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Abstract

For a class of ‘linear’ sudoku solutions, we construct mutually orthogonal families of maximal size for
all square orders, and we show that all such solutions must lie in the same orbit of a symmetry group
preserving sudoku solutions.
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1. Introduction

1.1. Purpose The purpose of this article is to investigate orthogonality for a class of
‘linear’ sudoku solutions, which we refer to as linear Keedwell solutions. Specifically,
we provide a simple condition involving linear mappings that characterizes
orthogonality, we show that any two orthogonal linear Keedwell solutions must lie in
the same orbit of the sudoku group (a symmetry group preserving sudoku solutions),
and we produce families of mutually orthogonal solutions of maximal size.

1.2. Background, motivation, and results Recall that a latin square of order n is an
n × n array with entries drawn from n distinct symbols in such a way that no symbol
is repeated in any row or column. A sudoku solution is a latin square of order n2 with
an additional requirement called the block condition: upon partitioning the array into
n × n blocks, each block must contain every symbol. Two sudoku solutions of order 4
are shown in (1.1) below.

0 1 3 2
2 3 1 0

3 2 0 1
1 0 2 3

0 3 2 1
2 1 0 3

3 0 1 2
1 2 3 0

(1.1)

c© 2009 Australian Mathematical Publishing Association, Inc. 1446-7887/2009 $16.00

409

https://doi.org/10.1017/S1446788709000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000123


410 J. Lorch [2]

Two latin squares are said to be orthogonal if, upon superimposition, each ordered
pair of entries occurs exactly once. For example, the latin squares in (1.1) are
orthogonal: there is no repetition of ordered pairs upon superimposition, as is indicated
in the array below.

00 13 32 21
22 31 10 03

33 20 01 12
11 02 23 30

Beginning in 1782 with Euler’s thirty-six officers [6], problems and design
applications of orthogonal latin squares have been extremely well-documented,
appearing in literature ranging from applied combinatorics books ([17], for example)
to research papers on the construction and size of orthogonal families (see [5] for a
good survey). A well-known open problem in this field is the determination of N (n),
the maximum size of a family of mutually orthogonal latin squares of order n. It is
relatively easy to show that N (n)= n − 1 if n is a power of a prime, but the problem is
far more difficult for other values of n. For instance, as an outgrowth of the thirty-six
officers problem, Euler conjectured that N (n)= 1 whenever n ≡ 2 mod 4; this stood
until 1960 when Bose, Shrikhande, and Parker ([2] and [3] collectively) showed that
Euler’s conjecture is false for all n ≡ 2 mod 4, n > 6. Many current results involve
providing lower bounds for N (n) (again, see [5]), and Mullen [15] has suggested that
the determination of N (n) be regarded as the next ‘Fermat’ problem.

In recent years the world has become addicted to sudoku, and since a sudoku
solution is simply a special type of latin square, it is natural to transfer questions
about latin squares, including those about counting and orthogonality, to the setting
of sudoku (see, for example, [7] and [10]). Specifically, in [9], Solomon Golomb asks
about the existence of orthogonal sudoku solutions.

Golomb’s question has an affirmative answer: there exist pairs of orthogonal sudoku
solutions of all square orders larger than one and there are several ways of producing
them, including the transversal combing method [8] as well as techniques from finite
projective geometry [1] and algebra [16].

The ideas in this paper stem from the simple observation that the orthogonal
sudoku solutions given by Keedwell [12] are characterized (for a given K ) by Zn-
homomorphisms Z2

n→ Z2
n , (i, j) 7→ (ci j , di j ). Using linearity as a tool, we deduce

that the orthogonality of a pair of linear Keedwell sudoku solutions is equivalent to
a corresponding homomorphism being bijective (see Proposition 3.2 below). This, in
turn, leads to our main results:

• a simpler proof of Keedwell’s orthogonality theorem [12] (Corollary 3.3);
• showing that any collection of linear Keedwell solutions lies in the same orbit of

the sudoku group (Proposition 3.6);
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• producing maximal mutually orthogonal families of linear Keedwell solutions of
all square orders (Theorems 4.2 and 4.4);

• using a family of linear Keedwell solutions to match the lower bound for Nsu(n2)

given in [16] in cases where the smallest prime factor of n is not a repeated factor.
Here Nsu(n2) denotes the maximum size of an orthogonal family of sudoku
solutions of order n2 (Remarks 4.5).

The paper is structured as follows. Section 2 summarizes the terminology and
concepts needed later in the paper. The characterization of orthogonality in terms
of Zn-homomorphisms as well as the assertion that any pair of orthogonal linear
Keedwell solutions lie in the same orbit of the sudoku group are found in Section 3.
Finally, Section 4 contains the main results concerning size and construction of
orthogonal families of linear Keedwell solutions.

2. The sudoku group and Keedwell solutions

This section contains background material necessary for the statement and proof of
our main results.

2.1. Sudoku group Consider the following collection of elementary manipulations
that carry one sudoku solution of order n2 to another:
• relabeling entries;
• swapping two rows or columns of blocks (rows of blocks are called bands, while

columns of blocks are called stacks);
• swapping two rows (columns) within a band (stack);
• reflection across the diagonal (that is, matrix transpose).
Viewing these manipulations as functions on the set of sudoku solutions, we may form
the sudoku group Gn (under function composition) generated by these manipulations.

The sudoku group acts naturally on sudoku solutions. There are only two orbits
of G2 while there are 5 472 730 538 orbits of G3 (see [11] and [13] for more on the
structure and orbits of Gn).

2.2. Keedwell solutions and exponent functions Given any array of order n2, we
may identify the locations of the n × n blocks with Z2

n as follows:

(0, 0) (0, 1) · · · (0, n − 2) (0, n − 1)
(1, 0) (1, 1) · · · (1, n − 2) (1, n − 1)
...

...
...

...
...

(n − 1, 0) (n − 1, 1) · · · (n − 1, n − 2) (n − 1, n − 1)

(2.1)

Locations of entries within a given n × n block are described in the same way.
Following Keedwell [12], we let α and β denote commuting operators on n × n

blocks K so that αK and βK are n × n blocks satisfying:
• the i th row of αK is the (i + 1)st row of K mod n; and
• the j th column of βK is the ( j + 1)st column of K mod n.
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DEFINITION 2.1. Let K be an n × n array consisting of n2 symbols and M an array
of order n2 whose entries are drawn from the symbols in K .

(a) We say that M is a Keedwell array for K if for each (i, j) ∈ Z2
n , the (i, j)th

block of M is αci jβdi j K for some (ci j , di j ) ∈ Z2
n , with (c00, d00)= (0, 0).

(b) We say that M is a Keedwell solution for K if M is both a Keedwell array for K
and a sudoku solution.

(c) Let M be a Keedwell array for K . The function fM : Z2
n→ Z2

n defined by
(i, j) 7→ (ci j , di j ) is called the exponent function corresponding to M .

(d) Let M be a Keedwell array (solution) for K , and suppose that fM is a
Zn-homomorphism. Then M is called a linear Keedwell array (solution), and
fM is represented by the exponent matrix

AM =

(
c10 c01
d10 d01

)
.

For example, if K =
(

0 1 2
3 4 5
6 7 8

)
with exponent matrix AM =

(
0 1
1 1

)
, then one obtains the

linear Keedwell solution

M =

 K αβK α2β2K
βK αβ2K α2K
β2K αK α2βK

=

0 1 2 4 5 3 8 6 7
3 4 5 7 8 6 2 0 1
6 7 8 1 2 0 5 3 4

1 2 0 5 3 4 6 7 8
4 5 3 8 6 7 0 1 2
7 8 6 2 0 1 3 4 5

2 0 1 3 4 5 7 8 6
5 3 4 6 7 8 1 2 0
8 6 7 0 1 2 4 5 3

When K is understood, we will drop the ‘for K ’ portion of the terminology in
Definition 2.1.

3. Characterizing orthogonality and relationship with sudoku group orbits

In this section we establish a condition on exponent functions that characterizes
orthogonality of Keedwell solutions, and we show that any two linear Keedwell
solutions of the same order lie in the same orbit of the sudoku group. These results,
along with others in this section, are needed for the results in Section 4, where we
consider families of mutually orthogonal linear Keedwell solutions.

Throughout, let K be a fixed n × n array consisting of n2 distinct symbols. If N1
and N2 are arrays of equal order, let [N1, N2] denote the set of ordered pairs in
N1 × N2 formed via superimposition (without repetition).

https://doi.org/10.1017/S1446788709000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000123


[5] Orthogonal sudoku solutions 413

LEMMA 3.1. Let i, j, k, l ∈ Zn .

(a) [αiβ j K , αkβl K ] = [K , αk−iβl− j K ].
(b) [K , αiβ j K ] ∩ [K , αkβl K ] 6= ∅ if and only if (i, j)= (k, l).

PROOF. Part (a) follows from the observation that applying α−iβ− j to both αiβ j K
and αkβl K does not change the corresponding collection of ordered pairs formed by
superimposition.

For part (b), suppose x and y are symbols whose locations in K are (r, s) and (t, u),
respectively (see (2.1)). Then

(x, y) ∈ [K , αiβ j K ] ∩ [K , αkβl K ] ⇐⇒ (t − i, u − j)= (t − k, u − l)= (r, s)

⇐⇒ (i, j)= (k, l). 2

PROPOSITION 3.2. Keedwell solutions M1 and M2 of order n2 are orthogonal if and
only if FM2 − FM1 is a bijection.

PROOF. Let FM1(i, j)= (ai j , bi j ) and FM2(i, j)= (ci j , di j ), where FM2 − FM1 is a
bijection. Applying parts (a) and (b) of Lemma 3.1 successively, we obtain

|[M1, M2]| =

∣∣∣∣ ⋃
(i, j)∈Z2

n

[αai jβbi j K , αci jβdi j K ]

∣∣∣∣= ∣∣∣∣ ⋃
(i, j)∈Z2

n

[K , αci j−ai jβdi j−bi j K ]

∣∣∣∣
=

∑
(i, j)∈Z2

n

|[K , αci j−ai jβdi j−bi j K ]| =
∑

(i, j)∈Z2
n

n2
= n4.

Since there are exactly n4 possible ordered pairs, we conclude that M1 and M2 are
orthogonal.

On the other hand, if FM2 − FM1 is not a bijection, then by part (b) of Lemma 3.1,∣∣∣∣ ⋃
(i, j)∈Z2

n

[K , αci j−ai jβdi j−bi j K ]

∣∣∣∣< ∑
(i, j)∈Z2

n

|[K , αci j−ai jβdi j−bi j K ]| = n4,

which says that |[M1, M2]|< n4; hence M1 and M2 are not orthogonal. 2

Proposition 3.2 allows a short proof of Keedwell’s result [12].

COROLLARY 3.3 (Keedwell [12]). For each n ∈ Z+, the sudoku solutions

M1 =


K αK α2K · · · αn−1K
αβK α2βK α3βK · · · α0βK
...

...
...

...
...

αn−1βn−1K α0βn−1K αβn−1K · · · αn−2βn−1K
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and

M2 =


K αβK α2β2K · · · αn−1βn−1K
βK αβ2K α2β3K · · · αn−1β0K
...

...
...

...
...

βn−1K αβ0K α2βK · · · αn−1βn−2K


are orthogonal.

PROOF. Observe that FM2 − FM1 is a Zn-homomorphism with matrix

AM2−M1 =

(
n − 1 0

0 1

)
.

The columns of AM1−M2 form a basis for Z2
n , so FM2 − FM1 is a bijection, and hence

the solutions are orthogonal by Proposition 3.2. 2

Note that the two sudoku solutions in Corollary 3.3 lie in the same orbit of the
sudoku group: one is obtained from the other via transpose and relabeling. This is part
of a general phenomenon, as we shall soon see.

LEMMA 3.4. Let K be an n × n array consisting of n2 symbols and suppose that
M = (αci jβdi j K ) is a Keedwell array of order n2, with ci j , di j ∈ Zn .

(a) M is a Keedwell solution if and only if

ci j = cik ⇐⇒ j = k and di j = dk j ⇐⇒ i = k.

(b) M is a linear Keedwell solution if and only if gcd(c01, n)= gcd(d10, n)= 1 and
fM is a Zn-homomorphism.

PROOF. For part (a), M automatically satisfies the sudoku block condition, so we
check conditions under which M is a latin square. Observe that M will have repetition
of entries in the rows of its i th band if and only if αci j = αcik for some j, k with j 6= k,
which happens if and only if ci j = cik for some i, j, k with j 6= k. Similar statements
hold regarding repetition in the columns of M .

For part (b), suppose M is a linear Keedwell solution. Then FM is a Zn-
homomorphism (Definition 2.1) and, by part (a) together with linearity,

ic10 + jc01 = ic10 + kc01⇐⇒ ci j = cik ⇐⇒ j = k. (3.1)

Therefore jc01 = kc01 if and only if j = k in Zn , so gcd(c01, n)= 1. Similarly,
gcd(d10, n)= 1. For the reverse implication, M is a linear Keedwell array, and the
hypotheses imply the truth of (3.1) and its analog for di j . So M is a linear Keedwell
solution by part (a). 2

Certain sudoku group elements (see Section 2.1) have the following effect on linear
Keedwell solutions.
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LEMMA 3.5. Suppose M is a linear Keedwell solution of order n2, AM =

(
c10 c01
d10 d01

)
,

and m, k ∈ Zn with gcd(k, n)= 1.

(a) If M ′ is obtained from M by sending the jkth stack1 of M to the j th stack of M ′,

then AM ′ =

(
c10 kc01
d10 kd01

)
.

(b) If M ′ is obtained from M by sending the ikth band of M to the i th band of M ′,

then AM ′ =

(
kc10 c01
kd10 d01

)
.

(c) If M ′ is obtained from M by applying αim to the i th band of M, then AM ′ =(
c10+m c01

d10 d01

)
.

(d) If M ′ is obtained from M by applying β jm to the j th stack of M, then AM ′ =(c10 c01
d10 d01+m

)
.

Further, each of the manipulations described in items (a) through (d) correspond to
elements of the sudoku group Gn .

PROOF. For (a), note that FM ′(i, j)= FM (i, jk)= (ic10 + jkc01, id10 + jkd01), so
FM ′ is a Zn-homomorphism with matrix

AM ′ =

(
FM ′

(
1
0

)
FM ′

(
0
1

))
=

(
c10 kc01
d10 kd01

)
.

Part (b) is similarly verified.
For part (c) we have

FM ′(i, j)= FM (i, j)+ (mi, 0)= (i(c10 + m)+ jc01, id10 + jkd01),

so FM ′ is a Zn-homomorphism with matrix

AM ′ =

(
FM ′

(
1
0

)
FM ′

(
0
1

))
=

(
c10 + m c01

d10 d01

)
.

Part (d) is similarly verified.
Finally, the manipulations described in (a) and (b) are permutations of stacks and

bands (gcd(k, n)= 1 is necessary here), while the manipulations in (c) and (d) are
permutations of rows within bands and columns within stacks, respectively. According
to Section 2.2, these are sudoku group manipulations. 2

PROPOSITION 3.6. All linear Keedwell solutions (of the same order) lie in the same
orbit of the sudoku group.

PROOF. Let M1, M2 be linear Keedwell solutions with exponent matrices

AM1 =

(
c a
d b

)
and AM2 =

(
e f
g h

)
.

Since gcd(a, n)= gcd( f, n)= gcd(g, n)= gcd(d, n)= 1 (Lemma 3.4), there exist
r1, r2 ∈ Zn with gcd(r1, n)= gcd(r2, n)= 1 such that ar1 = f and dr2 = g. Then
1 Recall that enumeration begins with 0. For example, the first stack of M is the second stack from the
left.
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let M ′ be the linear Keedwell solution formed from M1 by replacing the j th stack by
the jr1th stack and then the i th band by the ir2th band, when 0≤ i, j ≤ n − 1. By
Lemma 3.5, the resulting exponent matrix for M ′ is

AM ′ =

(
r2c f
g r1b

)
.

Let m1, m2 ∈ Zn be such that r1b + m1 = h and r2c + m2 = e. Consider the linear
Keedwell solution M ′′ formed from M ′ by applying αim2 to the i th band of M ′ and
then applying β jm1 to the resulting j th stack, when 0≤ i, j ≤ n − 1. By Lemma 3.5,
the resulting exponent matrix for M ′′ is

AM ′′ =

(
e f
g h

)
.

Since this exponent matrix completely determines the corresponding sudoku solution,
we conclude that M ′′ = M2 and that M1, M2 lie in the same orbit of Gn
(Lemma 3.5). 2

4. Maximal orthogonal families of linear sudoku solutions

In this section, we establish an upper bound on the largest possible set of mutually
orthogonal linear Keedwell solutions and show that this upper bound is achieved for
all square orders. Throughout, let K be a fixed n × n array consisting of n2 distinct
symbols.

Let M0 be the linear Keedwell solution with

AM0 =

(
0 1
1 0

)
, (4.1)

and suppose that {M1, M2, . . . , Mr } is a collection of linear Keedwell solutions with

AM j − AM0 =

(
c j a j
d j b j

)
, so that

AM j =

(
c j a j + 1

d j + 1 b j

)
. (4.2)

PROPOSITION 4.1. Let M0, M1, . . . , Mr be as above. These solutions form a family
of mutually orthogonal linear Keedwell solutions if and only if:

(i) gcd(a j + 1, n)= gcd(d j + 1, n)= 1 when 1≤ j ≤ r;

(ii)
{(

c j
d j

)
,
(

a j
b j

)}
is a basis for Z2

n when 1≤ j ≤ r; and

(iii)
{(

c j−ck
d j−dk

)
,
(

a j−ak
b j−bk

)}
is a basis for Z2

n when 1≤ j, k ≤ r with j 6= k.

PROOF. By Lemma 3.4, each M j (1≤ j ≤ r ) is a linear Keedwell solution if and only
if condition (i) holds. By Proposition 3.2, each M j (1≤ j ≤ r ) is orthogonal to M0 if
and only if condition (ii) holds, while M j is orthogonal to Mk ( j 6= k, 1≤ j, k ≤ r ) if
and only if condition (iii) holds. 2
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The conditions in Proposition 4.1 allow us to place an upper bound on the size of
any family of mutually orthogonal linear Keedwell solutions.

THEOREM 4.2. The size of any family of mutually orthogonal linear Keedwell
solutions of order n2 is bounded above by p(p − 1), where p is the smallest prime
factor of n. Further, all members of any such family lie in the same orbit of the sudoku
group.

PROOF. By Proposition 3.6, all members of any family of mutually orthogonal linear
Keedwell solutions must lie in the same orbit of the sudoku group; furthermore, the
proposition allows us to assume without loss of generality that M0 (given in (4.1)) lies
in any such family. This assumption will stand throughout.

Now, suppose M0, M1, . . . , Mr is a family of mutually orthogonal linear Keedwell
solutions with corresponding exponent matrices AM0 as in (4.1) and AM j (1≤ j ≤ r)

as in (4.2). Further, suppose
(

â j

b̂ j

)
represents the (pair of) remainders of

(
a j
b j

)
modulo p.

We cannot have
(

â j

b̂ j

)
=

(
âk

b̂k

)
if j 6= k: otherwise gcd(a j − ak, b j − bk, n)≥ p > 1,

which means that
(

a j−ak
b j−bk

)
cannot be part of a basis for Z2

n , and hence condition (iii) in

Proposition 4.1 does not hold. Therefore, r is not larger than the number of remainder

pairs modulo p that can be achieved by the vectors
(

a j
b j

)
. Keeping the requirements

of Proposition 4.1 in mind, the possible remainder pairs modulo p have the form
(

0
u

)
where 1≤ u ≤ p − 1 or (vw) where 1≤ v ≤ p − 2, and 0≤ w ≤ p − 1, so there are
a total of p(p − 1)− 1 possible remainder pairs. We conclude that the size of the
orthogonal family, namely r + 1, is not larger than [p(p − 1)− 1] + 1= p(p − 1). 2

It turns out that the upper bound in Theorem 4.2 is achieved in all square orders, as
we shall now see.

LEMMA 4.3. For each odd integer n larger than one, there exists a quadratic residue
sn of n such that sn + 1 is a quadratic nonresidue for each prime factor of n.

PROOF. Suppose qm1
1 qm2

2 · · · q
mk
k is the prime factorization of n. Since odd primes

possess both residues and nonresidues, when 1≤ j ≤ k we may choose a residue sn j

of q j such that sn j + 1 is a nonresidue for q j . By the Chinese remainder theorem,
there exists sn such that sn ≡ sn j mod q j when 1≤ j ≤ k. Then sn is a residue for
each prime factor of n, which guarantees that sn is a residue of n (see [4, Theorem 9–
13]). Further, since sn + 1≡ sn j + 1 mod q j , we know that sn + 1 is a nonresidue for
each prime factor of n. 2

THEOREM 4.4. For each integer n > 1, the upper bound in Theorem 4.2 is achieved
for linear Keedwell solutions of order n2.
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PROOF. For each value of n, we supply a collection

Bn =

{{(
c j
d j

)
,

(
a j
b j

)} ∣∣∣ 1≤ j ≤ p(p − 1)− 1
}

of bases for Z2
n satisfying the three conditions of Proposition 4.1, where p is the

smallest prime factor of n. Note that Bn is of maximal size by Theorem 4.2.
First, suppose n is a positive even number, and let Bn consist of the single basis{(

1
0

)
,
(

0
1

)}
. Note that Bn is of maximal size by Theorem 4.2 and that the basis satisfies

the conditions of Proposition 4.1 (condition (iii) is satisfied trivially).
Next, suppose n is an odd integer. Let sn be the quadratic residue of n guaranteed

by Lemma 4.3, with λ ∈ Zn such that λ2
= 4 · sn . Then, put

Bn =

{{(
u
0

)
,

(
0
u

)} ∣∣∣ 1≤ u ≤ p − 1
}

∪

{{(
v

w

)
,

(
w

λw + v

)} ∣∣∣ 0≤ v ≤ p − 1, 1≤ w ≤ p − 2
}
.

The collection Bn is of maximal size, namely p(p − 1)− 1, according to Theorem 4.2.
Note that Bn satisfies part (i) of Proposition 4.1, as 0+ 1 and w + 1 (1≤ w ≤ p − 2)
are coprime to n. Moving on to condition (ii) of Proposition 4.1, it is clear that
elements of Bn of the form

{(u
0
)
,
(

0
u

)}
are bases of Z2

n because gcd(u, n)= 1. For
the remaining elements of Bn , since 1+ sn = 1+ λ2/4 is a nonresidue for each prime
factor of n (Lemma 4.3), so is w2(1+ λ2/4) when 1≤ w ≤ p − 2, and hence the
polynomial x2

+ λwx − w2
∈ Zq [x] has no zero in Zq for each prime factor q of n.

This implies that ∣∣∣∣v w

w λw + v

∣∣∣∣= v2
+ λwv − w2

is coprime to n when 0≤ v ≤ p − 1 and 1≤ w ≤ p − 2, thus ensuring that the
remaining elements of Bn are bases of Z2

n .
Finally, for part (iii), note that differences among distinct elements of Bn have the

form {(
r1 − r2
t1 − t2

)
,

(
t1 − t2

λ(t1 − t2)+ (r1 − r2)

)}
,

which is reminiscent of elements of Bn . Since the differences r1 − r2 and s1 − s2 are
coprime to n whenever they are nonzero (because 0≤ r j ≤ p − 1 and 0≤ s j ≤ p − 1),
and at least one of r1 − r2 and s1 − s2 is nonzero, the same arguments that we used
above to verify condition (ii) may be used to verify condition (iii) of Proposition 4.1. 2

Let Nsu(n2) denote the maximum size of an orthogonal family of sudoku solutions
of order n2 (not just families of Keedwell solutions). Theorems 4.2 and 4.4 together
imply the following result.
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REMARKS 4.5. Let Nsu(n2) denote the maximum size of an orthogonal family of
sudoku solutions of order n2 (not just families of Keedwell solutions), and suppose
that pa1

1 pa2
2 . . . pam

m is the prime factorization of n. A short argument [1] shows
that Nsu(n2)≤ n(n − 1) while an adaptation [16] of MacNeish’s construction [14]
shows that Nsu(n2)≥ q(q − 1), where q =min{pa1

1 , pa2
2 , . . . , pam

m }. If p1 is the
smallest prime factor of n, then in the case that a1 = 1 (for example, n is square-
free) Proposition 3.6 together with Theorems 4.2 and 4.4 imply that this lower bound
on Nsu(n2) is achieved by a family of linear Keedwell solutions all lying in the same
orbit of the sudoku group.

Also, observe that the two orbits of G2 are characterized by whether an orbit
element possesses an orthogonal mate. (Briefly, this is because possession of a
transversal—a path through the array in which each row, column, and symbol is
represented exactly once—is a property invariant under the action of the sudoku group.
For example, the two solutions in (1) must lie in the same orbit: the right-hand solution
is obtained by swapping the bottom two rows and the right two columns of the left-
hand solution and relabeling exchanging the labels 3 and 1.) This observation together
with Theorem 4.2 may lead us to conjecture that any two orthogonal sudoku solutions
must lie in the same orbit of the sudoku group. However, the following pair of
sudoku solutions (created using the transversal methods in [8]) are orthogonal and
lie in different orbits of the sudoku group.

0 1 2 5 3 4 8 6 7
3 4 5 7 8 6 2 0 1
6 7 8 1 2 0 4 5 3

8 6 7 0 1 2 5 3 4
2 0 1 3 4 5 7 8 6
4 5 3 6 7 8 1 2 0

5 3 4 8 6 7 0 1 2
7 8 6 2 0 1 3 4 5
1 2 0 4 5 3 6 7 8

0 4 8 3 7 2 6 1 5
3 7 2 6 1 5 0 4 8
6 1 5 0 4 8 3 7 2

8 0 3 2 5 7 4 6 1
2 5 7 4 6 1 8 0 3
4 6 1 8 0 3 2 5 7

5 8 0 7 2 4 1 3 6
7 2 4 1 3 6 5 8 0
1 3 6 5 8 0 7 2 4

It remains to understand fully how orthogonal families of sudoku solutions split across
orbits of the sudoku group.
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