces S(§) and S(£') is a mapping

m:S(§) = S(§)

with the following properties. Let X, ¥ € S(§) with X + Y a line (so
J(X, Y) = 0). Then

f(#X, 7Y) = 0.

Moreover. if 71X # @Y. then for any point Z on the line X + Y of S(§). the
point 7Z is on the line 7X + «#Y of S(£). In particular, it follows that any
line of S(§) is carried by 7 into a line of S(£') (usually not surjectively). It
is possible for 7 to carry all the points of a line of S(£) into a single point

" If'e(tg;(g) be a polar space with Witt index i(§) = n = 2. A polar frame
for S(§) is a set of points F = {X,, Y|,..., X,, Y, } in S(§) with
J(Xo X)) =f(Y, Y;)) =0forl =i, j=n,
and
S(X,, X;) = 0fori #j,
but

J(X.Y)#O0forl =i =n.

Since i(§) = n and [ is trace-valued and non-degenerate, it follows that
S(§) has a polar frame. Let span F be the set of points in S(§) that are also
in the subspace of PV spanned by the points in F.

A collineation 7:S(§) — S(&) is called thick if there exists a polar frame
F of S(§) such that 7F is a polar frame of S(§") (so necessarily i(§) = i(§))
and, moreover, for each line L of S(§) in span F the cardinality of the set
{mX|X a point on L} is at least three. Thus, in particular, each line L of
span 7F coming (via «) from a line L € span F contains at least three
points coming from points on L (in general, L will also contain many
points not coming from S(§) ).

As a consequence of our theorem. the image #S(£) of a thick
collineation « is a polar space defined over the subring o(A4) of k’. If the
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mapping 7 is surjective, then ¢(4) = k’. However, in general, the image
7S (€) will be properly inside a polar space defined over the larger division
ring k'

3. Thick collineations. In this section we prove the theorem in the
special case where S(£) is spanned by any of its polar frames, that is, when
dim V = 2n where n = i(§) = 3, by generalizing the ideas of Theorem 2.1
in [S] to our present situation. The polar space S(§) is associated with
either a non-degenerate trace-valued (o, €)-hermitian form f, or with a
(0, €)-quadratic form g with non-degenerate trace-valued (o, €)-hermitian
form f. In the first case the linear subspaces of S(§) are totally isotropic
and in the second case they are totally singular. Likewise for S(¢§').

Let 7:5(¢§) — S(¢) be a thick collineation. It is possible for S(£) to be
associated with a pseudo-quadratic form while S(§’) is associated with an
hermitian form; for example, let = be the identity mapping but in the
image space forget the pseudo-quadratic form and consider the larger
space determined by the totally isotropic points (both k& and &’ will have
characteristic two). It is also possible for S(£) to be associated with an
hermitian form and S(¢') with a pseudo-quadratic form; for example, f a
symmetric form over the 2-adic number field Q, and ¢’ a quadratic form
over the finite field Fs.

Now assume dim V =2i(§) = 6. Since 7 is a thick collineation, there
exists a polar frame {X|, Y, ..., X,. Y,} for S(§) with {7 X,, 7Y, ....
7X,. mY,} a polar frame for S(§’). Let S be the totally isotropic or totally
singular subspace of V' spanned by X, ..., X, and T the totally isotropic
or totally singular subspace spanned by Y,, ..., Y,. Then

SNT=0 and V =S+ T.

Likewise. if 71X, ..., 7X, spans S’ in V" and 7Y, ..., wY, spans T,
then

SNT =0 and V' =(S" +T7T)L W
with W’ a subspace of V. Since n = 3, the restriction
a:PS — PS’

satisfies the conditions of Theorem 3.1 in [4] (the proof remains valid over
division rings). Hence there exists a place

gk = k' U co
with valuation ring
Loy
A\“ = @3 (k )s

a free Ag-module Mg = wAg + ...+ u,Ag in S with rank »n and a
¢¢-semilinear mapping S.:M¢ — S’ defined by
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B S ua) = 3 wasta)
such that
7X = Bg(M; N X)k'

for all points X in PS. Here u; 1s a nonzero element from the
one-dimensional subspace X; of V, and u] is a nonzero element from 7.X,
1 = i = n. The module M and the mapping B¢ are not uniquely
determined but can be changed by multiplication by scalars. Likewise,
considering the restriction

m:PT — PT,

there exist corresponding ¢, Ay, My = viAr + ...+ v,Ap in T with
v; € Y, and B:M; — T where

,BT(E v,b,.) = 2 Vigp(b;) and
7Y = Bp(My 0 Y)K

for points Y in PT.
Since 7 is a thick collineation, there exists a point (#; + v,b)k on the
line u;k + v,k with image
(u) + v,bYk where b # 0.
Replacing M, by M ;b and adjusting B+ we may assume b = 1. Likewise,

by changing the choice of the v}, we may assume " = 1. Let 0 # a € Ajq.
Since = is a collineation, the image of (v;a + u, + v,a)k must be

(Ujes(a) + vy + vieg(a) )k
Hence the image of (#, + v,a)k must be
W + Vigs(a) K.

Assume first that ¢ ' € Ap. Then, by a similar argument, the image of
(uy + v,a)k is also

(u’2<pT(a"') + vk’

Hence ¢¢(a) = ¢p(a). On the other hand, if ale Arp, then ¢r(a) = 0.
Now the image of (¥, + v, + v,a)k is in u5k’ + v{k’ and hence the image
of (uy + v,a)k is usk’. Thus eg(a) = 0 also. Hence

og(a) = op(a) foralla € A4q.

By symmetry A¢ = Ay = A and 9g = ¢y = ¢, 5ay. Now M = M¢ + M
is a free A-module of rank 2n.
From the definition of a polar frame,

flu.v) = 8.c;
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where 0 # ¢, € k. Assume there exist ¢;, ¢; with
—1
o(c; ¢;) = 0.

Since u; + u; and v; — v/-c,-flc,- are orthogonal, it follows from the proper-
ties of o that u] + u/ and v/ — vig(c; lc,) are orthogonal. This is a contra-
diction if

Hence c/"'c,» is a unit in 4 and M is a modular A-module. Changing the
choice of each u; € X, by a unit, we may assume

Slu.v)=c#0. 1=i=n

Replacing f by the proportional form ¢ 'f we may assume M is
unimodular and ¢ = 1. Moreover, now

Suov)y=¢ =0 1=1=n

For any a € A the elements u; + wu,a and v,a° — v, are orthogonal.

Hence u] + ui¢(a) and vig(a®) — v5 are orthogonal so that

wd’) = ¢ 'gla)’c.
Again, since u; + v, is orthogonal to vie — u,, it follows that

Cg(e) = €.

If we now replace f* by the proportional (", ¢”)-hermitian form ¢~ /"
where

& = "¢ and b7 = ¢ B¢ forb € Kk,
then
¢(6) = ¢ and @d°) = ¢(a)’ foralla € A.

(If & is associated with a pseudo-quadratic form ¢, this will also be
changed to a proportional form.) Now we may assume

vy = 1. 1 =i =n.
¢(e) = ¢ and
@(d®) = ¢(a)” fora € A.
Define 8:M — V by
B(x + y) = Bg(x) + By(y) forx € Mgandy € M.
We must prove
7X = B(M N Xk

for all points X in S(£). This has already been done for X in PS or PT, and
for
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X = (u; + va)k withi # jand a € A.
Now consider X = xk where
x = 2 (ua; + vb) witha.b € A.

Without loss in generality, we may assume a; = 1. Let 7X = x'k’
where

X = (ua;, + vib)).

Since, for 1 = 2, x is orthogonal to vja; — v,. it follows that x’ is
orthogonal to vjg(aj) — v/ and hence that

a; = ¢la;)a).
Similarly,
b = g(ha\ fori = 2.

Now assume that a,. say. is a unit in A. Then x is orthogonal to
u; — vy(byay '), from which it follows that

by = e(b))aj.
Thus, in this situation,
Y = B(x)d,

and the proof is complete. It remains to consider the case where
ay, by, ..., a,, b, are all nonunits in 4. Then

1
x" € uk’ + vk
We can now find y € u,k + w3k such that
f(x.v) = 0.m(yk) = B(y)k’ and
m(x + k) = Blx + yIK.
It follows from collinearity that
aX = B(x)k'.
Also. it is clear that
o f(x, ) = [(B(x), By)) forall x,y € M.

This completes the proof when dim V = 2n. In particular, in the
symplectic situation where o is the identity mapping and ¢ = —1, the
theorem has been established.

4. The general case. We now complete the proof of the theorem in the

general situation. Since 7:S(§) — S(§) 1s a thick collineation, by the
results of the previous section. there exists a place ¢:k — k' U co and a
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free unimodular 4-module
n
M, = I—l:l(uIA + v,A)
where

n = I(g) = l(g’) =3 andf(ui, VI) — 8(/_’ 1 = i,j =n

(after normalizing the form f). Moreover, there is a g-semilinear mapping
By:My — V" such that

7X = By(My, N X)k' for all points X in S(§) N P(Myk).

We must extend M, to an 4-module M in V with Mk = V, and B to a
¢-semilinear mapping §:M — V” which induces 7.

Let By(u;) = ujand By(v;,) = v;, 1 =i =n,and V = Mgk L. W where W
is a subspace of V with Witt index i(§|W) = 0. The polar space S(§’) may
be associated with a (o', €’)-hermitian form f”, or with a (o', €’)-quadratic
form ¢’ with hermitian form f’. In either case, f’ can be normalized by
changing to a proportional form so that

S vy =8, 1=ij=n
¢(¢) = ¢ and
@(d®) = g(a)’ foralla € A.

Let
n
0= LWk + k) and V' = V)L W

where W’ is a subspace of V” with Witt index i(§|W’) = 0. Then
Bo(Mk' = V5,
Let M, be the set of all w € W for which there exists ¢ € A4 with
fw,w) = ¢+ e and g(w) = ¢ + kg,

when S(§) is associated with a pseudo-quadratic form g. We will prove
that M, is an A-module in W. Clearly wa € M, for all w € M, and
a € A, so it suffices to prove additivity. Let w € M, so there exists
¢ € A with

Jw,w) = ¢+ "€
(and g(w) = ¢ + k). Put
X = u — vic + w.
Then X = xk is a point in S(§) and by the properties of 7, its image

7X = (uyd — vic’ + w)k’ forsomec,d € k"andw € W.
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Let
r=u + v+ uy — vyce
Then
Sx.r)y =f(r,r) =0
so that X + rk is a line in S(§). Hence
S/ (By(r), 7X) = 0
and consequently ¢ = ¢(c)d’. If & = 0, then ¢/ = 0 and w' = 0 since
i(gw) = 0.

As this is impossible, & # 0 and we may assume after changing w’ by a
scalar, that & = 1 and ¢/ = ¢(c). Now let z be a second element in M.
Then

f(z,z) = a + d°%

(and ¢g(z) = a + ku) for some a € A. Let
b=fwz) ek

If we show b € A then it follows that w + z € M, since
fow+z,w+z)=e+ % withe=a+b+ceAd

(and g(w + z) = e + k, ). Let Y be the point (vib + u; — v,a — z)k in
S(¢). Then X + Y is a line in S(§). Analogously to the argument with X
above.

7Y = (MY + uy — viela) — Z')K’

for some b’ € k' and 2/ € W’; it is impossible for 7Y = vik’ since
f(wX, nY) = 0.

Thus
b = f'w, 7).

Also Y + (u; — vyb%)k is a line in S(§). If b & A, then

m(u; — vb’e)k = vk’

forces
S(@Y, vy =0,
a contradiction. Hence » € A and then ' = ¢(b). Thus M, is an

A-module. We have also shown that

of(w, 2)) = f'(W, 2),
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and when S(§) and S(¢’) are both associated with pseudo-quadratic forms,
that

q'(w) = aelg(w)).
The above argument also shows that if w € M. so there exists ¢ € 4
with f(w, w) = ¢ + (%. then the image of the point X = xk where

X =u —victwis

7X = (4} — Vig(c) + w)k’ for some w € W'.
Define 8,:M, — W by B,(w) = w'. We will prove that 8, is a
¢-semilinear mapping. If ¢ € m. the unique two-sided ideal of 4. then
ffw'.w)) = 0
(and ¢'(w’) = 0). Since i(¢IW’) = 0. it then follows that w = 0. In
particular,
By(wa) = 0 = By (w)e(a) forallw € M, and a € m.

Forw € M, lett = v + w where v is a primitive element of M|, (so
v & Mym) with tk € S(§). Then, by an argument analogous to one used
before.

atk = (By(v) + w”)k’ for some w” € W'.

(In fact, after changing the basis of M. we may assume v = u; — v;a with
a € A in some new basis #, vy, ..., u,. v, associated with a polar frame.
and the result follows from the g-semilinearity of 8, on M,,.) We next show
w” = B, (w). For those v € M, for which f(x, 1) = 0 this is clear since
(x — t)k lies in S(§) N P(Myk). so that m(x — 1)k must be collinear with
7X and wtk. In the remaining case, it follows after constructing a new
point of this same type orthogonal to both X and k. This construction is
possible since n = 3. Thus

7(v + w)k = (By(v) + Byw) )k’
It is now easily seen that B, is an additive homomorphism and
By (wa) = B, (w)e(a) for all units a € A.

Thus B, is a g-semilinear mapping.

Next we prove M, k = Wsothat M = M, L M is an A-module with
Mk = V. Let w € W. Since f is trace-valued there exists ¢ € k such
that

fw,w) = ¢ + %

(and g(w) = ¢ + k,. when S(£) is associated with a pseudo-quadratic
form q). If ¢ € A, then w € M. Otherwise, cl'edandwe ' € My
since
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fove Lwe ) = e + %
where
e=(c ) e A

Hence M,k = W.
Define a ¢-semilinear mapping 8:M — V’ by

B + w) = Byv) + By (w) forallv € Myandw € M.

Then B induces 7. For let X = xk € S(§) where x = v + w withv € M,
primitive and w € W’. Then

Swow) = —=f(v, v)
(and g(w) = —q(v)). Since v € M|, there now exists ¢ € A4 such that
fw,w) = ¢ + %

(and g(w) = ¢ + k). Hencew € M, and x € M.Since M N X = x4 it
follows that

X = Bk = B(M N X)k'.

This completes the proof of the main statement of the theorem. We have
also shown that f and f’ can be chosen such that

o(f(x, ) = f'(B(x), B(y)) forallx.y € M.
If f(My,, M,,) € m, then (see note added in proof)
BM,) =0 and BWM)K' = V.
In this case take M(1) = M, and M(2) = M,,. Then
M = M(l) L M(Q2)

with M(1) a free unimodular 4A-module of rank 2n. It is possible to
construct examples where M(2) is not free.
Now assume there exist w. z € M, with f(w, z) = 1. Let

Bw) =w and B(z) = 7.
Then
S, 2) = o(l) =1

and hence w’ # 0 and z’ # 0. If f(w, w) is a unit in 4, then w4 is a free,
rank one, orthogonal direct summand of M. Likewise if f(z, z) is a unit.
If neither f(w. w) nor f(z. z) are units. then wA + zA is a unimodular free.
rank two, orthogonal direct summand of M. Since now

T, w) = e(f(w,w)) =0,
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the polar space S(£) must be associated with a pseudo-quadratic form ¢’
with ¢'(w’) # 0 (and the characteristic of K’ must be two). Proceeding in
this fashion we obtain a splitting

M= M) L MQ)
where
MQ1)=M,L B, L...L B,

with the B, free unimodular A-modules of rank one or two, while M(2) is
an A-module with

S(MQ2), M(2)) € m.

Thus B(M(2)) = 0. The A-module M(1) is unimodular and free with rank
equal to the dimension of B(M) over ¢(A4). This completes the proof of the
theorem.

Remarks. In the splitting M = M(1) L M(2) the components M (1) and
M (2) are not uniquely determined. If the valuation ring A is discrete, then
M (2) will be free and m-modular and M = M (1) L M(2) is just a splitting
into Jordan components. In general, M(2) will not be free.

Since there is no assumption that the collineation

7:8(§) = S(¢&)
is surjective, in general
o(4) # k' and BM)K # V.

In fact, it is not necessarily true that B(M)k’ and V’ have the same
dimension over k’. However, if it is assumed that « is surjective, although
not necessarily injective, it is easily seen that

(P(A) = k/, B()(M()) = V6 and
BM) = BM(1)) = V"

Note added in proof. There is an exceptional situation for part of the
theorem we had not noticed before. Assume the characteristic of k' is two,
S (&) is a polar space associated with a pseudo-quadratic form and 7 is not
surjective. It is then possible for B(M(2)) # 0, so the statement about
M(1) and M(2) in the theorem should be omitted for this situation. The
main part of the theorem is not affected.
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