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Abstract. We study observed correlations between supermassive black hole (BHs) and the
properties of their host galaxies, and show that the observations define a BH “fundamental
plane” (BHFP), of the form MBH ∝ σ3 .0±0 .3 R0 .43±0 .19

e or MBH ∝ M 0 .54±0 .17
∗ σ2 .2±0 .5 , analogous

to the FP of elliptical galaxies. The BHFP is preferred over a simple relation between MBH and
any of σ, M∗, Mdyn , or Re alone at > 3 σ (99.9%) significance. The existence of this BHFP
has important implications for the formation of supermassive BHs and the masses of the very
largest black holes, and immediately resolves several apparent conflicts between the BH masses
expected and measured for outliers in both the MBH − σ and MBH − M∗ relations.
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1. Do Observations Favor a Multi-Variable Correlation Between
Black Hole Mass and Host Properties?

Discoveries of correlations between the masses of supermassive black holes (BHs) in
the centers of nearby galaxies and the properties of their host spheroids (Kormendy &
Richstone 1995) demonstrate a fundamental link between the growth of BHs and galaxy
formation. A large number of similar correlations have now been identified, linking BH
mass to host luminosity (Kormendy & Richstone 1995), mass (Magorrian et al. 1998),
velocity dispersion (Ferrarese & Merritt 2000; Gebhardt et al. 2000), concentration or
Sersic index (Graham et al. 2001; Graham & Driver 2006), and binding energy (Aller &
Richstone 2007), among others. However, because these properties of host spheroids are
themselves correlated, it is not clear whether any are in some sense more basic.

In Hopkins et al. (2007a) we consider the sample of local BHs for which masses have
been reliably determined via either kinematic or maser measurements. Specifically, we
adopt the sample of 38 local systems for which values of MBH, σ, Re , Mdyn , and bulge
luminosities are compiled in Marconi & Hunt (2003) and Häring & Rix (2004). We wish
to determine whether or not a simple one-to-one correlation between e.g. MBH and σ
is a sufficient description of the data, or if there is evidence for additional dependence
on a second parameter such as Re or M∗. The most efficient way to determine such a
dependence is by looking for correlations between the residuals of the various projections
of such a potential BHFP relation.

Figure 1 plots the correlation between BH mass MBH and host bulge effective radius
Re or bulge stellar mass M∗, all at fixed σ, where e.g. the residual of BH mass at a given
σ is

∆ log(MBH |σ) ≡ log(MBH) − 〈log(MBH)〉(σ). (1.1)

The figure demonstrates that there is a highly significant correlation between MBH and
Re or M∗ at fixed σ. We repeat this exercise in the figure, and demonstrate similarly
that there is a highly significant correlation between MBH and σ or M∗ at fixed Re ,
and between MBH and σ or Re at fixed M∗. This indicates that a simple one-variable
correlation (e.g. a MBH(σ), or MBH(M∗), MBH(Re) relation) is an incomplete description
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Figure 1. Left: Observed residual in BH mass as a function of host galaxy effective radius
Re (top) or stellar mass M∗ (bottom), at fixed velocity dispersion σ (equivalently, correlation
between the residuals in the MBH −σ and Re −σ or M∗ −σ relations at each σ). The fit to this
residual correlation is shown with the black lines (±1 σ range in the best-fit correlation shown
as dashed lines – note that they are strongly inconsistent with zero correlation), with the slope
shown (dotted blue line shows the least-squares bisector). The probability of the null hypothesis
of no correlation in the residuals (i.e. no systematic dependence of MBH on Re or M∗ at fixed
σ) for the observed systems is shown (red Pnull ). Center: Residual in MBH as a function of σ or
Re at fixed stellar mass M∗. Right: Residual in MBH as a function of σ or M∗ at fixed effective
radius Re . The observations imply a secondary “fundamental plane”-type correlation at 3 σ with
respect to each of these variables.

of the observations. We therefore introduce a FP-like relation of the form

MBH ∝ σα Rβ
e , (1.2)

which can account for these dependencies. Formally, we determine the combination of
(α, β) which simultaneously minimizes the χ2/ν of the fit and the significance of the
correlations between the residuals in σ and MBH (or Re and MBH). This yields a best-fit
BHFP relation

log(MBH) = 8.33 + 3.00(±0.30) log(σ/200 km s−1)
+ 0.43(±0.19) log(Re/5 kpc). (1.3)

As expected, the residuals of MBH with respect to these fundamental plane relations, at
fixed Re and fixed σ, show no systematic trends and are consistent with small intrin-
sic scatter. The introduction of a BHFP eliminates the strong systematic correlations
between the residuals, yielding flat errors as a function of σ and Re .

Figure 1 demonstrates the significance with which the observations rule out both a pure
BH-host mass relation (either MBH ∝ M∗ or MBH ∝ Mdyn) and a pure MBH −σ relation.
However, when fitting to a form MBH ∝ σα Rβ

e , there is still some degeneracy between
the slopes α and β (roughly along the axis β ≈ (4−α)/2). Figure 2 illustrates the degree
of this degeneracy and the extent to which, for example, a BHFP with MBH ∝ σ3 R

1/2
e is

favored over a pure MBH −Mdyn relation. We plot the likelihood of a residual correlation
between MBH and Re or σ at fixed σα Rβ

e , as a function of the slope α (marginalizing
over β and other fit parameters at each α, although β(α) roughly follows the axis of

https://doi.org/10.1017/S1743921308017699 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308017699


A black hole fundamental plane 221

Figure 2. Probability that there is no remaining trend or correlation among the residuals of
the MBH -host relation (Pnull , as in Figure 1), as a function of the slope α for a correlation of the
form MBH ∝ σα Rβ

e (top) or MBH ∝ σα Mβ
∗ (bottom). For each value of α, we marginalize over β

and the correlation normalization to find the best fit, but there is a rough degeneracy between
the best fit α and β (β ≈ (4 − α)/2 for MBH ∝ σα Rβ

e , β ≈ (4 − α)/4 for MBH ∝ σα Mβ
∗ ).

Lines show Pnull for the observations, points show the best fit (in a χ2 sense) BHFP relation
and errors. Thick black lines show the α corresponding to a pure MBH − σ, MBH − Mdyn , or
MBH − M∗ relation, all of which are ruled out at similar (∼ 3 σ) significance.

degeneracy above). We then repeat this exercise for the alternate representation of the
fundamental plane, MBH ∝ σα Mβ

∗ .
There are possible correlations which cannot be clearly discriminated by the present

data. Both a pure relation between BH mass and spheroid binding energy, of the form
MBH ∝ (M∗ σ2)2/3 , as studied in Aller & Richstone (2007), for example, and a mixed
relation of the form MBH ∝ M

1/2
∗ σ2 presented in Hopkins et al. (2007b), are within the

∼ 1σ allowed range of the data. It is worth noting that simply expanding the number
of observed sources will not necessarily break these degeneracies. Rather, to increase
the constraining power of the observations, a larger baseline is needed, including (in
particular) a larger sample of objects which lie off the mean Re − σ or M∗ − σ relations
(and thus extend the baseline in the residual-residual space which properly constrains the
FP slopes). Finally, we noted above that Figure 1 is essentially unchanged if we consider
residuals with respect to just linear (i.e. pure power law) MBH − σ-type relations, as
a consequence of there being no significant evidence in our data for a log-quadratic or
higher-order correlation. Allowing log-quadratic terms in our fundamental plane fits, we
find a best fit to the observations of the form

log(MBH) = 8.06 +(2.8 ± 0.4) σ̃ + (0.48 ± 0.18) r̃

− (2.1 ± 2.3) σ̃2 + (0.31 ± 0.25) r̃2 (1.4)

(where σ̃ ≡ log [σ/200 km s−1 ] and r̃ ≡ log [Re/3 kpc]). The linear BHFP coefficients in σ
and Re are similar to those we found before, and their significance is not much changed
– this illustrates that the FP behavior we find cannot simply trade off with or be equally
well-represented by a log-quadratic dependence (i.e. one cannot eliminate the residual
dependence of MBH on Re at fixed σ by adding a log-quadratic or higher-order term
in σ). The log-quadratic terms are at most significant at the ∼ 1σ level. This is also
true if we add just one of the two log-quadratic terms – adding a log-quadratic term in
just Re yields a coefficient (0.16 ± 0.25) r̃2 , and adding one in just σ gives a coefficient
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(−0.28 ± 2.15) σ̃2 . This is similar to the finding of Wyithe (2006), who estimates < 1σ
significance for the addition of log-quadratic terms in any of σ, Mdyn , or M∗.

2. Conclusions
We study the correlation between observed central BH mass and host galaxy properties,

and find that the systems lie on a BH “fundamental plane” (BHFP), of the form MBH ∝
σ3.0 R0.5

e or MBH ∝ M 0.5−0.7
∗ σ1.5−2.0 , analogous to the FP of spheroids. Specifically,

there are significant (at > 99.9% confidence) trends in the residuals of the MBH − σ
relation with M∗ and Re at fixed σ, and likewise in the MBH −M∗ relation (with σ or Re

at fixed M∗). This provides a new paradigm for understanding the traditional relations
between BH mass and either bulge velocity dispersion or mass. These correlations (as well
as those with other bulge properties such as effective radius, central potential, dynamical
mass, concentration, Sersic index, and bulge binding energy) are all projections of the
same fundamental plane relation. Just as the Faber-Jackson relation between e.g. stellar
mass or luminosity and velocity dispersion (M∗ − σ) is understood as a projection of
the more fundamental relation between M∗, σ, and Re , so too is the MBH − σ relation
(MBH ∝ σ4) a projection of the more fundamental relation MBH ∝ σ3 R0.5

e . Recognizing
this resolves the nature of several apparent outliers in the MBH − σ relation, which
simply have unusual σ values for their stellar masses or effective radii, and eliminates
the strong correlations between residuals. Improved measurements of the host properties
of systems with well-measured BHs can significantly improve constraints on the BHFP.
The present observations demand a correlation of the form MBH ∝ σα Mβ

∗ over a simple
correlation with either σ or M∗ at � 3σ confidence. Already, this puts strong constraints
on theoretical models of BH growth and evolution – BH mass does not simply scale with
the star formation (stellar mass) or virial velocity of the host galaxy. However, there
is still a substantial degeneracy between the slopes α and β (roughly along the axis
β ≈ 1− α/4). For example, the existing data do not allow us to significantly distinguish
a pure correlation with spheroid binding energy MBH ∝ (M∗ σ2)2/3 , as detailed in Aller
& Richstone (2007) from the marginally favored relation ∝ M

1/2
∗ σ2 . Both suggest that

the ability of BHs to self-regulate their growth must be sensitive to the potential well
at the center of the galaxy (and therefore to galactic structure), but the difference could
reveal variations in the means by which BH feedback couples to the gas on these scales.
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