TWO REMARKS ON AMALGAMS OF LOCALLY FINITE GROUPS

Berthold J. Maier

Abstract

We construct $2^{N_{0}}$ non amalgamation bases in the class of locally finite groups, and we present necessary and sufficient conditions for the embeddability of an amalgam into a locally finite group in the case that the common subgroup has finite index in both constituents.

Recall that an amalgam of groups consists of two groups G, H with a common subgroup U. Such an amalgam can be realized in a class \underline{K} of groups if there exists a group $F \in \underline{K}$ and embeddings $g: G \rightarrow F$ and $h: H \rightarrow F$ which coincide on U. In the classes of all groups, of abelian groups, or of finite groups any amalgam can be realized. However, this appears to be a rare property for a class of groups. Thus, a group $U \in \underline{K}$ is called an amalgamation base for K, if all amalgams with constituents $G, H \in \underline{K}$ and common subgroup U can be realized in \underline{K}. For example, the amalgamation bases in the class of finite p-groups are the cyclic p-groups ([2], [3]) and the amalgamation bases in the class of torsionfree nilpotent groups are the subgroups of the additive rationals ([6], Satz 2). See [5], [9] for results in the class of nilpotent groups of class two.

Received 15 January 1987.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 $\$ A 2.00+0.00$.
B.H. Neumann showed that the finite groups are amalgamation bases in the class $L \underline{F}$ of locally finite groups ([7, Theorem 5.2]), but that the countably infinite elementary abelian 2 -group is not an amalgamation base ([7, Section 2]). By the same argument it follows that no infinite elementary abelian p-group, p a prime, is an amalgamation base in $L \underline{F}$. In the first part we show that there are $2^{\aleph} 0$ abelian groups of the form $\underset{i \in \mathbb{N}}{\oplus} C_{P_{i}}, P_{i}$ a sequence of primes, which are not amalgamation bases in
$L \underline{F}$. In contrast to the fact that existentially closed groups in a firstorder axiomatizable class are amalgamation bases of the class, Grossberg and Shelah [1] showed that P. Hall's countable universal locally finite group is not an amalgamation base in $L \underline{F}$. In view of these results we ask the following

QUESTION: Are the finite groups the amalgamation bases in $L \underline{F}$? The next interesting test case would be a Prüfer group $C_{p}{ }^{\infty}$.

In the second part we refine the idea behind the example in the first part to get conditions for the realizability of an amalgam in $L \underline{F}$ if the common subgroup U has countable index in G and H and also locally finite index in G and H. By the latter we mean that $|\langle A, U\rangle: U|<\infty$ for any finite subgroup A in G or in H. In particular, this yields conditions for the case that U has finite index in both G and H. The amalgams will be realized by means of permutational products [8].

1. Consider a sequence $p_{i}, i \in \mathbb{N}$ in $I N$ with $p_{i}^{!}=k_{i} p_{i}+1$, $1 \leq k_{i} \in \mathbb{N}$, and $p_{i+1}=p_{i}^{\prime}$ if p_{i}^{\prime} is odd, and $p_{i+1}=p_{i}^{\prime / 2}$ if p_{i}^{\prime} is even. By Dirichlet's theorem there exist $2^{\aleph}{ }^{\aleph}$ such sequences with all p_{i} prime.

For any such sequence we construct permutation groups G and H with common subgroup ${ }^{\oplus} C_{p_{i}}$ such that the amalgam cannot be realized in a locally finite group. Thus no such ${ }^{\oplus} C_{P_{i}}$ is an amalgamation base in $L F$. For i even we choose disjoint sets $\left\{M_{i}=m_{1}^{i}, \ldots, m_{p_{i}^{\prime}}^{i}, n_{1}^{i}, \ldots, n_{p_{i}^{i}}^{i}\right\}$. We
consider the following permutations of $M=U M_{i}$.
$\phi=\Pi\left\{\left(m_{j}^{i}, n_{j}^{i}\right) \mid j=1, \ldots, p_{i}^{\prime}, \quad i\right.$ even $\}$,
$\psi=\pi\left(\left(m_{k p_{i}}^{i}, m_{k p_{i}+1}^{i}\right) \mid k=1, \ldots, k_{i}, \quad i\right.$ even $)$,
$a_{i}=\pi\left\{\left(m_{k p_{i}+1}^{i}, m_{k p_{i}+2}^{i}, \ldots, m^{i}(k+1) p_{i}, \mid k=0, \ldots, k_{i}-1\right\} \quad i\right.$ even,
$a_{i+1}=\phi\left(a_{i} \psi\right)^{2} \phi, i \quad$ even.

It is easy to see that for i even a_{i+1} acts non-trivially only on $\left\{n_{1}^{i}, \ldots, n_{p_{i}^{\prime}}^{i}\right\}$, and $o\left(a_{i+1}\right)=p_{i+1}$. Furthermore $\left[a_{i}, a_{j}\right]=1$, and $\left.<a_{i}|. i \in \mathbb{N}\rangle=\oplus<a_{i}\right\rangle$ with $\left.<a_{i}\right\rangle \cong C_{p_{i}}$. Now consider the group $G=\left\langle\phi, \psi, a_{i} \mid i \in \mathbb{N}\right\rangle$. We claim that $G \in L \underline{F}$. To see this it suffices to show that the transitivity systems of any subgroup $G_{n}=\left\langle\phi, \psi, a_{0,}, \ldots, a_{n}\right\rangle$ are bounded ([7, Lemma 5.3]). This holds because G stabilizes each M_{i}, i even, and the transitivity systems in $M_{i}, i>n$, consist of 2 or 4 elements due to the action of ϕ and ψ and the trivial action of a_{0}, \ldots, a_{n} in these M_{i}. The crucial property of G is that $a_{2 i+1} \in\left\langle\phi, \psi, a_{2 i}\right\rangle, i \in \mathbb{N}$. Similarly we can construct a group $H=\left\langle\phi^{\prime}, \psi^{\prime}, b_{i} \mid i \in \mathbb{N}\right\rangle \in L E$ such that $\left\langle b_{i} \mid i \in \mathbb{N}\right\rangle=\oplus\left\langle b_{i}\right\rangle$, $\left\langle b_{i}\right\rangle \cong C_{p_{i}}$ and $b_{2 i+2} \in\left\langle\phi^{\prime}, \psi^{\prime}, b_{2 i+1}\right\rangle, i \in \mathbb{N}$. Thus we have $\oplus C_{p_{i}}$ as a common subgroup in G and H. However any realization F of this amalgam is not locally finite. For the subgroup $F_{0}=\left\langle\phi, \psi, \phi^{\prime}, \psi^{\prime}, a_{0}\right\rangle$ contains the infinite group $\oplus C_{p_{i}}$, because $a_{2 i} \in F_{o}$ implies

$$
\begin{aligned}
& b_{2 i+1}=a_{2 i+1} \in\left\langle\phi, \psi, a_{2 i^{\prime}} \leq F_{0}, \quad\right. \text { and } \\
& a_{2 i+2}=b_{2 i+2} \in\left\langle\phi^{\prime}, \psi^{\prime}, b_{2 i+1}\right\rangle \leq F_{0^{\prime}} \quad i \in \mathbb{N} .
\end{aligned}
$$

2. Suppose $U \leq G \in L E$. We say that U has locally finite index in G, if $|\langle A, U\rangle: U|<\infty$ for all finite subgroups A of G. Here is
an example of a locally finite group $G=\langle A, U\rangle$ such that A is finite but U is not of finite index in G. Let M_{i} be disjoint sets of $2 i$ elements, $i \geq 2$, and choose permutations $a_{i} a_{i}$ on M_{i} of order two that generate a dihedral group $D_{4 i}$. The group $G=<\alpha_{,} \alpha_{i} \mid i \geq 2>$ permutes $M=U M_{i}$ and is locally finite as the transitivity systems of the subgroups $<a_{2} a_{2}, \ldots, a_{n}>$ in the sets $M_{i}, i>n$ consist of two elements according to the action of the involution a and the trivial action of a_{2}, \ldots, a_{n}. The elementary abelian subgroup $<a_{i} \mid i \geq 2>$ has infinite index as $\left|\left\langle a, a_{i}\right\rangle:\left\langle a_{i}\right\rangle\right|=2 i, \quad i \geq 2$.

The hypothesis of locally finite index will be used as follows. Suppose subgroups A_{0}, U of $G \in L F$ are given such that $\left|<A_{0}, U>: U\right|<\infty$. Then we find a finite subgroup $A \leq G$ such that $\left\langle A_{0}, U\right\rangle=A U=U A$, and we set $U^{\prime}=A \cap U$. We define an operation of A on the right cosets $U^{\prime} \backslash U$ by $U^{\prime} u a=U^{\prime} u^{\prime}$ if $u a=a^{\prime} u^{\prime}, a^{\prime} \in A, u^{\prime} \in U$. To show that this is well defined let $v \in U^{\prime}$ and $v u a=a^{\prime \prime} u^{\prime \prime}, a^{\prime \prime} \in A, u^{\prime \prime} \in U$. Then $v a^{\prime} u^{\prime}=a^{\prime \prime} u^{\prime \prime}, a^{\prime \prime-1} v a^{\prime}=u^{\prime \prime} u^{\prime-1} \in A \cap U=U^{\prime}$, and hence $U^{\prime} u^{\prime}=U^{\prime} u^{\prime \prime}$. Now suppose $u a=a^{\prime} u^{\prime}$ and $u^{\prime} b=b^{\prime} u^{\prime \prime}$ with $u, u^{\prime}, u^{\prime \prime} \in U, a, b, a^{\prime}, b^{\prime} \in A$. Then $\left(U^{\prime} u a\right) b=U^{\prime} u^{\prime} b=U^{\prime} u^{\prime \prime}$ and also $U^{\prime} u(a b)=U^{\prime} u^{\prime \prime}$ since $u(a b)=a^{\prime} u^{\prime} b$ $=a^{\prime} b^{\prime} u^{\prime \prime}$ with $a^{\prime} b^{\prime} \in A$. Thus we have an operation of the group A on $U^{\prime} \backslash U$. The orbits of the finite group A give rise to a partition of $U^{\prime} \backslash U$ into finite subsets. Assume that an action of another finite group B on $U^{\prime} \backslash U$ is given. We may form the finest partition of $U^{\prime} \backslash U$ which is coarser than both the orbit partitions of A and B on $U^{\prime} \backslash U$. The sets in this new partition are unions of orbits of A and B with nontrivial intersection. We say that the orbits of A and B generate a bounded partition if this new partition consists of finite subsets of bounded order. B.H. Neumann's example [7, Section 2] shows that in general this new partition may contain infinite subsets, and it is also easy to construct an example where the new partition consists of finite subsets only, but the orders of those subsets are not bounded. Since this example illustrates the necessity of the second condition of our main result we include it here. Consider an elementary abelian 2 -group $U=\oplus U_{i}$, where
$U_{i}=<c_{i 0}>x_{\ldots} \times<c_{i, 2 i}>$, and define automorphisms a and b of U by $c_{i 0^{a}}=c_{i 0^{\prime}} c_{i, 2 j-1}={ }^{\prime} c_{i, 2 j,}, c_{i, 2 j} a=c_{i, 2 j-1}, c_{i, 2 j-2} b=c_{i, 2 j-1}$, $c_{i, 2 j-1} b=c_{i, 2 j-2}, c_{i, 2 i} b=c_{i, 2 i}, j=1, \ldots, i, i \geq 1$. Let G, H be the semidirect product of U by $A=\langle a\rangle$ and $B=\langle b\rangle$, respectively. Then $G=A U=U A ; H=B U=U B$, and $A \cap U=\langle 1\rangle=B \cap U$. As above A and B operate on $U=<1>\backslash U$, which is clearly the same as the action of A and B as automorphisms on U. Since A and B stabilize the subgroups U_{i} of U, the new partition of U consists of finite subsets only. But it contains the subsets $\left\{c_{i, 0}, \ldots, c_{i, 2 i}\right\}, i \geq 1$ and thus is not bounded.

THEOREM. Suppose U is a common subgroup of countable, locally finite index in the locally finite groups G and B. Then the following are equivalent.

1. The omalgam $U \leq G, H$ can be realized in a locally finite group.
2. a) For all finite subgroups $A_{0} \leq G$ and $B_{0} \leq H$ there exist finite subgroups $A_{0} \leq A \leq G$ and $B_{0} \leq B \leq H$ such that $A \cap U=B \cap U$, and $A U=U A, B U=U B$.
b) For all finite subgroups $A \leq G$ and $B \leq H$ with $U^{\prime}=A \cap U$ $=B \cap U, A U=U A, B U=U B$ the orbits of the action of A and B on $U ' \backslash U$ generate a bounded partition.

In the examples in part 1 condition 2.a) is not satisfied, whereas in the example preceding the theorem 2.a) holds but 2.b) is violated.

Proof. $\quad 1 \Rightarrow 2$. Let the amalgam be realized in the locally finite group F. We may assume that $G, H \leq F$ and $F=\langle G, H\rangle$. We first show that U has locally finite index in F. Let C_{O} be a finite subgroup of F. Thus $C_{0} \leq\langle A, B\rangle$ with $A \leq G, B \leq H$ finite. We may assume that $A U=U A$ and $B U=U B$, as U has locally finite index in G and H. This implies that $\langle A, B>U=U<A, B>1$, and hence the index $\left|\left\langle C_{0}, U\right\rangle: U\right| \leq|\langle A, B, U\rangle: U| \leq|\langle A, B\rangle|$ is finite as $\langle A, B\rangle \leq F \in L \underline{F}$.
a) Let $A_{o} \leq G, B_{o} \leq A$ be finite subgroups. Now $\left\langle A_{o}, B_{o}\right\rangle \in F$ is
finite and there exists a finite group C such that $<A_{0}, B_{0}>\leq C \leq F$ and $C U=U C$. We set $A=C \cap G$ and $B=C \cap H$. Then $U \leq G, H$ yields $A \cap U=C \cap U=B \cap U$ and $A U=(C \cap G) U=C U \cap G=U C \cap G=U(C \cap G)$ $=U A$ by Dedekind's modular law, and similarly $B U=U B$.
b) Suppose $A \leq G, B \leq H$ finite and $U^{\prime}=A \cap U=B \cap U$, and $A U=U A$, $B U=U B$. Then $C=\langle A, B\rangle \leq F$ is finite and satisfies $C U=U C$. Set $U^{\prime \prime}=C \cap U \geq U^{\prime}$, and we have an action of C on $U^{\prime \prime} \backslash U$, whose orbits are bounded by $|C|$. Now the sets of the new partition generated by the orbits of A and B on $U^{\prime} \backslash U$ are bounded by $|C| \cdot\left|U^{\prime \prime}: U^{\prime}\right|$. since the projections of any two orbits of A or B in $U^{\prime} \backslash U$ which intersect nontrivially to $U^{\prime N} U$ are contained in a single orbit of C and hence the projections of the sets of the new partition of $U^{\prime} \backslash U$ to $U^{\prime \prime} U$ are contained in single orbits of C, and the bound for those sets follows.
$2 \Rightarrow 1$. As U has countable, locally finite index in G, we find an ascending chain of finite subgroups $A_{n^{\prime}} n \in \mathbb{N}$, in G such that $G=U A_{n} U, A_{n} U=U A_{n}, A_{0}=\langle 1\rangle$. We choose a left transversal of U in G as follows. Set $U_{n}=A_{n} \cap U$. Then $A_{n} U_{n+1}=A_{n} U \cap A_{n+1}=U A_{n} \cap A_{n+1}$ $=U_{n+1} A_{n}$, where the first and last equality are instances of Dedekind's modular law. Choose a left transversal S_{n} of $A_{n} U_{n+1}$ in $A_{n+1}, n \in \mathbb{N}$, with $1 \in S_{n}$. Then S_{n} is also a left transversal of $A_{n} U$ in $A_{n+1} U$, as $A_{n+1} U \cap A_{n+1}=A_{n+1}$ and $A_{n} U \cap A_{n+1}=A_{n} U_{n+1}$. Therefore $S_{n} S_{n-1} \ldots S_{1} S_{0}$ is a left transversal of $U=A_{0} U$ in $A_{n+1} U$, and hence $S=U S_{n} \ldots S_{o}$ is a left transversal of U in G. Similarly, we have $H=U B_{n} U$ and a left transversal $T=U T_{n} \ldots T_{0}$ of U in H, where T_{n} is a left transversal of $B_{n}\left(B_{n+1} \cap U\right)$ in B_{n+1}. Now let F be the permutational product [8] of G and H with respect to the transversals S and T of U in G and H, respectively. F is the subgroup of permutations on $M=S \times T \times U$, generated by the following actions of G and H on M. For $g \in G$ we have $(s, t, u) g=\left(s^{\prime}, t, u^{\prime}\right)$ if sug $=s^{\prime} u^{\prime}$ with $s^{\prime} \in S, u^{\prime} \in U$, and for $h \in H$ we have $(s, t, u) h=\left(s, t^{\prime}, u^{\prime}\right)$ if $t u h=t^{\prime} u^{\prime}$ with $t^{\prime} \in T, u^{\prime} \in U$. These two actions coincide on the common subgroup U, and therefore F is a realization of the amalgam of G with $\#$ over
U. We now show that F is locally finite. It suffices to show that the transitivity systems of any finitely generated subgroup of F on M are finite of bounded order. A finitely generated subgroup of F is contained in a subgroup $\left\langle G_{0}, H_{0}\right\rangle$ with finite subgroups $G_{0} \leq G$ and $H_{0} \leq H$. By 2.a) there exist finite subgroups $G_{0} \leq A \leq G$ and $H_{0} \leq B \leq H$ such that $U^{\prime}=A \cap U=B \cap U$, and $A U=U A, B U=U B$. Let $A \leq A_{n} U$ and $B \leq B_{n} U$ then the orbit of (s, t, u) under $\langle A, B\rangle$ is contained in $s A_{n} \times t B_{n} \times U^{\prime \prime}$ where $U^{\prime \prime}$ is the union of the cosets in the orbit of $U^{\prime} u$ under the action of A and B on $U^{\prime} \backslash U$. But the number of cosets in $U^{\prime} \backslash U$ reached from any $U^{\prime} u^{\prime}, u^{\prime} \in U$ is uniformly bounded, by m say, by 2.b) and hence the transitivity systems of $\langle A, B\rangle$ on M are uniformly bounded by $\left|A_{n}\right| \cdot\left|B_{n}\right| \cdot m \cdot\left|U^{\prime}\right|$.

COROLLARY. Suppose U is a common subgroup of finite index in the locally finite groups G and H. Then the following are equivalent.

1. The amalgom of G with H over U can be realized in a locally finite group.
2. Suppose $G=A U, H=B U$ with finite subgroups A and B.
a) For any finite subgroups $A \leq A_{0} \leq G, B \leq B_{o} \leq H$ there exist finite subgroups $A_{0} \leq A_{1} \leq G$ and $B_{0} \leq B_{1} \leq H$ such that $A_{1} \cap U$ $=B_{1} \cap U$.
b) For any finite subgroups $A \leq A_{1} \leq G, B \leq B_{1} \leq H$ with $U^{\prime}=A_{1} \cap U=B_{1} \cap U$ the orbits of the actions of A_{1} and B_{1} on U'\U generate a bounded partition.

This follows inmediately from the theorem as $A \leq A_{O} \leq G$ and $G=A U$ imply $G=A_{0} U$.

References

[1] R. Grossberg, S. Shelah, "On universal locally finite groups", Israel J. Math. 44 (1983), 289-302.
[2] G. Higman, "Amalgams of p-groups", J. Algebra 1 (1964), 301-305.
[3] F. Leinen, "A uniform way to control chief series in finite p-groups and to construct the countable algebraically closed locally finite p-groups", J. London Math. Soc. (2) 33 (1986), 260-270.
[4] F. Leinen, "Concerning amalgamation over $\mathrm{C}_{\mathrm{p}}^{\infty}{ }^{\infty}$ ", (preprint, 1985).
[5] B.J. Maier, "Amalgame nilpotenter Gruppen der Klasse zwei", Publ. Math. Debrecen, I 31 (1984), 57-70, II 33 (1986), 43-52.
[6] B.J. Maier, "Amalgame torsionsfreier nilpotenter Gruppen", J. Algebra 99 (1986), 520-547.
[7] B.H. Neumann, "Amalgams of periodic groups", Proc. Roy. Soc. London Ser. A 255 (1960), 477-489.
[8] B.H. Neumann, "Permutational products of groups", J. Austral. Math. Soc. 1 (1960), 299-310.
[9] D. Saracino, "Amalgamation bases for nil-2 groups", Algebra Universalis 16 (1983), 47-62.

Mathematisches Institut der Albert-Ludwigs-Universitat, Albertstr. 23b,

Freiburg i. Br.,
Germany .

