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We consider a phase-field model for the incompressible flow of two immiscible fluids.
This model extends widespread models for two fluid phases by including a third, solid
phase, which can evolve due to e.g. precipitation and dissolution. We consider a simple,
two-dimensional geometry of a thin strip, which can still be seen as the representation of a
single pore throat in a porous medium. Under moderate assumptions on the Péclet number
and the capillary number, we investigate the limit case when the ratio between the width
and the length of the strip goes to zero. In this way, and employing transversal averaging,
we derive an upscaled model. The result is a multi-scale model consisting of the upscaled
equations for the total flux and the ion transport, while the phase-field equation has to
be solved in cell problems at the pore scale to determine the position of interfaces. We
also investigate the sharp-interface limit of the multi-scale model, in which the phase-field
parameter approaches 0. The resulting sharp-interface model consists only of Darcy-scale
equations, as the cell problems can be solved explicitly. Notably, we find asymptotic
consistency, that is, the upscaling process and the sharp-interface limit commute. We
use numerical results to investigate the validity of the upscaling when discontinuities are
formed in the upscaled model.

Key words: porous media, multiphase flow

1. Introduction

Multi-phase flow and reactive transport in porous media are encountered in many
important fields, including geological CO2 sequestration, geothermal energy, groundwater
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management, oil recovery and ion exchange in fuel cells. While the modelling of
multi-phase flow is itself a challenging task, the examples given before have in common
that the solid matrix of the porous medium can change in time due to processes such as
precipitation or dissolution, which, in turn influence the flow behaviour.

Another common point of the processes mentioned before is that they take place in a
porous medium. In this case, two different length scales are encountered. The first is the
pore scale, where each phase (solid, or fluid) can be identified clearly, occupying certain
positions in well-defined volumes. The second is the so-called Darcy scale, which is used
in most situations of practical relevance, and where averaged quantities are used to describe
the behaviour of the system.

Such processes can be modelled at different scales. When formulated at the pore scale,
the models are capable of describing the detailed processes accurately. On the other hand,
they are defined in a highly complex domain, the union of the pores of in the porous
medium, and this makes such models difficult to use for real-life applications. Instead,
Darcy-scale models are formulated without taking into account the detailed behaviour of
the system at the pore scale, employing constitutive relationships that are stated directly at
this larger scale. Therefore, one may say that Darcy-scale models are suited for practical
applications, but are missing the accuracy of the pore-scale models. In this context,
upscaling is a natural way to derive mathematical models that, on one hand, can be used
for practical applications, and, on the other hand, do incorporate accurately the processes
taking place at the pore scale. We refer to Dentz et al. (2011) for an overview of reactive
transport models in porous media.

In detail, we are interested here in the situation where two immiscible fluid phases
occupy the pore space of a porous medium. One fluid phase contains ions that can
precipitate at the fluid–solid interfaces. This leads to the formation of a precipitate layer at
the pore walls, which reduces the space available for the fluid. The reverse process, that is
the dissolution of the mineral phase into the fluid phase, is also allowed. In this case, the
volume of the precipitate is reduced, while the volume available for flow is increased, and
more ions are dissolved in the fluid phase. More precisely, the pore-scale model uses the
conservation of mass, momentum and of the dissolved ions in each phase. The challenging
aspect here is related to the fact that the spaces occupied by each of the two fluids, as well
as by the mineral, can change over time in an a priori unknown manner. Therefore, the
different phases are separated at the pore scale by free boundaries, which are unknowns
in the model. After upscaling, these free boundaries translate into unknown Darcy-scale
quantities such as fluid saturation, mineral concentration or the porosity and permeability
of the medium. In particular, the latter become time- and space-dependent unknowns,
satisfying evolution equations. This is not the case of commonly used Darcy-scale models,
where, as mentioned, a given relationship between quantities at the Darcy scale is assumed
(e.g. the Cozeny–Kármán relationship).

Different approaches have been proposed when developing mathematical models for
applications involving free boundaries at the pore scale. For a simple geometry, which
is basically a long, thin strip (in two spatial dimensions) or tube (in three dimensions)
the free boundaries can be viewed as functions of one or two variables. In this sense we
mention van Noorden (2009a) for a model describing precipitation and dissolution but for
one fluid phase, which has been extended in Agosti et al. (2016), Bringedal et al. (2015),
Kumar, van Noorden & Pop (2011) and Kumar, Wheeler & Wick (2013) to incorporate
non-isothermal or mechanical effects, or in different flow and reaction kinetics regimes
but still for the saturated, single-phase flow, and Mikelić & Paoli (2000); Mikelić (2009);
Picchi & Battiato (2018); Sharmin, Bringedal & Pop (2020); Lunowa, Bringedal & Pop
(2021) for unsaturated single-phase flow or two-phase flow models.
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For more complex geometries, level sets can be employed to describe the evolution of
the free boundaries. In this respect we refer to van Noorden (2009b), as well as to Bringedal
et al. (2016); Schulz et al. (2017); Schulz (2019), all considering models for precipitation
and dissolution in a water-saturated porous medium.

When applying any of both approaches mentioned before, one has to deal with
(freely) moving interfaces. This makes not only the mathematical analysis, but also the
development of efficient numerical scheme, a challenging task. Alternatively, one can use
phase fields to approximate the interfaces between phases by diffuse transition zones with
small positive width. The phase fields are smooth approximations of the indicator function
of each phase. The evolution of the phase fields is usually derived as the gradient flow to a
free energy and, in the limit case when passing the diffuse-interface parameter, one should
recover the original, free boundary model.

Commonly used phase-field models involve either the Allen–Cahn equation (Allen &
Cahn 1979) or the Cahn–Hilliard equation (Cahn & Hilliard 1958). While the Allen–Cahn
equation is of second order and ensures that the phase-field indicators remain essentially
bonded by zero and one, it is not conservative. Therefore, we focus here on the
Cahn–Hilliard equation, which is of fourth order but conservative for the phase-field
indicators.

Models coupling the Cahn–Hilliard equations and the incompressible Navier–Stokes
equations have been developed for two fluid phases (Abels, Garcke & Grün 2012), three
fluid phases (Boyer & Lapuerta 2006; Boyer et al. 2010) and more than three fluid
phases (Boyer & Minjeaud 2014; Dunbar, Lam & Stinner 2019). For the description of
fluid–solid interfaces, the Navier–Stokes equations can be solved in the fluid volume
fraction and a velocity of zero is assigned to the solid phase (Beckermann et al. 1999;
Sun & Beckermann 2004). Phase-field models are also used in Baňas & Mahato (2017),
Bunoiu et al. (2020), Daly & Roose (2015), Metzger & Knabner (2021), Schmuck et al.
(2012) and Schmuck et al. (2013) as pore-scale models for two-phase flows in porous
media, and further Darcy-scale models are derived. Kinetic reactions at phase boundaries
have been introduced in van Noorden & Eck (2011) and Redeker, Rohde & Sorin Pop
(2016). The pore-scale model in Redeker et al. (2016) includes two immiscible fluid
phases and a mineral one, but the fluid phases only move due to curvature effects. Also,
the corresponding Darcy-scale model is derived by homogenization techniques. More
recently, phase-field models that couple precipitation and dissolution with fluid flow have
been developed in Bringedal, von Wolff & Pop (2020) (for one fluid phase, and for which
the Darcy-scale model is derived), and Rohde & von Wolff (2021) for a two-phase flow.

The starting point in this work is the Cahn–Hilliard–Navier–Stokes model developed
in Rohde & von Wolff (2021), which describes the processes at the pore scale. The
aim is to derive an upscaled model corresponding to the Darcy scale. We consider the
simplified geometry of a thin strip, and assume that the ratio of the width of the strip
and its width is small. We employ asymptotic expansion methods that use this ratio as
expansion parameter, and derive upscaled equations for transversally averaged quantities.
In this respect, we follow the ideas in Bringedal et al. (2015), Kumar et al. (2011) and
van Noorden (2009a) for one-phase flow including precipitation and dissolution effects at
the pore walls, and Mikelić & Paoli (2000); Mikelić (2009); Sharmin et al. (2020) and
Lunowa et al. (2021) for two-phase flow, all considering a thin strip or tube. Observe that
the pore-scale models in these works mentioned above involve free boundaries. Instead,
for the phase-field pore-scale model in Bringedal et al. (2020) describing the flow of
one fluid phase but including precipitation and dissolution, a Darcy-scale model is also
derived for a thin strip by transversal averaging, in comparison with the one obtained by
homogenization in more general situations.
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We recall that the geometry considered here is simplified, a long and thin pore. In this
case, asymptotic expansion methods and transversal averaging are sufficient to derive
the Darcy-scale models. For completeness, we mention that, for general geometries,
different techniques may be needed. Restricted to processes involving free boundaries at
the pore scale, and particularly to two-phase flows, with or without mineral precipitation
or dissolution, both homogenization and volume averaging methods are suited for deriving
Darcy-scale models. Homogenization is used in Bringedal et al. (2016), van Noorden
(2009b), Schulz et al. (2017) and Schulz (2019) for models based on level sets, and in
Bunoiu et al. (2020), Bringedal et al. (2020), Redeker et al. (2016) and Schmuck et al.
(2013) for phase-field approaches. Alternatively, volume averaging methods are used e.g.
in Bahar et al. (2016), Quintard & Whitaker (1988), Quintard & Whitaker (1994), Whitaker
(1986) and Tartakovsky et al. (2007) to derive Darcy-scale models for two-phase flow or
reactive transport in porous media. Finally, we also mention that Darcy-scale models for
problems of the type discussed here can be obtained by the thermodynamically constrained
averaging theory, as done in Gray & Miller (2005), Jackson et al. (2012) and Rybak, Gray
& Miller (2015).

The main contributions here are threefold. First, starting from a pore-scale model,
asymptotic expansion arguments are employed to derive a two-scale model for the
two-phase flow in a porous medium, in which the dissolution and precipitation effects
are taken explicitly into account. Compared with commonly used Darcy-scale models,
instead of postulating relationships between the Darcy-scale quantities such as porosity
and permeability, these are obtained here by solving (pore-scale) cell problems. Also, the
situation considered here is more complex than in previous publications with a similar
focus, as the flow of both fluids is governed by the Navier–Stokes equations, and the
flow is coupled to dissolution and precipitation. Second, it is shown that, when letting the
Cahn number approach zero, the limit of the two-scale phase-field model is an upscaled
sharp-interface model. Finally, it is shown that the two processes, the upscaling and the
sharp-interface limit, do commute. In other words, when starting with a diffuse-interface
model at the pore scale, the order in which the Cahn number and the aspect ratio of the pore
approach zero makes no difference, the result being in either case the upscaled counterpart
of the sharp-interface model.

This paper is organized as follows. First, in § 2 a sharp-interface model for two
fluid phases and one solid phase (including precipitation and dissolution) is presented.
This model is approximated by the phase-field model proposed by Rohde & von Wolff
(2021), which is discussed briefly in § 3. After bringing the phase-field model to a
non-dimensional form in § 4, in § 5 we derive its upscaled counterpart by considering
a thin strip geometry. The upscaled model still uses phase-field variables to locate the
diffuse interfaces. In § 6 we identify the sharp-interface limit, that is the limit when letting
the diffuse-interface width go to zero. Notably the upscaling and the sharp-interface limit
commute. The numerical examples discussed in § 7 conclude the work.

2. The sharp-interface model

We start by presenting the sharp-interface model, which is then approximated by a
phase-field model. For both the sharp-interface model and the phase-field model see Rohde
& von Wolff (2021) for more details. We let T > 0 stand for the maximal time. For each
t ∈ [0, T], an N-dimensional domain Ω (N = 2 or 3) is partitioned into three disjoint
subdomains, Ω1(t), Ω2(t) and Ω3(t). These are occupied by the two fluid phases and by
the solid phase, respectively. The interface between the domain Ωi and Ωj is denoted by
Γij (i, j ∈ {1, 2, 3}, i /= j). Observe that these interfaces also depend on time.
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With t ∈ (0, T], in the fluid occupied subdomains Ωi(t), i ∈ {1, 2} the model is governed
by the incompressible Navier–Stokes equations

∇ · v = 0, (2.1)

∂t(ρiv) + ∇ · (ρiv ⊗ v) + ∇p = ∇ · (2γi∇sv), (2.2)

where ρi, γi denote the mass density, respectively viscosity of the fluid phase i, all assumed
constant here; v and p denote the fluid velocity and pressure in Ωi, the index i being
skipped. The symmetrized strain (Jacobian) is given by ∇sv = 1

2(∇v + (∇v)t).
At the interface Γ12(t) (separating Ω1(t) and Ω2(t)) we assume that the velocity v is

continuous and that the jump in the normal stress is only in the normal direction, and
proportional to the curvature of the interface

[[v]] = 0, (2.3)

[[( pI − 2γ∇sv) · n]] = σ12κn, (2.4)

ν = v · n. (2.5)

Here, [[·]] denotes the jump of a quantity over the interface, n the unit normal vector
pointing outwards Ω1, κ the curvature of the interface and σ12 the constant surface tension
coefficient. Through the last condition, the normal velocity ν of the interface and the
normal velocity of the fluids are equal.

The subdomain Ω3(t) is occupied by a mineral. We assume that the mineral phase is
non-deforming and always connected to an outer boundary. Therefore, the mineral phase
is stationary, and we do not need to solve for a velocity field v here. Note that this does not
allow for small mineral grains that are transported by the fluid flow. The mineral phase is
formed by the precipitation of two solute species present in fluid 1. The reverse process,
in which the mineral can be dissolved and release solute in fluid 1 is also possible. In a
simplified setting, assuming a constant electrical charge, it suffices to consider only one
solute concentration in the model (see van Duijn & Knabner 1997), which is denoted by
c. Here, we assume that solute is only present in fluid 1. Therefore, the solute transport is
governed by the transport–diffusion equation in Ω1(t)

∂tc + ∇ · (vc) − DΔc = 0, (2.6)

where D is the constant diffusion coefficient.
The interface Γ13(t) is evolving due to precipitation and dissolution. At Γ13 one has

ν = −r(c) + ασ13κ, (2.7)

D∇c · n = ν(c∗ − c). (2.8)

The reaction rate r(c) appearing in the former is generic and only depending on the
solute concentration c. It accounts for dissolution and precipitation effects and is assumed
increasing in c. In a more general situation we would expect the reaction rate to also depend
on temperature. For the sake of simplicity we focus on the isothermal case here.

Remark 2.1. A simple reaction rate r(c) can be constructed by assuming a constant
dissolution rate k1 and a quadratic mass action law, with rate k2, for precipitation. With
this the reaction rate is given by

r(c) = −k1 + k2c2. (2.9)
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The last term in (2.7), involving a constant parameter α ≥ 0 and the constant surface
energy σ13, allows for curvature effects in the evolution of Γ13, e.g. an accelerated
dissolution of solid tips peaking into the fluid phase. For α = 0 no curvature effects enter
the model.

Equation (2.8) is the Rankine–Hugoniot condition, ensuring the conservation of the
solute species c. Here, c∗ is the (constant) molar concentration of the solute species, now
as part of the mineral phase Ω3. We refer to van Noorden (2009a) for the mathematical
modelling details. For a specific application, we refer to von Wolff et al. (2021), where
calcite precipitation is studied. There, c denotes the molar concentration of inorganic
carbon in the fluid, and c∗ is the molar density of calcium carbonate.

Equations (2.7) and (2.8) only hold at Γ13(t) and not at outer boundaries of Ω . That is,
we do not allow for precipitation and dissolution at the outer boundaries of Ω .

At the fluid–fluid interface Γ12(t), a similar Rankine–Hugoniot condition is
imposed

∇c · n = 0. (2.10)

As before, n is the unit normal vector pointing outwards Ω1. This condition ensures
conservation of the solute c, since the concentration c in fluid 2 is zero, and the normal
velocity of the two fluids and of the interface are equal.

In contrast to Γ13, no precipitation or dissolution are possible at the interface Γ23
between Ω2 and Ω3. This is because we assume that fluid 2 does not contain any solute
species. Therefore, the interface does not evolve, and its normal velocity is ν = 0.

At the interfaces between a fluid and the mineral we impose the no-penetration
condition

v · n = 0, (2.11)

at Γ12 and Γ23.

Remark 2.2. Equation (2.11) ensures conservation of mass, under the following
assumptions. First, we assume that the concentration of ions in the first fluid is small,
so the mass density ρ1 of this fluid phase is constant. Moreover, we assume that ρ1 also
equals the mass density ρ3 of the solid phase. In the more general case of ρ1 /= ρ3, a
volume change associated with the reaction may appear, and one obtains the more general
interface condition

− ρ1v · n = ν[[ρ]], (2.12)

at Γ12 and Γ23. We refer to van Noorden (2009a) for more details on this aspect. For the
sake of simplicity and because we assume that the normal velocity ν of the fluid–solid
interfaces is small, we will present the simplified case of (2.11).

Finally, at the interfaces between a fluid and the mineral a Navier-slip condition (see
Navier 1823) is assumed,

v · τ = −2Lslipτ(∇sv)n, (2.13)

at Γi3 (i ∈ {1, 2}). Here, τ ∈ R
N is any tangent vector to Γi3 (thus τ ⊥ n). The slip length

Lslip ≥ 0 is given by

Lslip = γ1

√
2

ρ3d0γ3
. (2.14)
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Here, ρ3 is the density of the solid phase, and the constant d0 will be determined by
choices in the phase-field model. As explained in Rohde & von Wolff (2021), γ3 is not
the viscosity of the solid phase, but can be chosen instead to archive a given slip length
Lslip in the relation (2.14). While the model allows for a positive slip length to account
for additional properties of the fluid–solid interface, e.g. surface roughness, one can also
choose γ3 large enough to get Lslip ≈ 0.

As a last step we consider points where the fluid–fluid interface Γ12 intersects the
solid boundary Γ13 ∪ Γ23. At these contact points all bulk domains Ω1, Ω2, Ω3 meet.
We assume that the set of contact points consist of distinct points when in two dimensions
and of distinct lines in the three-dimensional case. We focus first on the two-dimensional
case.

Given the constant surface energies σ12, σ13, σ23 > 0 we impose for the contact angle
the condition

sin(β1)

σ23
= sin(β2)

σ13
= sin(β3)

σ12
, (2.15)

with βi being the contact angle of phase Ωi at the contact point. Together with the
condition β1 + β2 + β3 = 2π this uniquely determines the contact angles βi. In the
three-dimensional case, the same condition (2.15) is imposed on the plane perpendicular
to the contact line.

3. The phase-field model

The sharp-interface model in § 2 involves free boundaries, which makes it difficult from
both the analysis and numerical points of view. Relying on the idea to approximate the
characteristic functions of each of the phases by smooth phase indicators (Caginalp & Fife
1988), phase-field models are convenient alternatives. For the specific problem considered
here, a phase-field model called δ-2f 1s-model was introduced in Rohde & von Wolff
(2021); here, we present it briefly for completeness. We refer to Rohde & von Wolff (2021)
for more details on the derivation and the properties of the model, including the derivation
of the sharp-interface limit.

3.1. Preliminaries
The δ-2f 1s-model introduces three phase-field variables φ1, φ2, φ3 that represent the
volume fraction of the two fluid phases and of the solid phase, respectively. Thus, φi
approximates the indicator function of Ωi appearing in the sharp-interface model in § 2.
The phase-field variables Φ = (φ1, φ2, φ3)

t are smooth and defined on the entire domain
Ω . In the sharp-interface model, the transition from one phase to another is across an
interface. In the phase-field model, this interface is replaced by a diffuse transition zone
from one phase to another, where the gradients of the corresponding phase-field variables
are high. A ternary Cahn–Hilliard equation governs the evolution of Φ, and is coupled
with a Navier–Stokes equation for fluid flow, and a reaction–transport–diffusion equation
for dissolved ion concentration c.

The δ-2f 1s-model additionally introduces a small regularization parameter δ > 0. Since
no maximum principle holds for the Cahn–Hilliard equation, δ is used to ensure the

941 A49-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.308


L. von Wolff and I.S. Pop

positivity of the volume fractions. Also, the double-well potential

Wdw(φ) = 450φ4(1 − φ)4 + δ�

(
φ

δ

)
+ δ�

(
1 − φ

δ

)
,

with �(x) =
⎧⎨
⎩

x2

1 + x
x ∈ (−1, 0),

0 x ≥ 0,

(3.1)

is employed. Observe that Wdw has two minima at 0 and 1, and becomes unbounded at −δ

and 1 + δ. With this, we define the triple-well potential

W(Φ) := W0(PΦ), where W0(Φ) =
3∑

i=1

ΣiWdw(φi). (3.2)

Here, Σi > 0 are surface energy coefficients, and P is the projection of R
3 onto the plane∑

i φi = 1, given by

PΦ = Φ + ΣT(1 − φ1 − φ2 − φ3)

⎛
⎝Σ−1

1
Σ−1

2
Σ−1

3

⎞
⎠ ,

1
ΣT

= 1
Σ1

+ 1
Σ2

+ 1
Σ3

. (3.3a,b)

As shown in Rohde & von Wolff (2021), this construction ensures that the volume fractions
sum to one, i.e.

∑3
i=1 φi = 1, provided the initial data have this property. Furthermore,

Rohde & von Wolff (2021) uses an energy argument and the unboundedness of the
potential to show that −δ < φi < 1 + δ (i = 1, 2, 3).

Next, we define the total fluid volume fraction φ̃f and ion-dissolving fluid fraction φc as

φ̃f := φ1 + φ2 + 2δφ3, (3.4)

φc := φ1, (3.5)

φ̃c := φ1 + δ. (3.6)

Here, the tilde denotes a modification using the small parameter δ, to ensure that the
respective variables are positive. Using the (constant) fluid densities ρi and viscosities
γi the total fluid density ρf and viscosity γ̃ become

ρf (Φ) := ρ1φ1 + ρ2φ2, (3.7)

ρ̃f (Φ) := ρ1φ1 + ρ2φ2 + (ρ1 + ρ2)δ, (3.8)

γ̃ (Φ) := (φ1γ
−1
1 + φ2γ

−1
2 + φ3γ

−1
3 + (γ −1

1 + γ −1
2 + γ −1

3 )δ)−1. (3.9)

3.2. The δ-2f 1s-model
We now present the δ-2f 1s-model. All equations are defined in (0, T] × Ω . The flow is
governed by the Navier–Stokes equations and involves the fluid fraction φ̃f ,

∇ · (φ̃f v) = 0, (3.10)

∂t(ρ̃f v) + ∇ · ((ρf v + ρ1J 1 + ρ2J 2) ⊗ v) = −φ̃f ∇p + ∇ · (2γ̃ (Φ)∇sv)

− ρ3d(φ̃f )v + S̃ + 1
2
ρ1vR. (3.11)
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Upscaling of a Cahn–Hilliard Navier–Stokes model

This is coupled with the transport–diffusion–reaction equation for the ion concentration

∂t(φ̃cc) + ∇ · ((φcv + J 1)c) = D∇ · (φ̃c∇c) + c∗R. (3.12)

The phase-field variables φ1, φ2, φ3 satisfy the Cahn–Hilliard equations

∂tφ1 + ∇ · (φ1v + J 1) = R, (3.13)

∂tφ2 + ∇ · (φ2v + J 2) = 0, (3.14)

∂tφ3 + ∇ · (2δφ3v + J 3) = −R, (3.15)

J i = −εM
Σi

∇μi, i ∈ {1, 2, 3}, (3.16)

μi = ∂φiW(Φ)

ε
− εΣiΔφi, i ∈ {1, 2, 3}. (3.17)

Compared with the common Navier–Stokes equations, some modifications appear in
(3.11). The fluid density ρ̃f (Φ) introduces a strong coupling between the Navier–Stokes
equations and the Cahn–Hilliard equations. All terms except the advection term use
the modified quantities φ̃f , ρ̃f and γ̃ . Additional flux terms ρiJ i ⊗ v are introduced to
account for momentum fluxes due to the Cahn–Hilliard evolution. Secondly, the dissipative
term −ρ3d(φ̃f )v is added. Here, d is a decreasing function such that d(0) = d0 > 0 and
d(1) = 0, for example d(φ̃f ) = d0(1 − φ̃f )

2. The term d(φ̃f ) is therefore active in the solid
phase and guarantees that v remains small there. It also influences the slip length Lslip.
Lastly, the surface tension term S̃ is given by

S̃ = −μ2φ̃f ∇
(

φ1

φ̃f

)
− μ1φ̃f ∇

(
φ2

φ̃f

)
− 2δφ3∇(μ3 − μ1 − μ2). (3.18)

The reaction term R modelling precipitation and dissolution of ions is given by

R = −q(Φ)(r(c) + α̃μ1 − α̃μ3). (3.19)

Here, r(c) is the increasing reaction rate used in the sharp-interface description (2.7).
Additionally, the precipitation process can depend on curvature effects through surface
effects that are similar to surface diffusion, and are encountered if α > 0. Again, the tilde
denotes a modification of α, that is α̃ = α + δ. Finally, to concentrate the reaction inside
the diffuse interface region between fluid phase 1 and the solid phase, which is equivalent
to the assumption made in the sharp-interface model, the non-dimensional term q(Φ) =
30φ2

1φ2
3 is used. Observe that q dominates wherever neither φ1 nor φ2 are close to 0, which

is precisely the envisaged location for the fluid 1–mineral interface.

4. Non-dimensionalization

We proceed by bringing the δ-2f 1s-model (3.10)–(3.17) to a non-dimensional form, and
derived an upscaled counterpart of it by employing asymptotic expansion and averaging
techniques. We consider a simplified geometric setting. We start by introducing a thin strip
having length L and width � 
 L, as shown in figure 1.

With a chosen domain width �Ω > �, the domain Ω = [0, L] × [−�Ω/2, �Ω/2]
includes the thin strip mentioned above, which is identified as [0, L] × [−�/2, �/2]. The
region outside the strip is occupied by the mineral, so Φ ≈ (0, 0, 1)t there. The diffuse
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L

�Ω
�

ε

Figure 1. Setting of the thin strip: the strip with length L and width � consists of solid walls (red,
Φ ≈ (0, 0, 1)t) and fluid phases (light blue, dark blue). The diffuse-interface width ε is smaller than �.

interfaces are located in regions of width ε. We assume here that the diffuse-interface
regions remain clearly separated inside the thin strip, hence ε 
 �.

Three length scales can be identified, L � � � ε. These are related through the aspect
ratio β = �/L and the Cahn number Cn = ε/L, both assumed small. Observe that, in fact,
Cn 
 β 
 1.

The reference quantities used in the non-dimensionalization procedure are listed in
table 1. Non-dimensional values are then identified by a hat. Note that we relate only
few reference values directly to each other. In particular, we do relate reference values
when we want to emphasize an explicit dependence on yref , as seen for pref , dref and μref .
The choices are motivated as follows. To obtain an upscaled macroscopic velocity of order
vref = xref /tref , the pressure drop in the thin strip has to scale with 1/(yref )

2. Also, the
slip length Lslip is supposed to be of order � and not L, which is achieved by a momentum
dissipation scaling 1/(yref )

2.
We rewrite the Cahn number introduced above in terms of reference quantities, and

define other dimensionless numbers that are used below to relate the reference quantities:
the Reynolds number, Capillary number, Damköhler number and Péclet numbers of the
Cahn–Hilliard (CH) evolution and ion concentration

Re = ρref vref xref

γref
, Ca = γref vref

Σref
, Cn = εref

xref
,

Da = rref xref

vref
, PeCH = vref xref

Mref
, Pec = vref xref

Dref
.

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

Clearly, the non-dimensionalization also affects the spatial and temporal derivatives,
namely

∇̂ = xref ∇ and ∂t̂ = tref ∂t. (4.2a,b)

We now can insert the non-dimensional variables of table 1, the non-dimensional
numbers (4.1) and the non-dimensional operators in (4.2a,b) into the δ-2f 1s-model
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Upscaling of a Cahn–Hilliard Navier–Stokes model

Variable Reference value Non-dimensional variable

time tref = T t̂ = t/tref
space xref = L, x̂ = x/xref

yref = �, ŷ = y/yref
εref = ε ε̂ = 1

velocity vref = xref /tref v̂ = v/vref
density ρref = ρ1 ρ̂i = ρi/ρref , i ∈ {1, 2, 3}

ρ̂f = ρf /ρref
ˆ̃ρf = ρ̃f /ρref

viscosity γref = γ1 γ̂i = γi/γref , i ∈ {1, 2, 3}
ˆ̃γ = γ̃ /γref

pressure pref = γref vref xref /(yref )
2 p̂ = p/pref

momentum dissipation rate dref = γref /(ρref y2
ref ) d̂ = d/dref

surface energy Σref = Σ1 Σ̂i = Σi/Σref , i ∈ {1, 2, 3}
CH mobility Mref = M M̂ = 1
CH chemical potential μref = Σref /yref μ̂ = μ/μref

CH triple-well potential Wref = Σref Ŵ = W/Σref
molar concentration cref = c∗ ĉ = c/cref

diffusion coefficient Dref = D D̂ = 1
reaction rate rref r̂(ĉ) = r(c)/rref
interface-reaction diffusivity αref = rref /μref α̂ = α/αref

Table 1. Variables, reference values and non-dimensional quantities for the non-dimensionalization.

(3.10)–(3.17). The non-dimensional equations become

∇̂ · (φ̃f v̂) = 0, (4.3)

∂t̂(
ˆ̃ρf v̂) + ∇̂ · (ρ̂f v̂ ⊗ v̂) + Cn

βPeCH
∇̂ · ((ρ̂1Ĵ 1 + ρ̂2Ĵ 2) ⊗ v̂)

= − 1
β2Re

φ̃f ∇̂p̂ + 1
Re

∇̂ · (2 ˆ̃γ (Φ)∇̂sv̂)

− 1
β2Re

ρ̂3d̂(φ̃f )v̂ + 1
βRe

1
Ca

ˆ̃S + Da
1
2
ρ̂1v̂R̂, (4.4)

for the flow,

∂t̂(φ̃cĉ) + ∇̂ · (φcv̂ĉ) + Cn
βPeCH

∇̂ · (Ĵ 1ĉ) = 1
Pec

∇̂ · (φ̃c∇̂ĉ) + DaR̂, (4.5)

for the ion transport–diffusion–reaction, while for the Cahn–Hilliard evolution one gets

∂t̂φ1 + ∇̂ · (φ1v̂) + Cn
βPeCH

∇̂ · Ĵ 1 = DaR̂, (4.6)

∂t̂φ2 + ∇̂ · (φ2v̂) + Cn
βPeCH

∇̂ · Ĵ 2 = 0, (4.7)

∂t̂φ3 + ∇̂ · (2δφ3v̂) + Cn
βPeCH

∇̂ · Ĵ 3 = −DaR̂, (4.8)
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Ĵ i = − 1

Σ̂i
∇̂μ̂i, i ∈ {1, 2, 3}, (4.9)

μ̂i

β
= ∂φi Ŵ(Φ)

Cn
− CnΣ̂i∇̂2φi, i ∈ {1, 2, 3}. (4.10)

All equations are defined in the dimensionless time–space domain (0, 1] × Ω̂ , where Ω̂ =
[0, 1] × [−�̂Ω/2, �̂Ω/2]. The surface tension and reaction are given as

ˆ̃S = −μ̂2φ̃f ∇̂
(

φ1

φ̃f

)
− μ̂1φ̃f ∇̂

(
φ2

φ̃f

)
− 2δφ3∇̂(μ̂3 − μ̂1 − μ̂2), (4.11)

R̂ = −q(Φ)(r̂(ĉ) + ˆ̃αμ̂1 − ˆ̃αμ̂3). (4.12)

From here on, we will only work with the non-dimensional model and therefore the hats
are left out in the notation.

5. Upscaling in a thin strip

We now proceed by deriving the upscaled model, obtained when passing to the limit
β → 0. This means that the thin strip reduces to a one-dimensional object, as its width
is vanishing compared with its length.

We introduce new coordinates (x, y) such that x = (x, βy). In the thin strip we expect
all variables to vary in the longitudinal direction ex on the length scale L = xref and in the
transverse direction ey on the length scale � = yref = βxref . In particular, this will result
in ∇ = ex∂x + β−1ey∂y.

The non-dimensional domain is given by Ω = [0, 1] × [−�Ω/2, �Ω/2] (recall that we
dropped the hats in the notation) and we choose for the upscaling the boundary conditions
at y = ±�Ω/2 as

∂yΦ(t, x, ±�Ω/2) = 0, (5.1)

∂yμ(t, x, ±�Ω/2) = 0, (5.2)

∂yc(t, x, ±�Ω/2) = 0, (5.3)

v(t, x, ±�Ω/2) = 0. (5.4)

5.1. Scaling of non-dimensional numbers
The upscaled model will also depend on the scaling of the dimensionless numbers (4.1)
with respect to β. We consider the following behaviour of these numbers with respect to β

Re = Re, (5.5)

Ca = Ca, (5.6)

Cn = βε̄, (5.7)

Da = Da/ε̄, (5.8)

PeCH = 1/(β2M̄), (5.9)

Pec = Pec, (5.10)

where Re, Ca, ε̄, Da, M̄, Pec are constants independent of β. In detail, these choices are
motivated as follows.
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Upscaling of a Cahn–Hilliard Navier–Stokes model

• The moderate Reynolds number (5.5) leads to a parabolic flow profile in the thin
strip, we expect laminar flow.

• As the curvature of the fluid–fluid interface is of order O(β), choosing a moderate
capillary number Ca in (5.6) leads to the same pressure in both fluids, thus
the capillary pressure becomes 0 (for sharp-interface models see also Sharmin
et al. 2020; Lunowa et al. 2021). Note that this is a major difference to the
three-dimensional case (see e.g. Mikelić 2009) where we expect a curvature of
O(β−1) leading to a non-zero capillary pressure.

• The scaling of the Cahn number Cn in (5.7) can be reformulated to ε̄ = ε/�.
Therefore, the interface width ε scales with the width of the thin strip, �. At the
same time, the diffuse-interface regions are assumed to be localized inside the thin
strip, therefore we require ε 
 �. This translates into a fixed, small ε̄, i.e. ε̄ 
 1. In
the numerical experiments presented in § 7 we choose ε̄ = 0.03.

• We consider a moderate Damköhler number (5.8). In the sharp-interface model, this
would ensure that the interfaces move with moderate velocity inside the thin strip,
proportional to �/T . In the diffuse-interface model, the reaction is only active in the
diffuse-interface region, which has an area scaling with ε. Therefore, Da is divided
by ε̄, and expect to have fluid–solid or fluid–fluid interfaces evolving over the length
scale �. A dominating Damk’ ohler regime like Da = O(β−1) would instead lead to
equilibrium-type reactions in the upscaled model, but the evolution of the interfaces
should remain moderate. This can be achieved by assuming that the molar density
of the species in the precipitate is sufficiently high to compensate the fast reaction
kinetics.

• The high Péclet number (5.9) for the phase field assures that the evolution of the
phase field remains within the transverse length scale � in an O(1) time scale.

• The moderate Péclet number of the ion diffusion (5.10) will result in a macroscopic
diffusion of ions, while the ion distribution in the transverse direction equilibrates
faster than the O(1) time scale.

Lastly, the small, non-dimensional number δ > 0 appears in the δ-2f 1s-model. It is used
as a regularization parameter, to ensure the positivity of volume fractions, density and
viscosity. Here, we assume that δ is constant and independent of β.

5.2. Asymptotic expansions
We assume that we can write solutions to the non-dimensional δ-2f 1s-model (4.3)–(4.10)
in terms of an asymptotic expansion in β of Φ, v, p, c, μ1, μ2, μ3. To be precise, we
assume expansions of the form

Φ(t, x) = Φ0(t, x, y) + βΦ1(t, x, y) + β2Φ2(t, x, y) + · · · , (5.11)

where Φk, k ∈ N0 does not depend on β.
Inserting these asymptotic expansions into the non-dimensional δ-2f 1s-model we group

by powers of β. As the calculations are lengthy, we show them in Appendix A.

Remark 5.1. Note that the asymptotic expansions are written depending on the new
coordinates x and y. This means that in the ex direction variables cannot vary on
the (non-dimensional) length scale β, because a non-trivial function f (x/β) cannot be
expanded in the form f (x/β) = f0(x) + βf1(x) + · · · . In particular, this implies that there
are no phase-field interfaces possible perpendicular to the thin strip, as they would change
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the value of Φ over the length Cn = βε̄. We will discuss in § 7.2 a numerical example that
violates this assumption.

The assumption is also violated for triple points, where all three phases meet, and for
points where interfaces meet the boundary of Ω at y = ±�Ω/2. Therefore, �Ω has to be
chosen big enough, such that the width of the thin strip does not reach �Ω .

We will present in § 8 some ideas to handle cases where the assumption of slow variation
in the ex direction is violated.

5.3. The upscaled δ-2f 1s-model
Let us summarize the results of the upscaling done in detail in Appendix A. Except for
v we will only need the leading-order term of each unknown, and will therefore drop the
subscript 0. We will call the model (5.12)–(5.27) the upscaled δ-2f 1s-model.

From (A6) and (A21) we have the macroscopic continuity equation for the
total flux Qf and the Darcy equation for the pressure p, and the macroscopic
transport–diffusion–reaction equation for the ion concentration c (A18)

∂xQf = 0, (5.12)

Qf = −Kf ∂xp, (5.13)

d
dt

(φ̃c,totalc) + ∂x((−Kc∂xp)c) = 1

Pec
∂x(φ̃c,total∂xc) + Da

ε̄
Rtotal. (5.14)

These equations are macroscopic in the sense that the unknowns Qf , p and c depend
only on x and t, but not on y. The parameters in these equations are upscaled quantities,
depending on the exact distribution of the phases in the y direction

φ̃c,total =
∫ �Ω/2

−�Ω/2
φ̃c dy, (5.15)

Kf (t, x) =
∫ �Ω/2

−�Ω/2
φ̃f w dy, (5.16)

Kc(t, x) =
∫ �Ω/2

−�Ω/2
φ̃cw dy, (5.17)

Rtotal =
∫ �Ω/2

−�Ω/2
R dy. (5.18)

For the phase-field parameters we still have to solve the fully coupled two-dimensional
problem (A7), (A9), (A10), (A11), that is

∂tφ1 + ∂x(φ1v
(1)
0 ) + ∂y(φ1v

(2)
1 ) − ε̄M̄

Σ1
∂2

y μ1 = Da
ε̄

R, (5.19)

∂tφ2 + ∂x(φ2v
(1)
0 ) + ∂y(φ2v

(2)
1 ) − ε̄M̄

Σ2
∂2

y μ2 = 0, (5.20)

∂tφ3 + ∂x(2δφ3v
(1)
0 ) + ∂y(2δφ3v

(2)
1 ) − ε̄M̄

Σ3
∂2

y μ3 = −Da
ε̄

R, (5.21)

μi = ∂φiW(Φ)

ε̄
− ε̄Σi∂

2
y φi, i ∈ {1, 2, 3}, (5.22)
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Upscaling of a Cahn–Hilliard Navier–Stokes model

with the reaction term
R = −q(Φ)(r(c) + α̃μ1 − α̃μ3). (5.23)

Note that, in contrast to the non-dimensional model (4.3)–(4.10), the Cahn–Hilliard
evolution acts only in the ey direction. The only term acting in the ex direction is the
transport of the fluid phases. This will enable us in § 7.1 to develop a numerical model that
uses explicit upwinding for the fluid transport and can therefore decouple cell problems
for different values of x.

For the flow it suffices to solve the cell problem (A22), (A23)

ρ3d(φ̃f )w − ∂y(γ̃ (Φ)∂yw) = φ̃f , (5.24)

lim
y→±�Ω/2

w = 0, (5.25)

and recover the flow v
(1)
0 , v

(2)
1 by (A21) and (A5)

v
(1)
0 = −w∂xp, (5.26)

∂x(φ̃f v
(1)
0 ) + ∂y(φ̃f v

(2)
1 ) = 0. (5.27)

Note that, while the equations for the flow (5.24)–(5.27) do not explicitly depend on time,
they depend on the phase-field parameters Φ, which can change in time.

6. Sharp-interface limit of the upscaled δ-2f 1s-model

In the previous section we have investigated the scale separation β = �/L → 0. A different
limit process that is commonly investigated for phase-field models is the sharp-interface
limit ε → 0. In Rohde & von Wolff (2021) this limit is analysed for the δ-2f 1s-model
(3.10)–(3.17), resulting in the sharp-interface evolution described in § 2.

Because the upscaled δ-2f 1s-model (5.12)–(5.27) still contains a Cahn–Hilliard
evolution, depending on the small number ε̄ = ε/�, we can investigate the sharp-interface
limit ε̄ → 0 of the upscaled δ-2f 1s-model. This means that we are interested in the limit
process of vanishing diffuse-interface width ε compared with the width � of the thin strip.
In the following, we will use matched asymptotic expansions to analyse this limit, the
argumentation is mostly analogous to Rohde & von Wolff (2021).

6.1. Assumptions and scaling of non-dimensional numbers
To derive the sharp-interface limit ε̄ → 0, we assume that Pec, Da, M̄ are constant and
independent of ε̄. This choice of scaling allows for a reasonable limit process, with physical
properties independent of the diffuse interface width.

The scaling δ = ε̄ is important. The regularization parameter δ is introduced in
the δ-2f 1s-model to ensure the positivity of e.g. the density ρ̃f (Φ) in (3.8). This
δ-regularization is not necessary for the sharp-interface formulation, and the choice δ = ε̄

leads to δ vanishing in the sharp-interface limit.
As a basic assumption we expect to have solutions that form bulk phases, characterized

by nearly constant Φ, and interfaces, characterized by a large gradient of Φ. We also
assume that μi, i ∈ {1, 2, 3} is of O(1), not of O(ε̄−1), as (5.22) would suggest. For a
discussion of why this assumption is reasonable on a O(1) time scale, see Pego & Penrose
(1989).

We also assume that in an interface between phase Φ = ei and Φ = ej the third phase
is not present. This assumption is reasonable because with our constructions of W (3.2)
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minimizers of the Ginzburg–Landau energy W(Φ) +∑
i ΣiΔφi that connect Φ = ei and

Φ = ej satisfy φk = 0, k ∈ {1, 2, 3} \ {i, j}.
As the calculations for the sharp-interface limit are lengthy, we present them in

Appendix B. The sharp-interface limit consists of asymptotic expansions in the bulk
phases (in the variables x and y), asymptotic expansions in the interface regions (in the
variable x and a new variable z with characteristic length scale ε), and the matching of
these asymptotic expansions.

6.2. The upscaled sharp-interface model
We will summarize the results of the matched asymptotic expansions presented in
Appendix A. For this, we drop the subscript 0 and the superscript out for ease of notation.
We call (6.1)–(6.19) the upscaled sharp-interface model.

The macroscopic equations for the unknowns Qf , p and c are given by (B5), (B6) and
(B9), that is

∂xQf = 0, (6.1)

Qf = −Kf ∂xp, (6.2)

d
dt

(φc,totalc) + ∂x((−Kc∂xp)c) = 1

Pec
∂x(φc,total∂xc) + DaRinterface. (6.3)

The coefficients of the upscaled equations depend on the distribution of the phases in the
thin strip. In contrast to the upscaled phase-field model (5.12)–(5.27) the sharp-interface
limit does not depend on the phase-field variables Φ. Instead, the three disjoint domains
Ω1(t), Ω2(t) and Ω3(t) are used to locate the phases. The interface between Ωi and Ωj
is denoted by Γij. We introduce the notation Ωi|x = {y ∈ [−�Ω/2, �Ω/2] : (x, y) ∈ Ωi(t)},
and write N(Γ13) for the number of Γ13 interfaces at a given x. With (B10), (B7), (B11)
and (B53) we can calculate the coefficients of (6.1)–(6.3) as

φc,total(x) = vol(Ω1|x), (6.4)

Kf (t, x) =
∫

Ω1|x∪Ω2|x
w dy, (6.5)

Kc(t, x) =
∫

Ω1|x
w dy, (6.6)

Rinterface = −N(Γ13)r(c). (6.7)

We describe the evolution of the phases with the interface velocity ν. This velocity in
the y direction is given by (B45), (B 39), (B40), summarized as

ν = ±Dar(c) on Γ13, with Ω1 in the ± y direction, (6.8)

ν = 0 on Γ23, (6.9)

ν = −(∂xs)v(1)
0 + v

(2)
1 on Γ12. (6.10)

For the flow profile we solve at each x and t a cell problem for the unknown w.
Summarizing (B2), (B3), (B48), (B50) and the boundary condition (5.25), the unknown w
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Upscaling of a Cahn–Hilliard Navier–Stokes model

y

x

Ω3

Ω1

Ω2

Ω1

Ω3

Γ13

Γ12

Γ12

Γ13

d2(x,t)

d1(x,t)

Figure 2. Symmetric geometry of two fluid phases in a thin strip.

is given by the second-order differential equation

−∂y(γ1∂yw) = 1 in Ω1|x, (6.11)

−∂y(γ2∂yw) = 1 in Ω2|x, (6.12)

ρ3d0w − ∂y(γ3∂yw) = 0 in Ω3|x, (6.13)

[[w]] = 0 at Γ12, Γ13, Γ23, (6.14)

[[γ ∂yw]] = 0 at Γ12, Γ13, Γ23, (6.15)

w = 0 at y = ±�Ω/2. (6.16)

For the transport of the fluid–fluid interface Γ12 in (6.10) we need the flow velocities
v

(1)
0 and v

(2)
1 . We then get the horizontal flow velocity v

(1)
0 from (5.26), that is

v
(1)
0 = −w∂xp0. (6.17)

For the vertical flow velocity v
(2)
1 one has to solve (B4), (B29) and (B31), summarized

∂x(v
(1)
0 ) + ∂y(v

(2)
1 ) = 0 in Ω1 ∪ Γ12 ∪ Ω2, (6.18)

−(∂xs)v(1)
0 + v

(2)
1 = 0 on Γ13 and Γ23. (6.19)

6.3. Upscaled sharp-interface model in a simplified geometry with symmetry
The upscaled sharp-interface model (6.1)–(6.19) uses no assumption on how the phases
are distributed. When these are appearing in a fixed order, the model simplifies. In this
case, there is no need to consider a general subdomain Ωi for the phase i, it is sufficient to
know the width of the phase i layer in the y direction. These widths become unknowns of
the model.

We assume here the following simplified geometry. The solid phase (in Ω3) is covered
by a film of fluid 1 (occupying Ω1). The second fluid (in Ω2) is located in the middle of
the thin strip. For simplicity, we assume symmetry around the x-axis. An illustration of the
geometry is given in figure 2.
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With functions d1(t, x) > 0, d2(t, x) > 0, representing the width in the y direction of the
fluid phase 1, respectively 2, we can describe this situation by defining

Ω2(t) = {(x, y) : −d2(t, x) < y < d2(t, x)}, (6.20)

Ω1(t) = {(x, y) : −d1(t, x) − d2(t, x) < y < −d2(t, x)}
∪{(x, y) : d2(t, x) < y < d1(t, x) + d2(t, x)}, (6.21)

Ω3(t) = {(x, y) : −�Ω/2 < y < −d1(t, x) − d2(t, x)}
∪{(x, y) : d1(t, x) + d2(t, x) < y < �Ω/2}. (6.22)

In this geometry the solution w to the cell problem (6.11)–(6.16) depends only on the
variables d1 and d2, and on the choice of �Ω . With a lengthy calculation we find that
the terms depending on �Ω decay exponentially fast for big �Ω , and we drop them in the
following. The remaining terms lead to

Kf = 2
γ1

(
(d1 + d2)

3

3
+
(

γ1

γ2
− 1

)
d3

2
3

+ Lslip(d1 + d2)
2

)
, (6.23)

Kc = 2
γ1

(
d3

1
3

+ d2
1d2

2
+ Lslipd1(d1 + d2)

)
, (6.24)

with the slip length Lslip given by

Lslip = γ1√
ρ3d0γ3

. (6.25)

We can relate ∂td1 and ∂td2 with the interface velocities (6.8)–(6.10). Considering the
fluid–solid interface Γ13 we get with (6.8)

∂t(d1 + d2) = ν = −Dar(c), (6.26)

while for the fluid–fluid interface Γ12 we calculate with (6.10), (6.18) and (6.19)

∂td2 = ν = −(∂xd2)v
(1)
0 (t, x, d2) + v

(2)
1 (t, x, d2)

= −(∂xd2)v
(1)
0 (t, x, d2) + v

(2)
1 (t, x, d2)

+ (∂x(d1 + d2))v
(1)
0 (t, x, d1 + d2) − v

(2)
1 (t, x, d1 + d2)

= (∂x(d2 + d1))v
(1)
0 (t, x, d1 + d2) − (∂xd2)v

(1)
0 (t, x, d2) −

∫ d2+d1

d2

∂yv
(2)
1 (t, x, y) dy

= (∂x(d2 + d1))v
(1)
0 (t, x, d1 + d2) − (∂xd2)v

(1)
0 (t, x, d2) +

∫ d2+d1

d2

∂xv
(1)
0 (t, x, y) dy

= ∂x

(∫ d2+d1

d2

v
(1)
0 (t, x, y) dy

)
. (6.27)

The integral equals the total fluid flux in the x direction in the upper half of Ω1. We use
(6.17), (6.6) and the symmetry of w around y = 0 to further calculate

∂td2 = ∂x

(∫ d2+d1

d2

v
(1)
0 dy

)
= −∂x

(
(∂xp)

∫ d2+d1

d2

w dy
)

= −1
2
∂x (Kc∂xp) . (6.28)
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Fully resolved
diffuse interface model

Upscaled
diffuse interface model

β → 0

Fully resolved
sharp interface model

ε̄ → 0

Upscaled
sharp interface model

ε̄ → 0

β → 0

Figure 3. Models obtained by upscaling (β → 0) and the sharp-interface limit (ε̄ → 0).

We can now summarize (6.1), (6.2), (6.3), (6.26) and (6.26) as an upscaled model for
the unknowns d1, d2, p, Qf and c

∂td1 + ∂td2 = −Dar(c(t, x)), (6.29)

∂td2 = −1
2
∂x(Kc(d1, d2)∂xp), (6.30)

Qf = −Kf (d1, d2)∂xp, (6.31)

∂xQf = 0, (6.32)

d
dt

(2d1c) + ∂x((−Kc(d1, d2)∂xp)c) = 1
Pec

∂x(2d1∂xc) − 2Dar(c). (6.33)

Remark 6.1. We can rewrite (6.30) and (6.31) to highlight the hyperbolicity of the model.
As discussed in Remark 5.1 one assumption for the upscaling is that there is no occurrence
of triple points. Therefore, we assume d1 > 0 and d2 > 0 and deduce Kf > 0, Kc > 0. We
can now calculate

∂td2 = 1
2

Qf ∂x

(
Kc(d1, d2)

Kf (d1, d2)

)
. (6.34)

The unknown d2 gets transported with flux Qf Kc/Kf and can show hyperbolic behaviour,
such as the formation of discontinuities.

6.4. Asymptotic consistency
In § 5 we have investigated the limit process β → 0, while in § 6 we examined ε̄ → 0. A
common question is under which circumstances there is asymptotic consistency, i.e. these
two limit processes commute. In figure 3 all limit processes are shown in a commutative
diagram.

We investigate asymptotic consistency with non-dimensional numbers chosen as
in (5.5)–(5.10) with Re, Ca, Da, M̄, Pec constant and independent of ε̄ and β. The
non-dimensional δ is chosen as δ = ε̄.

When starting with the fully resolved diffuse-interface model (4.3)–(4.10) the limit ε̄ →
0 results in a sharp-interface model as described in § 2. For details on this sharp-interface
limit, see Rohde & von Wolff (2021).

When we assume the geometry of § 6.3 we can proceed to upscale the fully resolved
sharp-interface model after introducing d1 and d2. While the process is tedious, the
main ideas are analogous to the calculations in Sharmin et al. (2020). In particular, the
asymptotic expansion of interface conditions, normal vectors and curvature have to be
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handled with care, as the coordinates x = (x, βy) depend on β. For sake of brevity we
skip this calculation here.

With the geometry of § 6.3 we find asymptotic consistency, that is the limit
processes β → 0 and ε̄ → 0 commute. The result of the upscaling of the fully resolved
sharp-interface model is exactly given by (6.29)–(6.33).

Remark 6.2. In more general geometries, asymptotic consistency does not necessary hold.
This is due to the following observation. When upscaling a fully resolved diffuse-interface
model, the parameter δ is constant and independent of β. This leads to φ̃f > 0 and
φ̃c > 0 everywhere. Because of this, we obtain upscaled equations for p and c without
further assumptions on the geometry. The upscaled variables p and c do not depend on
y, even if the geometry consists of two parallel channels separated by a solid region with
Φ ≈ e3. On the other hand, when upscaling the fully resolved diffuse-interface model,
the δ-modifications have already vanished, as δ = ε̄. In this case, it is possible to have a
different pressure p in each channel, that is in each connected part of �Ω1|x ∪ Ω2|x. Also,
it is possible to have a different ion concentration c in each connected part of Ω1|x.

We conclude that we have asymptotic consistency under the condition that there is only
one flow channel, i.e. �Ω1|x ∪ Ω2|x is connected for every x, and that the first fluid phase is
connected, i.e. Ω1|x is connected for every x. It is also possible to consider the symmetric
case as in § 6.3 and have two symmetric connected parts of fluid one.

7. Numerical investigation

We will now compare the upscaled δ-2f 1s-model (5.12)–(5.27) with the fully resolved
δ-2f 1s-model (4.3)–(4.10). Remark 6.1 suggests that shock fronts can form in the upscaled
model. Note that in this case the assumptions for the upscaling in § 5 are no longer valid,
and we expect different behaviours from the two models.

For the fully resolved δ-2f 1s-model (4.3)–(4.10) we use a monolithic finite-element
implementation provided by the DUNE-Phasefield module (von Wolff 2021). We employ
Taylor–Hood elements for the flow variables velocity and pressure, and first-order
Lagrange elements for the ion concentration and the phase-field parameters. The
implementation is based on DUNE-PDELab (Bastian, Heimann & Marnach 2010) using
ALU-Grid routines for adaptive grid generation (Alkämper et al. 2016).

7.1. Numerical scheme for the upscaled δ-2f 1s-model
The upscaled δ-2f 1s-model consists of multiple coupled problems. The upscaled
(5.12)–(5.14) for the unknowns Qf , p and c have parameters (5.15)–(5.18) that depend
on the distribution of phases in the y-direction. This distribution is described by the
fully coupled two-dimensional problem (5.19)–(5.22) for the Cahn–Hilliard variables
φ1, φ2, φ3, μ1, μ2, μ3. Furthermore, the flow profile has to be calculated by the cell
problem (5.24) and (5.25).

For simplicity, we present the numerical scheme for equidistant time steps tn = nΔt
and equidistant discretization in x by xk = kΔx. Let also xk+1/2 = (xk + xk+1)/2. For
each tn, xk we discretize the one-dimensional unknown φn

1,k( y) = φ1(tn, xk, y) with linear

Lagrange elements, and analogously for φn
2,k, φ

n
3,k, μ

n
1,k, μ

n
2,k, μ

n
3,k, v

(1),n
0,k , v

(2),n
1,k , wn

k .
Again, we also use this notation for other variables such as φ̃n

f ,k.
We discretize the macroscopic unknown c(t, x) with a finite volume scheme, that

is cn(x) = c(tn, x) is piecewise constant with c(tn, x) = cn
k for x ∈ (xk−1/2, xk+1/2).

941 A49-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.308


Upscaling of a Cahn–Hilliard Navier–Stokes model

The pressure pn(x) = p(tn, x) is discretized using linear Lagrange elements with nodes
xk+1/2. Therefore, ∂xp is constant on each finite volume cell (xk−1/2, xk+1/2).

Given Φn
k, cn

k for all xk at time tn, we now calculate the next time step using the following
algorithm.

(i) For each xk use (5.24) and (5.25) to solve for wn
k( y). Here, we use Φ = Φn

k and the
finite element method to discretize the equation. The equations for different xk are
independent and can be solved in parallel.

(ii) For each xk calculate Kn
f ,k and Kn

c,k by

Kn
f ,k =

∫ �Ω/2

−�Ω/2
φ̃n

f ,kwn
k dy, Kn

c,k =
∫ �Ω/2

−�Ω/2
φ̃n

c,kwn
k dy. (7.1a,b)

(iii) Solve for pn(x) using the finite element method with

∂x(−Kn
f ∂xpn) = 0. (7.2)

Here, Kn
f (x) = Kn

f ,k for x ∈ (xk−1/2, xk+1/2). As Kn
f > 0, the pressure p is either a

monotonically increasing or monotonically decreasing function, depending on the
boundary conditions. We assume from here on ∂xpn ≤ 0 and therefore fluid flow in
the positive x direction. In case ∂xpn ≥ 0 the upwind schemes in steps (v) and (vii)
have to be modified.

(iv) For each xk calculate v
(1),n
0,k ( y) = −wn

k( y)∂xpn(xk).

(v) Next, for each xk we solve for v
(2),n
1,k and the Cahn–Hilliard variables

φn+1
2,k , φn+1

3,k , μn+1
1,k , μn+1

2,k , μn+1
3,k . For v

(2),n
1,k we use (5.27) the with an explicit upwind

scheme for the x-derivative, i.e.

∂y(φ̃
n+1
f ,k v

(2),n
1,k ) = −

φ̃n
f ,kv

(1),n
0,k − φ̃n

f ,k−1v
(1),n
0,k−1

Δx
. (7.3)

This equation is coupled with the Cahn–Hilliard cell problems (5.19)–(5.22). We
again use an explicit upwinding scheme for the x-derivative, that is

φn+1
1,k − φn

1,k

Δt
+ φn

1,kv
(1),n
0,k − φn

1,k−1v
(1),n
0,k−1

Δx
+ ∂y(φ

n+1
1,k v

(2),n
1,k ) − ε̄M̄

Σ1
∂2

y μn+1
1,k

= −Da
ε̄

q(Φn+1
k )

(
r(cn(xk)) + α̃μn+1

1,k − α̃μn+1
3,k

)
, (7.4)

φn+1
2,k − φn

2,k

Δt
+ φn

2,kv
(1),n
0,k − φn

2,k−1v
(1),n
0,k−1

Δx
+ ∂y(φ

n+1
2,k v

(2),n
1,k ) − ε̄M̄

Σ1
∂2

y μn+1
2,k = 0,

(7.5)

φn+1
3,k = 1 − φn+1

1,k − φn+1
2,k , (7.6)

μn+1
1,k = ∂φ1W(Φn+1

k )

ε̄
− ε̄Σi∂

2
y φn+1

1,k , (7.7)

μn+1
2,k = ∂φ2W(Φn+1

k )

ε̄
− ε̄Σi∂

2
y φn+1

2,k , (7.8)

μn+1
3,k = −μn+1

1,k − μn+1
2,k . (7.9)
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Note that we do not use (5.21) and (5.22) for φn+1
3,k and μn+1

3,k . Instead, we use that
by construction φ1 + φ2 + φ3 = 1 and μ1 + μ2 + μ3 = 0, see (Rohde & von Wolff
2021) for details.
We use the finite element method to discretize (7.3)–(7.9) and Newtons method to
solve the resulting nonlinear system. This step has by far the highest computational
cost. With the explicit upwinding scheme for the x derivatives, the cell problems
for each k fully decouple and can be solved in parallel. This leads to a significant
speed up in comparison with discretizing the Cahn–Hilliard evolution (5.19)–(5.22)
naively as a two-dimensional problem.

(vi) Calculate φ̃n+1
c,total,k and Rn+1

total,k as

φ̃n+1
c,total,k =

∫ �Ω/2

−�Ω/2
φn+1

c,k dy, (7.10)

Rn+1
total,k = −

∫ �Ω/2

−�Ω/2
q(Φn+1

k )(r(cn(xk)) + α̃μn+1
1,k − α̃μn+1

3,k ) dy. (7.11)

We also set φ̃n+1
c,total,k+1/2 = (φ̃n+1

c,total,k + φ̃n+1
c,total,k+1)/2.

(vii) Finally we solve for c using (5.14) discretized by the finite volume method. We use
an implicit upwinding scheme for the transport in the x-direction

φ̃n+1
c,total,kcn+1

k − φ̃n
c,total,kcn

k

Δt
− Kn

c,k∂xpn(xk)cn+1
k − Kn

c,k−1∂xpn(xk−1)cn+1
k−1

Δx

= 1

Pec

1
Δx

(
φ̃n+1

c,total,k+1/2
cn+1

k+1 − cn+1
k

Δx
− φn+1

c,total,k−1/2
cn+1

k − cn+1
k−1

Δx

)
+ Da

ε̄
Rn+1

total,k.

(7.12)

7.2. Comparison: formation of an N-wave
As our first numerical example we choose a geometry as described in § 6.3, with the
computational domain (x, y) ∈ [0, 1] × [−1, 0]. For x = 0 and x = 1 we choose periodic
boundary conditions for all variables except the pressure p. For y = −1 we use the trivially
upscaled versions of the boundary conditions 5.1-5.4 and for y = 0 we choose boundary
conditions according to the symmetry assumption.

We will compare the non-dimensional δ-2f 1s-model with the upscaled δ-2f 1s-model
(5.12)–(5.27). For simplicity, we choose γ1 = γ2 and d0 sufficiently big such that Lslip ≈ 0.
We choose the phase-field parameter ε̄ = 0.03 and δ = ε̄ as in § 6.

We want to focus on the hyperbolic behaviour of d2 as described in Remark 6.1.
Therefore, we choose c in the initial conditions such that r(c) = 0. This leads to no
precipitation or dissolution in the model, and the fluid–solid interface does not change
over time. We choose

d1 + d2 ≡ 0.7 and d1(x) = 0.4 + 0.15 sin(2πx). (7.13a,b)

This corresponds to a plane fluid–solid interface and a sine-shaped fluid–fluid interface.
An image of these initial conditions is given in figure 4.

By applying a pressure difference as Dirichlet boundary condition at x = 0 and x = 1,
the two fluid phases will move in the positive x-direction. The fluid velocity v

(1)
0 is higher

in the centre of the channel. As shown in figure 4, this will lead to a steeper fluid–fluid
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1.0

0.5 ph
i

0

(b)(a) (c) (d )

Figure 4. Evolution of the upscaled δ-2f 1s-model on the domain [0, 1] × [−1, 0]. Shown in red is fluid phase
one, with fluid phase two above and solid phase below. From left to right: initial data, t = 0.15, t = 0.3 and
t = 0.45.

0 0.2 0.4 0.6 0.8 1.0

–0.4

–0.3

–0.2

–0.4

–0.3

–0.2

x
0 0.2 0.4 0.6 0.8 1.0

x

y

β = 1

β = 1/2

β = 1/4

β = 1/8

β = 1/16
up.

(b)(a)

Figure 5. Fluid–fluid interface locations for the non-dimensional δ-2f 1s-model with varying β, and for the
upscaled δ-2f 1s-model. The interface is located through the condition φ1 = φ2. Left: t = 0.3, right: t = 0.44.

interface over time. At a time t∗ > 0 the upscaled δ-2fs-model has a fluid–fluid interface
that is perpendicular to the thin strip. As discussed in Remark 5.1, the assumptions for the
upscaling in § 5 are no longer valid. For times t > t∗ the fluid–fluid interface will roll over,
leading to multiple layers of fluid phase 1 at the same x value. In § 8 we will present some
ideas of how to handle such cases in future works.

We can compare this behaviour with the non-dimensional δ-2f 1s-model in a thin strip
for different values of β. As shown in figure 5, for times t < t∗ there is a good agreement
between the non-dimensional δ-2f 1s-model with small values of β and the upscaled
δ-2f 1s-model.

In contrast to the upscaled δ-2f 1s-model, the non-dimensional δ-2f 1s-model does not
evolve to a fluid–fluid interface perpendicular to the thin strip, as shown in figure 5.
Instead, when reaching a steep fluid–fluid interface there are regions of high curvature at
the beginning and end of the steep passage. In these regions of high curvature the surface
tension leads to a pressure difference between the fluid phases, counteracting the interface
getting steeper. For smaller β the fluid–fluid interface allows for a steeper passage in (x, y)
coordinates, as this effect depends on the curvature in the x coordinates, which are not
scaled with β.
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7.3. Comparison: precipitation
In the second numerical example we study precipitation in the thin strip. We use the same
domain and boundary conditions as in the previous example. Again, we choose γ1 = γ2,
and a d0 large enough so that Lslip ≈ 0. We further choose ε̄ = 0.03 and δ = ε̄. We use
a simple, linear reaction rate r(c) = c − 0.5 and choose the ion concentration to be in
equilibrium initially, that is c = 0.5 everywhere. With d1(x) = 0.4 and d2(x) = 0.3 in
the initial conditions correspond to the phases being layered in the thin strip, without
depending on x. To induce precipitation we add a source term s(x) to the ion conservation
equation (4.5), it now reads

∂t(φ̃cc) + ∇ · (φcvc) + Cn
βPeCH

∇ · (J 1c) = 1
Pec

∇ · (φ̃c∇c) + DaR + φ̃cs(x). (7.14)

The source terms upscales trivially at O(β0), and the upscaled ion conservation equation
(5.14) is now given by

d
dt

(φ̃c,totalc) + ∂x((−Kc∂xp)c) = 1

Pec
∂x(φ̃c,total∂xc) + Da

ε̄
Rtotal + φ̃c,totals(x). (7.15)

We choose the ion source to be located between x = 0.1 and x = 0.3, in detail

s(x) = max(0, 62.5(x − 0.1)(0.3 − x)). (7.16)

Figure 6 shows a comparison between the non-dimensional δ-2f 1s-model with different
values of β, and the upscaled δ-2f 1s-model. There is a good agreement between the full
model with small values of β and the upscaled model. For large values of β there is less
precipitation in the thin strip. This is due to the ion concentration c not being constant in
the y-direction. The source term φ̃cs(x) generates ions everywhere in the first fluid phase,
but precipitation removes ions from the first fluid phase only at the fluid–solid interface.
This leads to an oversaturation c > 0.5 further away from the fluid–solid interface. For
smaller values of β the diffusion in the y-direction results in more ions precipitating and
therefore a smaller oversaturation of ions in the fluid phase.

Figure 6 also shows the influence of a non-constant width of the thin strip on the flow
inside the thin strip. The fluid–fluid interfaces are pushed towards the centre of the thin
strip, where flow velocities are higher.

8. Conclusion

We have upscaled a phase-field model for the incompressible flow of two immiscible fluids
in the geometry of a thin strip. With the assumption of slow variation in the direction
along the thin strip, we find a two-scale model as a result of the upscaling. The two-scale
model consists of macroscopic equations for the total flux Qf , the pressure p and the ion
concentration c. Those equations are coupled to microscopic equations for the flow and
for the geometry, represented by the phase-field variables. By discretizing the upscaled
equations with a finite volume scheme, we obtain microscopic cell problems that are fully
decoupled in each time step and can therefore be solved in parallel.

We have also investigated the sharp-interface limit of the upscaled phase-field model
and found under additional assumptions on the geometry a fully upscaled model. This
model only consists of macroscopic equations for total flux Qf , the pressure p, the ion
concentration c and the widths of each fluid phase, d1 and d2. Further analysis shows that
the upscaling and the sharp-interface limit commute.
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Figure 6. Interface locations at time t = 2.4 for the non-dimensional δ-2f 1s-model with varying β, and for the
upscaled δ-2f 1s-model. The fluid–fluid interface can be seen in the upper half and is located by the condition
φ1 = φ2. The fluid–solid interface in the lower half is located by φ1 = φ3. The initial location of the fluid–solid
interface is marked by a black line.

Further research is needed to generalize this work in a multitude of directions. The
most obvious next step is to consider three-dimensional geometries, such as a thin tube.
In such a case, the curvature of the fluid–fluid interface will be bigger by a factor of β−2

compared with the two-dimensional case. With non-dimensional numbers scaling as in
this work, surface tension effects will enter the leading-order equations of the momentum
equation. As a result, one has to introduce a faster time scale to resolve relaxation in the
cross-section towards an equilibrium state.

A second possible direction for future research is the consideration of a finite number
of points where the assumption of slow variation along the thin strip is not fulfilled.
This includes three-phase contact points, as well as the N waves shown in the numerical
investigation. Such cases can not be upscaled with the current assumptions, and the
numerical investigation shows no agreement between the fully resolved and the upscaled
model. In future models it might be possible to describe regions with fast variation along
the thin strip as fully resolved, and couple these regions on each side with the upscaled
phase-field model.

Lastly, by increasing the complexity of the underlying phase-field model, the upscaling
procedure will become increasingly difficult. Interesting effects seen in experiments
include the dissolved ions being driven by electrostatic fields, as well as small mineral
particles getting transported by the fluid flow.
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Appendix A. Asymptotic expansions for the upscaling in a thin strip

In this section we will present the asymptotic expansions for the upscaling of the
non-dimensional δ-2f 1s-model. For all primary variables we assume the existence of
asymptotic expansions of the form (5.11). In particular, we also use this notation for other
variables, e.g.

φ̃f = φf ,0 + βφf ,1 + · · · = (φ1,0 + φ2,0 + 2δφ3,0) + β(φ1,1 + φ2,1 + 2δφ3,1) + · · · .

(A1)
We use Taylor expansions to handle nonlinearities, e.g.

r(c) = r(c0 + βc1 + · · · ) = r(c0) + βr′(c0)c1 + O(ε2). (A2)

With this we can insert the asymptotic expansions into the non-dimensional δ-2f 1s-model
and group by powers of β. The upscaled equations will be recovered by investigating the
terms with the lowest power of β.

A.1. Expansion of the mass conservation equation (4.3)

A.1.1. Expansion of (4.3), O(β−1):
Recall that ∇ = ex∂x + β−1ey∂y. Therefore, the leading-order terms of (4.3) are of
O(β−1), we have

∂y(φ̃f ,0v0) · ey = 0. (A3)

We will denote components of v as v(1) = v · ex and v(2) = v · ey. Note that φ̃f ,0 > 0 by
construction in (3.4), so after integrating and using the leading order of boundary condition
(5.4) we can divide by φ̃f ,0 and obtain

v
(2)
0 = 0. (A4)

As expected, there is no leading-order flow perpendicular to the thin strip.

A.1.2. Expansion of (4.3), O(1):
With (A4) we get at first order

∂x(φ̃f ,0v
(1)
0 ) + ∂y(φ̃f ,0v

(2)
1 ) = 0. (A5)

The O(β) term of boundary condition (5.4) reads v1( y = ±�Ω/2) = 0. After integrating
(A5) in y we can use this to get

∂x

∫ �Ω/2

−�Ω/2
φ̃f ,0v

(1)
0 dy = 0. (A6)

Here, φ̃f ,0v
(1)
0 is the flux in the ex direction, so (A6) implies that the total flux in the ex

direction is conserved.

A.2. Expansion of the phase field (4.6), (4.7), (4.8), (4.10)

A.2.1. Expansion of (4.10), O(β−1):
We get with Cn = βε̄ three terms in leading order

μi,0 = ∂φiW(Φ0)

ε̄
− ε̄Σi∂

2
y φi,0. (A7)

Notably from the Laplacian only derivatives in the ey-direction remain. In the upscaled
model this will lead to a Cahn–Hilliard evolution that is only acting in the ey direction.
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A.2.2. Expansion of (4.6), (4.7), (4.8), O(1):
Note that with (5.7), (5.8) and (5.9) we can write

Cn
βPeCH

= β2ε̄M̄ and Da = Da
ε

. (A8a,b)

We insert (4.9) into (4.6), (4.7), (4.8), as we do not treat J i as a primary variable. Together
with (A4) we have at leading O(1)

∂tφ1,0 + ∂x(φ1,0v
(1)
0 ) + ∂y(φ1,0v

(2)
1 ) − ε̄M̄

Σ1
∂2

y μ1,0 = Da
ε̄

R0, (A9)

∂tφ2,0 + ∂x(φ2,0v
(1)
0 ) + ∂y(φ2,0v

(2)
1 ) − ε̄M̄

Σ2
∂2

y μ2,0 = 0, (A10)

∂tφ3,0 + ∂x(2δφ3,0v
(1)
0 ) + ∂y(2δφ3,0v

(2)
1 ) − ε̄M̄

Σ3
∂2

y μ3,0 = −Da
ε̄

R0, (A11)

where the leading-order term of the reaction is given by

R0 = −q(Φ0)(r(c0) + α̃μ1,0 − α̃μ3,0). (A12)

Note that as in (A7) only the y-derivatives of the Laplacian remain at the leading order.

A.3. Expansion of the ion conservation equation (4.5)

A.3.1. Expansion of (4.5), O(β−2):
We obtain at leading order only one O(β−2) term

1

Pec
∂y(φ̃c,0∂yc0) = 0. (A13)

Integrating in y and using the leading-order term of boundary condition (5.3) results in

φ̃c,0∂yc0 = 0. (A14)

Because by construction φ̃c,0 > 0, we conclude

∂yc0 = 0. (A15)

Therefore, c0 is constant in the ey direction, and we write c0 = c0(t, x) to emphasize that
c0 only depends on the x coordinate.

A.3.2. Expansion of (4.5), O(β−1):
As we found ∂yc0 = 0 in (A15), we get at first order only the term

1

Pec
∂y(φ̃c,0∂yc1) = 0. (A16)

With analogous argumentation to the O(β−2) case we get ∂yc1 = 0 and can write c1 =
c1(t, x) to show that c1 is independent of y.
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A.3.3. Expansion of (4.5), O(1):
Similar to the O(1) expansion of (4.6), (4.7) and (4.8), we insert the Cahn–Hilliard flux
J i (4.9) and the non-dimensional numbers (A8a,b) into the equation, and use (A4). We
obtain the second-order terms

∂t(φ̃c,0c0) + ∂x(φc,0v
(1)
0 c0) + ∂y(φc,0v

(2)
1 c0) − ε̄M̄

Σ1
∂y(c0∂yμ1,0)

= 1

Pec
∂x(φ̃c,0∂xc0) + 1

Pec
∂y(φ̃c,0∂yc2) + Da

ε̄
R0, (A17)

where R0 is given by (A12). After integrating in y we can use the boundary conditions
(5.2), (5.3) and (5.4) to eliminate the terms containing a y derivative. We obtain

d
dt

(
c0

∫ �Ω/2

−�Ω/2
φ̃c,0 dy

)
+ ∂x

(
c0

∫ �Ω/2

−�Ω/2
φc,0v

(1)
0 dy

)

= 1

Pec
∂x

((∫ �Ω/2

−�Ω/2
φ̃c,0 dy

)
∂xc0

)
+ Da

ε̄

∫ �Ω/2

−�Ω/2
R0 dy. (A18)

Here, we have written c0 outside the integrals to emphasize that c0 does not depend
on y. Equation (A18) is a transport–diffusion–reaction equation for c0(x, t), where the
coefficients still depend on the exact distribution of Φ0 in the ey direction.

A.4. Expansion of the momentum equation (4.6)

A.4.1. Expansion of (4.4), O(β−3):
The only term of O(β−3) is

− 1

Re
φ̃f ,0ey∂yp0 = 0. (A19)

As φ̃f ,0 is positive by construction, we conclude that p0 does not depend on y and write
p0 = p0(t, x).

A.4.2. Expansion of (4.4)·ex, O(β−2):
We investigate at the first order only the equation for the x-component. With (A4) and
p0 = p0(t, x) the remaining terms are

− 1

Re
φ̃f ,0∂xp0 + 1

Re
∂y(γ̃ (Φ0)∂yv

(1)
0 ) − 1

Re
ρ3d(φ̃f ,0)v

(1)
0 = 0. (A20)

We can interpret this as a linear differential equation for v
(1)
0 with boundary conditions

(5.4). In particular, we can use the linearity to write

v
(1)
0 (t, x, y) = −w(t, x, y)∂xp0(t, x), (A21)

where w is the solution to the cell problem

ρ3d(φ̃f ,0)w − ∂y(γ̃ (Φ0)∂yw) = φ̃f ,0, (A22)

w(t, x, ±�Ω/2) = 0. (A23)

For a given Φ the function w calculates the parabolic flow profile in the cross-section of
the thin strip. As we expect from a Darcy-type flow, the fluid velocity is proportional to
−∂xp0, shown in (A21).
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Remark A.1. We note that by construction γ̃ > 0 and therefore the cell problem (A22),
(A23) has a unique solution.

Appendix B. Matched asymptotic expansions for the sharp-interface limit of the
upscaled δ-2f 1s-model

In this section we present the sharp-interface limit of the upscaled δ-2f 1s-model under the
assumptions made in § 6.1. The sharp interface limit consists of asymptotic expansions in
the bulk phases (outer expansions), asymptotic expansions in the interface regions (inner
expansions) and the matching of these asymptotic expansions.

B.1. Outer expansions
For the bulk phases we assume that we can write solutions to the upscaled δ-2f 1s-model
(5.12)–(5.27) in terms of an outer asymptotic expansion in ε̄ for the variables
Φ, w, v

(1)
0 , v

(2)
1 , p, c, μ1, μ2, μ3. That is, similar to the expansions in § 5.2, we assume

expansions of the form

Φ(t, x, y) = Φout
0 (t, x, y) + ε̄Φout

1 (t, x, y) + ε̄2Φout
2 (t, x, y) + · · · . (B1)

Here, the outer expansion terms Φout
k , k ∈ N0 are independent of ε̄. The expansions for

the macroscopic variables p(x), c(x) do not depend on y. We will insert these expansions
into the upscaled δ-2f 1s-model and group by orders of ε̄. Analogously to Appendix A we
handle nonlinearities by Taylor expansion.

B.1.1. Outer expansion of (5.22), O(β−1):
We can argue as in Rohde & von Wolff (2021) to find that the only stable solutions
to the leading-order terms are Φout

0 = ek, k ∈ {1, 2, 3} with the restriction φout
k,1 ≤ 0 and

φout
i,1 , φout

j,1 ≥ 0 for {i, j} = {1, 2, 3} \ {k}. The additional restriction stems from the fact that
the triple-well potential W depends on δ = ε̄.

We define the set Ωk(t) to be the set of (x, y) where Φout
0 (t, x, y) = ek. In the

sharp-interface formulation Ωk(t) will represent the domain of phase k.

B.1.2. Outer expansion of (5.24), O(1):
In Ω3, i.e. in case Φout

0 = e3, we have φ̃out
f ,0 = 0 and the leading order reads

ρ3d0wout
0 − ∂y(γ3∂ywout

0 ) = 0, (B2)

where d0 = d(0) > 0. In the fluid phases Ωi, i ∈ {1, 2}, we have Φout
0 = ei and therefore

φ̃out
f ,0 = 1. Note that by construction d(1) = 0. With this we obtain at leading order

− ∂y(γi∂ywout
0 ) = 1. (B3)

B.1.3. Outer expansion of (5.27), O(1):
In the fluid phases Φout

0 = ei, i ∈ {1, 2} we have φ̃out
f ,0 = 1 and obtain

∂x(v
(1),out
0,0 ) + ∂y(v

(2),out
1,0 ) = 0. (B4)
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B.1.4. Outer expansion of (5.12), (5.13), O(1):
We now consider the macroscopic equations. The equations for the flow (5.12), (5.13)
upscale trivially, the leading order reads

∂xQout
f ,0 = 0, (B5)

Qout
f ,0 = −Kout

f ,0 ∂xpout
0 , (B6)

where the parameter Kout
f ,0 is the leading-order expansion of Kf , using (5.16)

Kout
f ,0 =

∫ �Ω/2

−�Ω/2
φout

f ,0 wout
f ,0 dy. (B7)

Note that the leading-order expansion of φ̃f is φout
f ,0 as the δ-modification is of O(ε̄) because

of the scaling choice δ = ε̄.

B.1.5. Outer expansion of (5.14), O(1):
For the transport–diffusion–reaction equation for c let us first investigate the reaction term.
We have with (5.18) and (5.23)

Da
ε̄

Rtotal = −Da
ε̄

∫ �Ω/2

−�Ω/2
q(Φ)(r(c) + α̃μ1 − α̃μ3) dy. (B8)

As q(Φout) = O(ε2) in the bulk phases φout
0 = ek, k ∈ {1, 2, 3}, there is no contribution of

the reaction term in the bulk at leading order. Note that there will be a contribution of this
term in the interface regions, see § B.2. Overall we have for (5.14) at leading order

d
dt

(φout
c,total,0cout

0 ) + ∂x((−Kout
c,0∂xpout

0 )cout
0 ) = 1

Pec
∂x(φ

out
c,total,0∂xcout

0 ) + DaRinterface,0,

(B9)
with coefficients

φout
c,total,0 =

∫ �Ω/2

−�Ω/2
φout

c,0 dy, (B10)

Kout
c,0 =

∫ �Ω/2

−�Ω/2
φout

c,0 wout
f ,0 dy, (B11)

and Rinterface,0 as a placeholder for the interface contributions of the reaction term.

B.2. Inner expansions
We have shown in § B.1 that the domain is partitioned into Ω1, Ω2 and Ω3. We locate the
interfaces between the phases as

Γij(t) = {(x, y) ∈ Ω : φi(t, x, y) = φj(t, x, y) ≥ 1/3}. (B12)

We assume that Γij is a smooth, one-dimensional manifold. As explained in Remark
5.1 we do not consider triple points, where all three phases meet, and do not allow for
the interfaces to touch the boundary of Ω at y = ±�Ω/2. Also, interfaces cannot occur
perpendicular to the thin strip and therefore there exists locally around an interface Γij a
unique mapping s(t, x) such that (x, s(t, x)) ∈ Γij.
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We use this mapping to introduce a new coordinate z close to the interface

z(x, t) = y − s(t, x)
ε̄

. (B13)

Because we expect the interface width to be of size ε̄, the coordinate z is scaled by ε−1.
The velocity of Γij at (x, s) in the y-direction is given by

ν(x) = ∂ts(t, x). (B14)

We will use the new coordinates (t, x, z) as the coordinates to describe the interfaces Γij.
For a generic function f (t, x, y) = f in(t, x, z) we obtain the transformation rules

∂tf = −1
ε
ν∂zf in + ∂tf in, (B15)

∂yf = 1
ε
∂zf in, (B16)

∂xf = −1
ε
(∂xs)∂zf in + ∂xf in. (B17)

We assume that, close to an interface Γij, we can write solutions to the upscaled
δ-2f 1s-model (5.12)–(5.27) in terms of an inner asymptotic expansion in ε̄ for the variables
Φ, w, v

(1)
0 , v

(2)
1 , μ1, μ2, μ3. That is we assume expansions of the form

Φ(t, x, y) = Φ in
0 (t, x, z) + ε̄Φ in

1 (t, x, z) + ε̄2Φ in
2 (t, x, z) + · · · , (B18)

with coefficients Φ in
k independent of ε̄. In contrast to the outer asymptotic expansions,

the inner asymptotic expansions depend on the (t, x, z) coordinates. This will lead to
different terms being of the highest order when inserting the expansions into the upscaled
δ-2f 1s-model. We do not use inner expansions of the macroscopic variables p and c, as
they are constant across all interfaces.

To relate inner and outer expansions, we match the limit value of inner expansions for
z → ±∞ with the limit value of the outer expansions at s (from the respective side). The
matching conditions are well studied (Caginalp & Fife 1988), we use

lim
z→±∞ Φ in

0 (t, x, z) = lim
y→0+

Φout
0 (t, x, s ± y), (B19)

lim
z→±∞ ∂zΦ

in
0 (t, x, z) = 0, (B20)

lim
z→±∞ ∂zΦ

in
1 (t, x, z) = lim

y→0+
∂yΦ

out
0 (t, x, s ± y). (B21)

B.2.1. Inner expansion of (5.22), O(ε̄−1):
Consider an interface between bulk phases Φout

0 = ei and Φout
0 = ej. With matching

condition (B19) this means

lim
z→−∞ Φ in

0 = ei and lim
z→∞ Φ in

0 = ej. (B22a,b)

Then by assumption we have no third phase contributions across the interface, that is

φin
k,0 = 0, with k ∈ {1, 2, 3} \ {i, j}. (B23)
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Following the argument in Rohde & von Wolff (2021) we calculate the leading-order terms
of (5.22) for μk and find φin

j,0 as a solution to the ordinary differential equation

W ′
dw(φin

j,0) − ∂2
z φin

j,0 = 0, (B24)

with additional conditions

lim
z→−∞ φin

j,0 = 0, lim
z→−∞ φin

j,0 = 1, φin
j,0(t, x, 0) = 1/2. (B25)

The first two conditions are boundary conditions from (B22a,b) while the third condition
stems from definition of Γij (B12) and centres the interface at z = 0. With a lengthy
calculation φin

j,0 is implicitly given by

z = 1
30

(
1

1 − φin
j,0

− 1
φin

j,0
+ 2 log

(
φin

j,0

1 − φin
j,0

))
. (B26)

We find φin
i,0 by φin

i,0 = 1 − φin
j,0.

B.2.2. Inner expansion of (5.27), O(ε̄−1):
Using the coordinate transformations (B16) and (B17), we get at leading order

− (∂xs)∂z(φ
in
f ,0v

(1),in
0,0 ) + ∂z(φ

in
f ,0v

(2),in
1,0 ) = 0. (B27)

Note that ∂xs(t, x) does not depend on z and therefore

− (∂xs)φin
f ,0v

(1),in
0,0 + φin

f ,0v
(2),in
1,0 = const., (B28)

with respect to z. Across the interface Γ12 we have φin
f ,0 = 1 and thus with matching

condition (B19) we get for all z ∈ R

− (∂xs)v(1),in
0,0 (t, x, z) + v

(2),in
1,0 (t, x, z)

= lim
z→±∞ −(∂xs)v(1),in

0,0 (t, x, z) + v
(2),in
1,0 (t, x, z)

= lim
y→0+

−(∂xs)v(1),out
0,0 (t, x, s ± y) + v

(2),out
1,0 (t, x, s ± y). (B29)

In particular, this means that the term −(∂xs)v(1),out
0,0 + v

(2),out
1,0 is continuous across the Γ12

interface.
When matching (B28) at the fluid–solid interfaces Γ13 and Γ23, φ

in
f ,0 vanishes in the limit

towards the solid phase, we can conclude

− (∂xs)φin
f ,0v

(1),in
0,0 + φin

f ,0v
(2),in
1,0 = 0. (B30)

Using matching condition (B19) we find

− (∂xs)v(1),out
0,0 + v

(2),out
1,0 = 0, (B31)

for the fluid velocity. This condition therefore allows only for fluid flow parallel to the
fluid–solid interfaces.
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B.2.3. Inner expansion of (5.19), (5.20), (5.21), O(ε̄−1):
We will argue analogously to Rohde & von Wolff (2021). The leading-order expansions
for (5.19), (5.20) and (5.21) are given by

−ν∂zφ
in
1,0 − (∂xs)∂z(φ

in
1,0v

(1),in
0,0 ) + ∂z(φ

in
1,0v

(2),in
1,0 ) − M̄

Σ1
∂2

z μin
1,0

= −Daq(Φ in
0 )(r(cout

0 ) + αμin
1,0 − αμin

3,0), (B32)

−ν∂zφ
in
2,0 − (∂xs)∂z(φ

in
2,0v

(1),in
0,0 ) + ∂z(φ

in
2,0v

(2),in
1,0 ) − M̄

Σ2
∂2

z μin
2,0 = 0, (B33)

−ν∂zφ
in
3,0 − M̄

Σ3
∂2

z μin
3,0 = +Da q(Φ in

0 )(r(cout
0 ) + αμin

1,0 − αμin
3,0). (B34)

Let us first consider the interface Γ13, with Ω1 being in the negative z direction. Here
φin

1,0 = φin
f ,0 and with (B30) the advection terms vanish from (B32). We also have no third

phase contributions and therefore φin
1,0 + φin

3,0 = 1. With notation μ3−1 := μin
3,0 − μin

1,0 we
calculate Σ3· (B34) −Σ1 · (B32)

− (Σ1 + Σ3)ν∂zφ
in
3,0 − M̄∂2

z μ3−1 = (Σ1 + Σ3)Daq(Φ in
0 )(r(cout

0 ) − αμ3−1). (B35)

In Rohde & von Wolff (2021) it is shown that with (B24) and by construction of q the
identity q(Φ in

0 ) = ∂zφ
in
3,0 holds. We can interpret (B35) as an ordinary differential equation

for μ3−1 with boundary conditions limz→±∞ ∂zμ3−1 = 0 (by using matching condition
(B20)).

In the case α = 0 all constant functions μ3−1 are solutions to the differential equation,
under the compatibility condition

ν = −Dar(cout
0 ). (B36)

In case α > 0 the unique solution to (B35) is given by the constant function

μ3−1 = α−1(ν + Da r(cout
0 )). (B37)

We can combine (B36) and (B37), and also consider the case that the fluid and solid side
of the Γ13 interface is switched. Overall we conclude

ν =
{

α(μin
1,0 − μin

3,0) + Dar(c) if limz→−∞ Φ in
0 = e3 and limz→∞ Φ in

0 = e1,

α(μin
3,0 − μin

1,0) − Dar(c) if limz→−∞ Φ in
0 = e1 and limz→∞ Φ in

0 = e3.
(B38)

For Γ23 we can argue analogously to the Γ13 case. Because there is no precipitation, i.e.
q(Φ in

0 ) = 0, we obtain

μin
3,0 − μin

2,0 = const. and ν = 0. (B39a,b)

Lastly, we consider the fluid–fluid interface Γ12, with Ω1 in the direction of negative
z. There is no precipitation process, so with q(Φ in

0 ) = 0 we integrate over (B32) and use
matching conditions (B19) for φin

1,0 and (B20) for ∂zμ
in
1,0 and obtain

ν = −(∂xs)v(1),in
0,0 + v

(2),in
1,0 . (B40)

Furthermore μin
1,0 has to be constant in z, and with an analogous argument using (B33)

also μin
2,0 is constant.
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B.2.4. Inner expansion of (5.22), O(1):
We consider the interface Γij with Ωi in the negative z direction. We assume the absence of
a third phase, that is φin

k,0 = 0, k ∈ {1, 2, 3} \ {i, j}, and find by construction of W in (3.2)
that ∂φiW

′(Φ in
0 ) = W ′

dw(φin
i,0). We examine the difference μi − μj at first order and find

μin
i,0 − μin

j,0 = ΣiW ′′
dw(φin

i,0)φ
in
i,1 − Σi∂

2
z φin

i,1 − ΣjW ′′
dw(φin

j,0)φ
in
j,1 + Σj∂

2
z φin

j,1. (B41)

In the absence of a third phase φin
i,0 + φin

j,0 = 1, and by construction Wdw(φ) is symmetric
around φ = 1/2. Therefore, W ′′

dw(φin
i,0) = W ′′

dw(φin
j,0), and we rewrite (B41) as

μin
i,0 − μin

j,0 = (W ′′
dw(φin

j,0) − ∂2
z )(Σiφ

in
i,1 − Σjφ

in
j,1). (B42)

Recall that μin
i,0 − μin

j,0 is constant across the interface Γij. After multiplying with ∂zφ
in
j,0

and integrating over z we calculate

μin
i,0 − μin

j,0 =
∫ ∞

−∞
(∂zφ

in
j,0)(μ

in
i,0 − μin

j,0) dz

=
∫ ∞

−∞
(∂zφ

in
j,0)(W

′′
dw(φin

j,0) − ∂2
z )(Σiφ

in
i,1 − Σjφ

in
j,1) dz

=
∫ ∞

−∞
(W ′′

dw(φin
j,0)∂zφ

in
j,0 − ∂3

z φin
j,0)(Σiφ

in
i,1 − Σjφ

in
j,1) dz

=
∫ ∞

−∞
∂z(W ′

dw(φin
j,0) − ∂2

z φin
j,0)(Σiφ

in
i,1 − Σjφ

in
j,1) dz

= 0. (B43)

We have used partial integration to get to the third line, the boundary terms vanish with
matching condition (B21) and the structure of φin

j,0 (B26). The fourth line evaluates to
zero with the identity (B24). Note that, compared with Rohde & von Wolff (2021), there
is no curvature term in this calculation, as the Cahn–Hilliard evolution acts only in the
y-direction.

We conclude
μin

i,0 = μin
j,0. (B44)

and (B38) simplifies to

ν =
{+Dar(c) if limz→−∞ Φ in

0 = e3 and limz→∞ Φ in
0 = e1,

−Dar(c) if limz→−∞ Φ in
0 = e1 and limz→∞ Φ in

0 = e3.
(B45)

B.2.5. Inner expansion of (5.24), O(ε̄−2):
At leading order the equation reads

∂z(γ (Φ in
0 )∂zwin

0 ) = 0. (B46)

After integrating in y we use matching condition (B20) divide by γ (Φ in
0 ) > 0 and find

∂zwin
0 = 0, (B47)

that is w is constant across the interface. With matching condition (B20) this implies

lim
y→0+

wout
0 (t, x, s + y) = lim

y→0+
wout

0 (t, x, s − y). (B48)
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B.2.6. Inner expansion of (5.24), O(ε̄−1):
With (B47) the first-order term of (5.24) reads

∂z(γ (Φ in
0 )∂zwin

1 ) = 0. (B49)

We integrate and with matching conditions (B19), (B21) we get

lim
y→0+

(γ (Φout
0 (t, x, s + y)∂ywout

0 (t, x, s + y))

= lim
y→0+

(γ (Φout
0 (t, x, s − y)∂ywout

0 (t, x, s − y)). (B50)

B.2.7. Inner expansion of (5.14), O(1):
We only need to investigate the reaction term

Da
ε̄

Rtotal = −Da
ε̄

∫ �Ω/2

−�Ω/2
q(Φ)(r(c) + α̃μ1 − α̃μ3) dy. (B51)

On Γ12 and Γ23 we have q(Φ in) = O(ε̄2) and therefore no leading-order contribution. Let
us consider Γ13 with Ω1 in the negative z direction. Using (B44) the leading-order term of
the integrand is q(Φ in

0 )r(cout
0 ). Transforming the integral to the z coordinate results in the

leading-order term of O(1)

− Dar(cout
0 )

∫ ∞

−∞
q(Φ in

0 ) dz. (B52)

In Rohde & von Wolff (2021) it is shown that by construction of q we have q(Φ in
0 ) =

dzφ
in
3,0. With matching condition (B19) the integral evaluates to one. When considering

Γ13 with Ω1 in the positive z direction we get the same result.
There might be multiple Γ13 interfaces contributing to the macroscopic reaction term.

Therefore, the total contribution to (5.14) at O(1) is

DaRinterface = −DaN(Γ13)r(cout
0 ), (B53)

with N(Γ13) being the number of Γ13 interfaces for a fixed x.
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