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Abstract

It is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an
algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the
sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.

2000 Mathematics subject classification: primary 16W10.

1. Introduction

A field is termed formally real if — 1 cannot be expressed in it as a sum of squares
and real closed if it is a formally real field that has no formally real proper algebraic
extension. Many real closed fields exist; examples include the real field K and the
field of all real algebraic numbers.

It is clear that a real closed field F has characteristic zero. Less obvious is the fact
that F is totally ordered by the rule that a < b if and only if b — a = c2 for some c
[5, Section 70, Theorem 1]. We shall make use of this total ordering without further
comment.

Recall that an involution on a ring R is a mapping * : / ? - > / ? such that

(Va,beR) (a + b)* =a* + b*, (ab)* = b*a*, a** = a.

Now let A be an algebra over a real closed field F. An involution on A is defined to
be an involution * on the ring (A, + , •) with the additional property that

(V a 6 A)(V k 6 F) (ka)* = ka*.
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Two types of involution * on A concern us here. We say that * is

(i) proper if aa* — 0 implies a — 0 for all a e A,
(ii) special if, for every nonempty finite subset T of A,

(3 t 6 T)(V u,v eT) tt* = uv* =>• u = v.

Note that, in each case, the defining condition is on the multiplicative semigroup of A.
The notion of a special involution was introduced in [2]. It is perhaps surprising
that many naturally occurring involutions are special: for instance, transposition on
the algebra of all real n x n matrices and conjugation on the algebra of all real
quaternions [2], the mapping

x€S x€S

on the semigroup algebra R[S] of an inverse semigroup S over R (in particular, on the
group algebra K[5], where 5 is a group) [3], and the mapping

weM weM

on K[A/], where M is a free monoid of arbitrary rank and ttT denotes the reverse of
the word w in M [ 1 ].

The two properties are not independent: in fact, every special involution is proper,
as we now show. Let * be a special involution on an algebra A over a real closed field
and let a e A be such that aa* = 0. Take T := {a, 0}. Then there exists t e T such
that, for all u, v € T, tt* = uv* implies u = v. For each possibility, tt* = 0 = 0a*
and so a = 0. Thus * is proper. However, a simple example demonstrates that not
every proper involution is special. Let A denote the group algebra R[G], where G is
the cyclic group of order 4. Since A is commutative, the identity mapping on A is an
involution; moreover, since A is semisimple then, for a € A, a2 = 0 implies a = 0.
Thus the identity mapping is proper. However, if g denotes a generator of G then, by
taking T := G and noting the equations (g°)2 = gg31 = (g2)2 and g2 = g°gz = (g3)2,
we see that the identity mapping is not special.

The aim of the present paper is to show that, on a finite-dimensional algebra A
over a real closed field, the following conditions are equivalent: (i) A admits a
special involution, (ii) A admits a proper involution, (iii) A is semisimple. (In the
previous paragraph, we have an example of an involution on a real finite-dimensional
semisimple algebra that is proper but not special; however, a different involution—
namely that induced by inversion in the group—is special.) With a natural adjustment
to the definition of an involution, a similar result follows for a finite-dimensional
algebra over an algebraically closed field of characteristic zero. These results, for the
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real and complex fields, were announced in [4]. In each case, the author's proof used
a result in representation theory. The direct proofs given here are extensions of the
argument in [2, Example 4].

2. Finite-dimensional algebras over real closed fields

We begin by considering division algebras. A classical theorem of Frobenius states
that, to within isomorphism, the only finite-dimensional division algebras over K
are R itself, the complex field C and the algebra H of real quaternions [5, Section 131,
pages 201-202]. The proof of this theorem applies also to the case where K is
replaced by any real closed field F, for it depends only on two particular properties
[5, Section 70, Theorems 1 and 3]:

(i) F is totally ordered and contains a square root of each non-negative element,
(ii) the field obtained from F by adjoining a root of the irreducible polynomial

x2 + 1 is algebraically closed.

All the details of the lemma below now follow routinely.

LEMMA 2.1. Every finite-dimensional division algebra D over a real closed field F
admits an involution c : D -*• D, d !->• dc ('conjugation') such that

(V d 6 D) ddc e F, ddc > 0, ddc = 0 => d = 0,

according to the cases

(i) D = F : ac = a (a e F);
(ii) D = F[i], where i2 = - 1 : (a + 0i)c = a - pi (a, 0 6 F);

(iii) D = F[i, j , k], where i2 = j 2 = k2 = - 1 , ij = k = -j i, jk = i = ~kj ;
ki = j = —ik:

(a + $i + yj + 8k)r = a-pi- yj - Sk (a, 0, y, 8 e F) .

Observe that the lemma states, in particular, that every finite-dimensional division
algebra over a real closed field admits a proper involution.

THEOREM 2.2. The following conditions on a finite-dimensional algebra A over a
real closed field are equivalent:

(i) A admits a special involution,
(ii) A admits a proper involution,

(iii) A is semisimple.

PROOF. Since, as remarked in Section 1, every special involution is a proper invo-
lution, (i) implies (ii).
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A standard short argument, which we include for completeness, shows that (ii)
implies (iii). Let * be a proper involution on A and let N denote the radical of A.
Suppose that a e N\0. Then aa* e N and so (aa*)m = 0 for some least positive
integer m. Since * is proper, m > 2. Write b := (aa*)m~l. Then b = b* and so
bb* — b2 — (aa*)2m~2 = 0, since 2m —2 > m. Thusfc = 0, contrary to the minimality
of m. Hence N = 0 and so A is semisimple.

We complete the proof by showing that (iii) implies (i). Denote the ground field
of A by F. Consider first the algebra Mn(D) of all n x n matrices over a finite-
dimensional division algebra D over F. Define r : Mn(D) -> Mn(D), a H-> a\ by
writing af := (ac)T, where ac denotes the matrix obtained from a by replacing each
entry a,, by a^ (with c as in Lemma 2.1) and T denotes transposition. Since c is
an involution on D, it follows easily that+ is an involution on Mn(D). Now denote
the trace of a e Mn{D) by r(a). Then, for all a = [a,y] 6 Mn(D), we have that
r(aa+) = YHj=i aija>j' an(^ so> by Lemma 2.1,

(1) ( V a e M n ( D ) ) r(aa+) e F, r(aa+) > 0, r (aa f ) = 0 =*• a = 0.

Let A be semisimple. By Wedderburn's theorem, we may assume, without loss of
generality, that A is the external direct sum of algebras A,(i = I, ... ,k), where, for
each /, A, = Mni (D,) for some positive integer n, and some finite-dimensional division
algebra D, over F. No confusion should arise from the use of the same symbol+ to
denote the involution defined on each Mni(Di) as in the previous paragraph. For all
a € A, denote the A,-component of a by a,(i = 1, . . . , k). Then * : A —• A, a H> a*
defined by (a*), = a,+ (/ = I, ... ,k) is readily seen to be an involution on A. We
show that it is special.

Let T be a nonempty finite subset of A. Choose t e T such that

(2) J2 T('''<t) = max J2 T O W ) : u> € 71

1=1 j
S u p p o s e that tt* = uv*, for s o m e u , v e T . T h e n , for e a c h / ,

r,V = « , V = (M,-u,-t)t = t W
and so

(M, - Vi)(ut - Vi)f = UjU? + u,-u,-t - 2/,-f/.

Thus, by (1) and (2),

/) + ^ r(V|V) - 2 ̂  ra,^) < 0.
i = l 1 = 1 i = l
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Hence£^=1 r((u,— u,)(w, — u,-)t) = 0. Thus, by (1), w, = v,-for each/. Consequently,
u = v. This shows that * is special. •

An analogous result (Corollary 2.3) holds for algebras over algebraically closed
fields of characteristic zero. As noted earlier, if we adjoin to a real closed field a root
of x2 +1 then the resulting field is algebraically closed. In fact, all algebraically closed
fields arise in this way. A statement, with a proof for the countable case, is given in
[5, Section 71]; the general case is a simple application of Zorn's lemma. Let A be an
algebra over an algebraically closed field F of characteristic zero. Then F = R[i],
where R is a maximal formally real subfield and i2 — — 1. Define '' ('conjugation')
on F by taking (£ + r)i)c = £ — iji: (£, rj e R). By an involution * on A we now mean
a ring involution such that

(3) ( V a e A ) ( V U F ) (Xa)*=kca*.

Proper and special involutions are defined as before. Suppose that A is semisimple.
Since F is algebraically closed, the only finite-dimensional division algebra over F
is F itself and so A is isomorphic to a direct sum of full matrix algebras over F. Now
regard A as an algebra over R. Then * : A -> A, constructed from c as in the proof
that (iii) implies (i) in Theorem 2.2, is a special involution; moreover, it satisfies (3).
Hence * is a special involution on A as an algebra over F. Thus we obtain the result
below:

COROLLARY 2.3. The following conditions on a finite-dimensional algebra A over
an algebraically closed field of characteristic zero are equivalent: A admits a special
involution, A admits a proper involution, A is semisimple.
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