
Combinatorics, Probability and Computing (2024), 33, pp. 143–156
doi:10.1017/S0963548323000366

ARTICLE

Mastermind with a linear number of queries
Anders Martinsson and Pascal Su

Department of Computer Science, ETH Zurich, Zurich, Switzerland
Corresponding author: Anders Martinsson; Email: anders.martinsson@inf.ethz.ch

(Received 23 January 2022; revised 19 September 2023; accepted 25 September 2023;
first published online: 8 November 2023)

Abstract
Since the 1960s Mastermind has been studied for the combinatorial and information-theoretical interest
the game has to offer. Many results have been discovered starting with Erdős and Rényi determining the
optimal number of queries needed for two colours. For k colours and n positions, Chvátal found asymp-
totically optimal bounds when k≤ n1−ε . Following a sequence of gradual improvements for k≥ n colours,
the central open question is to resolve the gap between �(n) and O(n log log n) for k= n. In this paper,
we resolve this gap by presenting the first algorithm for solving k= n Mastermind with a linear num-
ber of queries. As a consequence, we are able to determine the query complexity of Mastermind for any
parameters k and n.

Keywords: Mastermind; coin-weighing; information theory; combinatorial games; query complexity

1. Introduction
Mastermind is a famous code-breaking board game for two players. One player, codemaker, cre-
ates a hidden codeword consisting of a sequence of four colours. The goal of the second player,
the codebreaker, is to determine this codeword in as few guesses as possible. After each guess,
codemaker provides a certain number of black and white pegs indicating how close the guess is to
the real codeword. The game is over when codebreaker has made a guess identical to the hidden
string.

The board game version was first released in 1971, though the idea of the game is older, and
variations of this game have been played earlier under other names, such as the pen-and-paper-
based games of Bulls and Cows, and Jotto. The game has been played on TV as a game show in
multiple countries under the name of Lingo. Recently, a similar web-based game has gained much
attention under the name of Wordle.

Guessing games such as Mastermind have gained much attention in the scientific community.
This is in part due to their popularity as recreational games, but importantly also as natural prob-
lems in the intersection of information theory and algorithms. In particular, it is not too hard to
see that two-colour Mastermind is equivalent to coin-weighing with a spring scale. This prob-
lem was first introduced in 1960 by Shapiro and Fine [14]. In subsequent years, a number of
different approaches have been devised which solve this problem up to a constant factor of the
information-theoretic lower bound.

The general k colour n slot Mastermind first appeared in the scientific literature in 1983 in a
paper by Chvátal [3]. By extending ideas of Erdős and Rényi [5] from coin-weighing he showed

Pascal Su was supported by grant no. 200021 169242 of the Swiss National Science Foundation.

C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366
https://orcid.org/0000-0001-5614-962X
mailto:anders.martinsson@inf.ethz.ch
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0963548323000366

144 A. Martinsson and P. Su

that the information-theoretic lower bound is sharp up to a constant factor for k≤ n1−ε for any
fixed ε > 0.

Surprisingly, for a larger number of colours, the number of guesses needed to reconstruct the
codeword has remained unknown. In particular, for k= n, the best known upper bound remained
for a long time O(n log n) as shown by Chvátal, with only constant factor improvements given in
[2], [8], and [9]. Only quite recently, this bound was improved to O(n log log n) in an article by
Doerr, Doerr, Spöhel, and Thomas [4] published in Journal of the ACM in 2016. At the same
time, no significant improvement on the information-theoretic lower bound of n queries has been
obtained.

The challenge of finding short solutions toMastermind in the setting of k= n colours and posi-
tions can be thought of as a bootstrapping paradox. On the one hand, a query could in principle
return anything between 0 and n black pegs, awarding codebreaker potentially with as many as
log (n+ 1) bits of information about the codeword. As it takes log (nn)= n log n bits of informa-
tion to encode an arbitrary codeword, it follows that any strategy needs �(n log n/ log (n+ 1))=
�(n) queries. On the other hand, given no prior information about the codeword, codebreaker
can only expect to get a constant number of correct guesses, meaning that the query only awards
codebreaker with O(1) bits of information.1 Morally, one expects queries with higher informa-
tion content to gradually become available as codebreaker gains information about the codeword,
but making sense of this formally has turned out to be difficult problem. In particular, should
one expect the entropy lower bound of �(n) to be the truth, or could it be that this bound is
unattainable as it takes too long to reach the point where queries give the full �(log n) bits of
information?

In this paper, we resolve this problem after almost 40 years by showing how the n colour n slot
Mastermind can be solved with O(n) guesses with high probability, matching the information-
theoretic lower bound up to a constant factor. By combining this with a result by Doerr, Doerr,
Spöhel, and Thomas [4], we determine asymptotically the optimal number of guesses for all k
and n.

1.1 Game of Mastermind
We define a game of Mastermind with k≥ 1 colours and n≥ 1 positions as a two-player game
played as follows. One player, the codemaker, initially chooses a hidden codeword c= (c1, . . . , cn)
in [k]n. The other player, the codebreaker, is then tasked with determining the hidden codeword
by submitting a sequence of queries of the form q= (q1, . . . , qn) ∈ [k]n. For each query, the code-
maker must directly respond with information on how well the query matches the codeword. The
codebreaker may use this information to adapt subsequent queries. The precise information given
depends on which variation of Mastermind is played, as will be specified below. The game is over
as soon as codebreaker makes a query such that q= c. The goal of the codebreaker is to make the
game ends after as few queries as possible.

For each pair of a codeword c and a query q, we associate two integers called the number of
black pegs and white pegs, respectively. The number of black pegs,

b(q)= bc(q) := |{i ∈ [n] : qi = ci}|,
is the number of positions in which the codeword matches the query string. The number of white
pegs is often referred to as the number of correctly guessed colours that do not have the correct
position. More precisely, the number of white pegs,

w(q)=wc(q) := max
σ∈Sn

|{i ∈ [n] : qσ (i) = ci}| − bc(q),

1For simplicity, we here assume that codebreaker only receives the number of black pegs for each query. The situation is
similar if also white pegs are provided, but it takes additional arguments to see that not too much additional information can
come from the white pegs.

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

Combinatorics, Probability and Computing 145

is the number of additional correct positions one can maximally obtain by permuting the entries
of q.

In this paper, we will consider two versions of Mastermind. First, in black-peg Mastermind the
codemaker gives only the number of black pegs as an answer to every query. Second, in black-
white-peg Mastermind the codemaker gives both the number of black and the number of white
pegs as answers to every query.

1.2 Our results
Our contribution lies in resolving the black-peg Mastermind game for k= n where we have as
many possible colours as positions.

Theorem 1.1. There exists a randomised algorithm that solves black-pegMastermind with n colours
and n positions with high probability using O(n) queries. Moreover, the runtime of the algorithm is
polynomial in n.

The above result is best possible up to a constant factor. This can be seen by observing that there
are at most n+ 1 possible answers to any query. Hence, codebreaker gains at most log2 (n+ 1) bits
of information from a query. As log2 (nn)= n log2 n bits are required to uniquely determine the
codeword, any strategy needs at least �(n) queries. Moreover, if we additionally assume that the
codeword can only be a permutation of the colours, that is each colour must appear exactly once,
then we can solve it deterministically withO(n) queries.

Combining our results with earlier results by Doerr, Doerr, Spöhel, and Thomas we are able to
resolve the randomised query complexity of Mastermind in the full parameter range, thus finally
resolving this problem after almost 40 years. We define the randomised query complexity as the
minimum (over all strategies) maximum (over all codewords) expected number of queries needed
to win the game.

Theorem 1.2. For k colours and n positions, the randomised query complexity of Mastermind is
�(n log k/ log n+ k/n),

if codebreaker receives both black-peg and white-peg information for each query, and
�(n log k/ log n+ k),

if codebreaker only receives black-peg information.

We believe the same result holds true for the deterministic query complexity, but we will not
attempt to prove it here.

1.3 Related work
The study of two-colour Mastermind dates back to an American Mathematical Monthly post
in 1960 by Shapiro and Fine [14]: “Counterfeit coins weigh 9 grams and genuine coins all weigh
10 grams. One is given n coins of unknown composition, and an accurate scale (not a balance). How
many weighings are needed to isolate the counterfeit coins?”

It can be observed, already for n= 4, that fewer than nweighings are required. The authors con-
sequently conjecture that o(n) weighings suffice for large n. Indeed, the entropy lower bound states
that at least n/ log2 (n+ 1) weighings are necessary. In the subsequent years, many techniques
were independently discovered that attain this bound within a constant factor [1, 5, 12, 13], see
also [5] for further early works. Erdős and Rényi [5] showed that a sequence of (2+ o(1))n/ log2 n
random weighings would uniquely identify the counterfeit coins with high probability, and by the
probabilistic method, there is a deterministic sequence ofO(n/ log n) weighings that identify any
set of counterfeit coins.

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

146 A. Martinsson and P. Su

Cantor and Mills [1] proposed a recursive solution to this problem. Here it is natural to
consider signed coin weighings, where, for each coin on the scale, we may choose whether it con-
tributes with its weight or minus its weight. We call a {−1, 0, 1} valued matrix A an identification
matrix if any binary vector x of compatible length to A can be uniquely determined by the values

of Ax. So for example

⎛
⎝1 0

0 1

⎞
⎠ is an identification matrix for binary vectors of length 2. It is not

too hard to show that if A is an identification matrix, then so is⎛
⎝A A I

A −A 0

⎞
⎠ . (1)

By puttingA0 = (1) and recursing this formula, we obtain an identificationmatrixAk with 2k rows
and (k+ 2)2k−1 columns. Thus, we can identify which out of n= (k+ 2)2k−1 coins are counter-
feit by using 2k ∼ 2n/ log2 n signed weighings, or, by weighing the +1s and −1s separately, using
∼ 4n/ log2 n (unsigned) weighings. Using a more careful analysis, the authors show that
∼ 2n/ log2 n weighings suffice.

It was shown in [5] that 2n/ log2 n is best possible, up to lower-order terms, for non-adaptive
strategies. It is a central open problem to determine the optimal constant for general strategies, but
it is currently not known whether adaptiveness can be used to get a leading term improvement.

Knuth [10] studied optimal strategies for the commercially available version of Mastermind,
consisting of four positions and six colours. He showed that the optimal deterministic strat-
egy needs 5 guesses in the worst case. In the randomised setting, it was shown by Koyama
[11] that optimal strategy needs in expectation 5625/1296= 4.34 . . . guesses for the worst-case
distribution of codewords.

The generalisation of Mastermind to k colours and n positions first appeared in the scientific
literature in 1983 in a paper by Chvátal [3], who attributed the idea to Pierre Duchet. Here the
entropy lower bound states that �(n log k/ log n) guesses are necessary. For k≤ n1−ε , Chvátal
showed that a simple random guessing strategy uniquely determines the codeword within a
constant factor of the entropy bound.

For larger k, less has been known. For k between n and n2, Chvátal showed that 2n log2 k+ 4n
guesses suffice. For any k≥ n, this was improved to 2n log2 n+ 2n+ �k/n� + 2 by Chen, Cunha,
and Homer [2], further to n�log2 k� + �(2− 1/k)n� + k by Goodrich [8], and again to n�log2 n�−n+ k+ 1 by Jäger and Peczarski [9]. As a comparison, we note that if k= k(n) is polynomial in
n, then the entropy lower bound is simply �(n). This gap is a very natural one as Doerr, Doerr,
Spöhel, and Thomas [4] showed in a relatively recent paper that if one uses a non-adaptive strat-
egy, there is in fact a lower bound of �(n log n) when k= n. In the same paper, they also use
an adaptive strategy to significantly narrow this gap, showing that O(n log log n) guesses suffice
for k= n. Moreover, they present a randomised reduction from black-white-peg Mastermind to
black-peg Mastermind which shows that

bwmm (n, k)= �(k/n+ bmm (n, n)),

for any k≥ n where bwmm (n, k) denotes the randomised query complexity for black-white-peg
Mastermind with k colours and n positions, and where bmm (n, n) denotes the randomised
query complexity for black-peg Mastermind with n colours and positions. As a consequence, they
concluded that bwmm (n, k)=O(n log log n+ k/n) for all k and n.

Stuckman and Zhang [15] showed that it is NP-hard to determine whether a sequence of
guesses with black and white peg answers is consistent with any codeword. The analogous result
was shown by Goodrich [8] assuming only black-peg answers are given. It was shown by Viglietta
[16] that both of these results hold even for k= 2.

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

Combinatorics, Probability and Computing 147

Variations of Mastermind have furthermore been proposed to model problems in security,
such as revealing someone’s identity by making queries to a genomic database [7], and API-based
attacks to determine bank PINs [6].

2. Proof outline
The proof of Theorem 1.1 can be broken up in two main steps. In the first step, contained in
Section 3, we reduce the traditional form of Mastermind to what we call signed permutation
Mastermind. This can be described as the variation of Mastermind on n positions and colours
where

1. codemaker is restricted to choosing the codeword c to be a permutation of [n], and
2. codebreaker can make signed queries q ∈ {−n, . . . n}, where, after each query, codemaker

must respond with the value

b̂(q)= b̂c(q) := |{i ∈ [n]|ci = qi}| − |{i ∈ [n]|ci = −qi}|.
In other words, codebreaker can decide, for each position in a query, whether a correct guess

should count as a +1 or as a −1. Note also that codebreaker can choose to leave an entry in a
query “blank” by giving it the value 0, in which case it will never contribute to the returned value.

This is all done in preparation for the second step, contained in Section 4, where we take a
more constructive approach and recursively as well as deterministically provide a set of adaptive
queries that give the answer to the signed permutation Mastermind problem.

Our approach to determining the codeword in this version of Mastermind can be described
as resolving O(n log n) subtasks of the form “Given that a colour x is present in an interval I,
determine whether x is present in the left or right half of I”. In other words, we attempt a binary
search for each colour. We can make such a task part of a query by putting qi = x for all indices i
in the left half of I, and putting qi = 0 in all indices i in the right half of I. Then this will contribute
a with +1 to the answer of the query if colour x is in the left half of I, and 0 and if x is in the right
half of I. Clearly, a single task can be resolved after a single query, however the challenge is to find
a way to resolve these tasks by performing onlyO(n) queries.

Similar to the algorithm by Doerr, Doerr, Spöhel, and Thomas [4], we will base our solution
on coin-weighing schemes. Here, we think of the O(n log n) tasks described above as our coins,
where a coin has the value 1 if the colour in the corresponding task is present in the left half of
its interval, and 0 otherwise. Weighing a collection of coins together corresponds to making one
query where each of the corresponding tasks is encoded as described above. Note that if there
were no further restrictions on how tasks could be queried together, then any of the classical
solutions to coin-weighing would let us resolve theO(n log n) tasks inO(n log n/ log (n log n))=
O(n) queries, which is the conclusion we want, but under far too weak assumptions. The classical
coin-weighing problem assumes that any collection of coins can be weighed together. This is far
from true in the problem at hand. First, we cannot encode two tasks into the same query if their
corresponding intervals overlap. Second, tasks depend on each other in the sense that certain
tasks are only available for querying after another task is resolved. For instance, we cannot query
in which quarter of the codeword the colour red is present until we have first determined in which
half of the codeword it is in. This is of particular concern for tasks corresponding to big intervals
as, on the one hand, they, intuitively, have little potential to be resolved in parallel, and on the
other hand, these are the only tasks that are available initially.

One natural approach to circumvent this is to resolve the tasks ordered by the interval size
from large to small, layer by layer. That is, we first determine which half each colour is present
in by querying colours one at a time. We then determine which quarter each colour is present

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

148 A. Martinsson and P. Su

in two at a time, and so on. That is, in the ith layer we query 2i colours at a time. Using optimal
coin-weighing schemes, this can be done in O((n/2i) · 2i/ log (2i))=O(n/i) queries. Alas, this is
too slow as summing this over all layers i= 0, . . . , log2 n gives a total ofO(n log log n) queries. In
order to speed this up to O(n) queries, we need to find a novel take on coin-weighing schemes
where intervals of all different sizes are queried together in one big phase, which respects the
dependencies between tasks.

In fact, our solution to this problem is surprisingly elegant.We start by performing a procedure
we call preprocess. The aim of which is to use O(n) queries (so far without any information-
theoretic speedup) in order to determine the positions of colours sufficiently well so that, after
this point, it is possible to query n�(1) colours together. We then perform a procedure we call
solve that employs the parallelism unlocked by preprocess to determine the codeword in an addi-
tional O(n) queries. This procedure is recursively constructed in a manner similar to divide and
conquer algorithms, and using a technique similar to the coin-weighing scheme by Cantor-Mills
[1] to achieve the information-theoretic speedup.

Section 5 is then dedicated to the general case where the number of colours k and num-
ber of positions n may differ Mastermind. We prove Theorem 1.2. This can be seen as a
direct consequence of Theorem 1.1 and applying previous results by Doerr, Doerr, Spöhel, and
Thomas [4].

3. Signed permutation Mastermind
In the following section, we show how to reduce the traditional form of Mastermind to signed
permutation Mastermind, as defined in Section 2.

3.1 Finding a zero query
We first show how one can simulate “blank” guesses in Mastermind. To achieve this, it suffices to
find a query z such that b(z)= 0, which can be done as follows.

Lemma 3.1. For any k≥ 2, it is possible to find a string q with bc(q)= 0 using at most n+ 1 queries.

Proof. Query the string of all 1s, t(0), as well as the strings t(i) for all i ∈ {1, . . . , n} where t(i) is
the string of all ones except at the ith position it has a 2. Now if bc(t(i))= bc(t(0))− 1, then ci 	= 2,
otherwise ci 	= 1 and we have at every position a colour that is incorrect, so we have a string z
which satisfies bc(z)= 0. �

Note that if k= n and we are content with a randomised search then we can find an all-zero
string by choosing queries z ∈ [n]n uniformly at random until a query is obtained with bc(z)= 0.
As the success probability of one iteration (1− 1/n)n ≥ 1/4, this takes on average 4 guesses.

3.2 Finding pairwise elementwise distinct one queries

We say that a set of queries f (1), f (2), . . . are pairwise elementwise distinct if f (s)i 	= f (t)i for all i ∈ [n]
and all s 	= t.

The second part of the reduction is to show how codebreaker can transform the problem to the
setting where the codeword is a permutation of [n]. It turns out codebreaker can achieve this by
first finding n pairwise elementwise distinct queries f (1), . . . f (n) such that bc(f (i))= 1 for all i. This
can be done with high probability usingO(n) random queries in the following fashion.

This argument is due to Angelika Steger (from personal communication).

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

Combinatorics, Probability and Computing 149

Algorithm 1: Permutation

Output: n pairwise elementwise distinct strings f (1), . . . , f (n) such that each

string contains exactly one correct position

for i Є [n] do
Si

(1)
= [n];

end
t = 1;

while t ≤ n do
X ← Choose a random color for each position i uniformly from S (t)

i for each

i Є [n];

if b (X) = 1 then
f (t) ← X ;

for i Є [n] do
S (t+1)

i = S (t)
i \ { Xi} ;

end
t = t + 1;

end
end
return f (1), . . . , f (n)

Lemma 3.2. Algorithm 1 will, with high probability, need at most O(n) many queries to identify
pairwise elementwise distinct query strings f (1), . . . , f (n) of length n such that bc(f (i))= 1 for all
i ∈ [n].

Proof. The finding of these strings is done by random queries. Let S(1) = [n]n start out to be the
entire space of possible queries. Sample uniform random queries X from S(1) until one of them
gives b(X)= 1. Set this query to be f (1). Now set aside all colours at the corresponding positions
and keep querying. That is, S(2) = [n]\{f (1)1 } × . . . × [n]\{f (1)n } and sample again random queries
X from S(2) until one of them gives b(X)= 1. In this way set aside f (i) which was received by
querying randomly from S(i) = [n]\{f (1)1 , . . . , f (i−1)

1 } × . . . × [n]\{f (1)n , . . . , f (i−1)
n }.

We analyse how many queries this takes. The set S(i) has n− i+ 1 many possible colours at
every position and also n− i+ 1 many positions at which there is still a correct colour available.
So for each positionwhere there still is an available correct colour, there is a chance of 1/(n− i+ 1)
that this is guessed correctly in X, independently of every other position. So the probability that
b(X)= 1 for a random query is

P[b(X)= 1]= (n− i+ 1) · 1
n− i+ 1

(
1− 1

n− i+ 1

)n−i
≥ e−1. (2)

Let Yt be the number of queries it takes to find the tth string to set aside. Then Yt is geomet-
rically distributed and the total time is the sum of all Yt , t ∈ [n], which is an independent sum
of geometrically distributed random variables with success probabilities as in (2), so expected at
most e−1. Applying the Chebychev inequality gives us that, w.h.p. we can find f (1) to f (n) with
O(n) many queries. �

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

150 A. Martinsson and P. Su

3.3 Reduction to signed permutation Mastermind
The previous subsections set the stage for the following lemma, which shows the dependency
between the signed permutation Mastermind and the black-peg Mastermind Problem. With only
O(n) additional queries that result from Lemma 3.2 it is possible to solve black-peg Mastermind
assuming we can solve signed permutation Mastermind with the same number of queries up
to a constant factor. We denote by spmm(n) the minimum number of guesses needed by any
deterministic strategy to solve signed permutation Mastermind.

Lemma 3.3. Black-peg Mastermind with n colours and slots can be solved in O(n+ spmm(n))
guesses with high probability.

Proof. First apply the algorithms from Lemmas 3.1 and 3.2 to obtain the corresponding queries
z and f (1), . . . , f (n). Given this, run any optimal solution to signed permutation Mastermind.
Whenever this solution wants to perform a query q ∈ {−n, . . . , n}n, we construct queries q+, q− ∈
[n]n according to

q+
i =

{
f (qi)i if qi > 0
zi otherwise,

and

q−
i =

{
f (−qi)
i if qi < 0
zi otherwise.

We consequently query bc(q+) and bc(q−) and return the value bc(q+)− bc(q−) as the answer to
query q.

We want to show that the answers given by this procedure are equal to b̂c′(q) for some per-
mutation c′ of [n] not depending on q. Let ϕ : [n]n → [n]n be the map given by ϕ(x)i = f (xi)i . As
f (1)i , . . . , f (n)i are all distinct values between 1 and n, by construction, it follows that ϕ acts as a
bijection on each position of the input. In fact, we claim that

b̂ϕ−1(c)(q)= bc(q+)− bc(q−) ∀q ∈ {−n, . . . , n}n. (3)

In other words, any signed query q made in this setting will be answered as if the codeword is
c′ := ϕ−1(c). Observe that (3) implies that c′ is a permutation as b̂c′(i . . . i) is, by the definition of
b̂c′(·), equal to the number of occurrences of colour i in c′, and by definitions of bc(·), q+ and q−
equal to bc(f (i))− bc(z)= 1− 0= 1, so each colour appears exactly once in c′.

To see that (3) holds, let q ∈ {−n, . . . , n}n let q+, q− be as above, and consider the contribu-
tions to b̂c′(q) and bc(q

+)− bc(q−) respectively from the ith position. If qi = 0, then q+
i = q−

i = zi
where, by choice of z, ci 	= zi, so the contribution to both expressions is 0. If qi > 0, then the con-
tribution from the ith position to b̂c′(q) is 1 if c′i = ϕ−1(c)i = qi, and 0 otherwise. Similarly, the
contribution to bc(q+)− bc(q−) is 1 if ci = q+

i = f (qi)i = ϕ(q)i, and 0 otherwise. One immediately
checks because ϕ is a bijection at any position that the two conditions are equivalent. This works
analogously if qi < 0.

As the answers given to the signed permutation Mastermind solution are consistent with
b̂c′(q), the solution will terminate by outputting the string c′. We can consequently compute the
codeword c to the original game according to c= ϕ(c′).

With high probability, this process uses only O(n) queries to obtain z, f (1), . . . , f (n).
Additionally, it uses two times the number of queries used by the signed permutationMastermind
strategy in order to solve the corresponding signed permutationMastermind instance, which then
obtains the codeword for the original game. �

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

Combinatorics, Probability and Computing 151

Figure 1. Information Tree for n= 8. Every node corresponds to an interval, here marked in red.

4. Proof of Theorem 1.1
With the reduction from the previous section at hand, we may assume that each colour appears
in the hidden codeword exactly once. It remains to show that we can determine the position of
every colour by usingO(n) signed queries. Before presenting our algorithm, we will first present a
token sliding game that will be used to housekeep, at any point while playing signed permutation
Mastermind, the information we currently have for each colour.

Definition 4.1. Given an instance of signed permutation Mastermind, we define the corresponding
information tree T as a rooted complete balanced binary tree of depth �log2 n�. We denote by nT
the number of leaves of the tree. In other words, nT is the smallest power of two bigger than or equal
to n. For each vertex in T, we associate a (sub-)interval of [nT] as follows. We order the vertices at
depth d in the canonical way from left to right and associate the jth such vertex with the interval
[(nT/2d)(j− 1)+ 1, (nT/2d) j].

Note that if n is not a power of two, some vertices will be associated with intervals that go
outside [n]. An example of an information tree for n= 8 is illustrated in Figure 1.

We introduce handy notation for the complete binary tree T. The root of T is denoted by r.
For any vertex, we denote by vL and vR its left and right child respectively if they exist and if we
descend multiple vertices we write vLR for (vL)R. Further TL denotes the induced subtree rooted
at rL, similarly T� is the the induced subtree rooted at r� for � being any combination of R and L
such that r� exists.

For any instance of signed permutation Mastermind, we perform the following token game on
the information tree as follows. We initially place n coloured tokens at the root r, one for each
possible colour in our Mastermind instance. At any point, we may take a token at position v and
slide it to either vL or vR, if we can prove that the position of its colour in the hidden codeword
lies in the corresponding sub-interval. See Figure 2 for an example.

Observation 4.2. When all tokens are positioned on leaves of T, we know the complete
codeword. �

The simplest way to move a token is by performing a query that equals that colour on, say, the
left half of its current position, and zero everywhere else. We call this step querying a token.

Definition 4.3. For a colour f with its token at non-leaf node v, we say we query the colour f if we
make a query of the colour f only in the left half of the interval corresponding to v (zero everywhere
else).

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

152 A. Martinsson and P. Su

Figure 2. Example configuration for n= 8. Tokens of colours 1 through 8 are at different positions in the information tree
and there are four remaining possibilities for the codeword.

Algorithm 2: Preprocess(T)

Input: Tree T
Output: Preprocessed tree T

if nT ≤ 2 then
Use 1 query to move all tokens to leafs of T;

return T;

end
for each token t at r do

Query t and slide token to either rL or rR;

end
for each token t at rL do

Query t and slide token to either rLL or rLR ;

end

Run Preprocess (TLR);

return T;

Run Preprocess (TLL);

We note that any query of this form can only give 0 or 1 as output. We will refer to any such
queries as zero-one queries.

4.1 Solving signed permutation Mastermind
We are now ready to present our main strategy to solve signed permutation Mastermind by con-
structing a sequence of entropy dense queries that allows us to slide all tokens on T from the
root to their respective leaves. This will be done in two steps, which we call Preprocess(T) and
Solve(T).

As intervals corresponding to vertices close to the root of T are so large, there is initially not
much room to include many colours in the same query. Thus the idea of the preprocessing step is
to perform O(n) zero-one queries, in order to move some of the tokens down the left side of the
tree.

Preprocess(T), see Algorithm 2, takes the tree, queries (Definition 4.3) all colours whose
tokens are at the root r and slides the tokens accordingly. Then repeats for the left child of the

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

Combinatorics, Probability and Computing 153

Figure 3. Tree preprocessed for n= 32, all black vertices have been emptied, tokens are at red vertices.

root rL. Then we recursively apply the algorithm to the subtrees of the left two grandchildren of
the root TLL and TLR. If the tree has a depth of 2 or less, we skip all the steps on vertices that do
not exist.

Proposition 4.4. The Algorithm 2 Preprocess(T) requires at most 3nT zero-one queries and
runs in polynomial time.

Proof. Clearly, if the depth of the tree is ≤ 2 this holds, as we make only a single zero-one query.
Then the rest follows by induction, if we analyse the number of queries needed we see, at the root
r we need to query at most nT tokens, and at the left child rL we query at most nT/2. In the left
grandchildren, we recurse. So if a(nT) is the total number of queries we need for Preprocess(T)
for a tree with nT leafs, then it holds that

a(nT)≤ nT + nT/2+ a(nTLL)+ a(nTLR)= nT + nT/2+ a(nT/4)+ a(nT/4)

From which follows that a(nT)≤ 3nT . Since we only query tokens all queries we do are zero-one
queries and this can be done in polynomial time concluding the proof. �

The result of running Preprocess(T) is illustrated in Figure 3. All tokens have either been
moved to leaves, or to a vertex of the form rR, r∗R, r∗∗R, . . . where each ‘∗’ denotes either LL or
LR. This we call a preprocessed tree. Another way of viewing this is that a tree T is preprocessed if
there are no tokens at r or rL, and the subtrees TLL and TLR are preprocessed.

Once T is preprocessed we can run the second algorithm Solve(T), see Algorithm 3. This is
constructed recursively as follows. First note that when nT = 1 or 2, then the preprocessing has
already put all tokens at leaves, so the problem is already solved. Now suppose we already know
how to run Solve(T‘) for all preprocessed trees T′ with nT′ < n, and let T be a preprocessed
tree with nT = n. Observe that preprocessing T means that TLL and TLR are both preprocessed.
Hence, we already know procedures Solve(TLL) and Solve(TLR) that move all tokens in the
respective subtrees to leaves by making a sequence of queries whose support are restricted to the
first and second quarter of the available positions respectively. Similarly, as the preprocessing has
determined all colours that belong in the right half of the codeword, we know how to move all
tokens in TR to leaves by first performing Preprocess(TR) and then Solve(TR), both of which
make queries whose support are restricted to the second half of the available positions.

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

154 A. Martinsson and P. Su

Algorithm 3: Solve(T)

Input: Preprocessed Tree T
Output: Tree T where all tokens have been queried down to the leaves

if nT ≤ 2 then
return T;

end
Run the algorithms Solve (TLL), Solve (TLR) and Preprocess (TR) in parallel,

and note every time they try to make a query

while at least one algorithm still has queries do
Get the next queries q(1), q(2), and s requested by the algorithms;

Compute the answers using two queries, as in Lemma 4.5, and return to the

respective algorithm;

end
Solve (TR);

return T;

In order to achieve the information-theoretic speedup of queries, the idea is to perform the
queries of Solve(TLL), Solve(TLR) and Preprocess(TR) in parallel. This can be thought of
as follows. Codebreaker runs the respective algorithms until each of them attempts to make a
query. Instead of actually asking codemaker about these queries, codebreaker simply notes the
query and pauses the respective algorithm. This continues until all three have proposed queries.
Suppose the queries given are q(1), q(2) and s respectively. Codebreaker combines these into two
queries, determined by Lemma 4.5 explained later, that are asked to codemaker, and given the
answers, codebreaker computes b̂(q(1)), b̂(q(2)), and b̂(s) that are then presented to the respective
algorithms as if they were given from codemaker as answers to the respective queries, after which
the algorithms are allowed to continue. This is repeated until all three algorithms have terminated.
(In case one of the algorithms terminates while another still makes queries, we can simply treat
the terminated algorithm as if it is making the all zeros query until the other ones finish.) Finally,
this leaves TLL and TLR solved and TR preprocessed. Hence we can solve T by running Solve(TR)
(without any parallelism).

In order to combine queries as mentioned above, we employ an idea similar to the Cantor-Mills
construction (1) for coin-weighing.

Lemma 4.5. Define the support of a query q as the set of indices i ∈ [n] such that qi 	= 0. For any
three queries q(1), q(2), and s with disjoint supports and such that s is a zero-one query, we can
determine b̂(q(1)), b̂(q(2)), and b̂(s) by making only two queries.

Proof. We query w(1) = q(1) + q(2) + s and w(2) = q(1) − q(2), where + and − denote element-
wise addition subtraction respectively. Then we can retrieve the answers from just the information
of b̂(w(1)) and b̂(w(2)). If we combine the queries, b̂(w(2))+ b̂(w(2))= 2b̂(q(1))+ b̂(s). So we can
retrieve b̂(s)= b̂(w(2))+ b̂(w(2)) mod 2. And then also the queries, b̂(q(2))= (b̂(w(1))+ b̂(w(2))−
b̂(s))/2 and b̂(q(2))= (b̂(w(1))− b̂(w(2))− b̂(s))/2 are recoverable. �
Proposition 4.6. Calling Algorithm 3, Solve() , for a preprocessed tree will move all the tokens to
leaves. Moreover, the algorithm will use at most 6nT queries and runs in polynomial time.

Proof. The first statement follows by induction. If nT ≤ 2 a preprocessed tree already has all
its tokens at leaves, nothing needs to be done. The induction step follows by the correctness of
Lemma 4.5.

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

Combinatorics, Probability and Computing 155

For the runtime analysis, we also use induction. If the depth nT ≤ 2 then clearly the statement
holds. If nT > 2 the procedure first runs Solve(TLL), Solve(TLR) and Preprocess(TR) in par-
allel. In each iteration of the main loop, we resolve one query from each of the subprocesses by
making two actual queries. This continues until all three processes have terminated, meaning that
the number of iterations is the maximum of the number of queries made by the respective subpro-
cesses. After which, we run Solve(TR). In total, we get the following recursion where c(nT) is the
total number of queries we must make during Solve(T) and a(nT) the total number of queries
that Preprocess(T) must make in a tree with nT leaves.

c(nT)≤ 2 ·max (c(nTLL), c(nTLR), a(nTR))+ c(nTR)
= 2 ·max (c(nT/4), a(nT/2))+ c(nT/2)

By Proposition 4.4 we know that a(nT/2)≤ 3nT/2 so by induction we get that c(nT)≤ 6nT . All
the operations as well as the computing and decoding of the combined queries in Lemma 4.5 are
clearly in polynomial time so this concludes the proof. �

Now we have all the tools at hand to prove our main result.

Proof of Theorem 1.1. We have Lemma 3.3 which reduces the problem of solving black-peg
Mastermind to solving signed permutation Mastermind. For the new instance of signed permu-
tation Mastermind that results from this, we consider the information tree. We move the tokens
of this tree to the leaves by first running the algorithm Preprocess(T) and then applying the
algorithm Solve(T) on the preprocessed tree. By Propositions 4.4 and 4.6, this takes at most
9nT signed queries and is done in polynomial time. By Observation 4.2 we have found the hid-
den codeword of the signed permutation Mastermind, and therefore also the hidden codeword
of the black-peg Mastermind game. The transformation can be done in polynomial time and by
Lemma 3.3 we need at mostO(n+ 9nT)=O(n) queries to solve black-peg Mastermind. �

5. Playing Mastermind with arbitrarily many colours
We briefly make some remarks on other ranges of k and n for Mastermind. By combining
Theorem 1.1 with results of Chvátal [3] and Doerr, Doerr, Spöhel, and Thomas [4], we deter-
mine up to a constant factor the smallest expected number of queries needed to solve black-peg
and black-white-peg Mastermind for any n and k.

For any n and k, let bmm(n, k) denote the minimum (over all strategies) worst-case (over all
codewords) expected number of guesses to solve Mastermind if only black peg information can be
used. Similarly, denote bwmm(n, k) the smallest expected number of queries needed if both black
and white peg information can be used. The following relation between black-peg and black-
white-peg Mastermind was shown by Doerr, Doerr, Spöhel, and Thomas.

Theorem 5.1 (Theorem 4, [4]). For all k≥ n≥ 1,

bwmm(n, k)= �
(
bmm(n, n)+ k/n

)
.

Proof of Theorem 1.2. For small k, say k≤ √
n, the result follows by the results of Chvátal [3].

Moreover, for k≥ n the white peg statement follows directly by combining Theorems 1.1 and
5.1. Thus it remains to consider the case of

√
n≤ k≤ n, and the case of k≥ n for black-peg

Mastermind.
For

√
n≤ k≤ n, the leading terms in both bounds in Theorem 1.2 are of order n, whichmatches

the entropy lower bound. On the other hand, using Lemma 3.1 we can find a query such that
b(z)= 0 in O(n) queries. Having found this, we simply follow the same strategy as for n colour
black-peg Mastermind by replacing any colour > k in a query by the corresponding entry of z.
Thus finishing inO(n) queries.

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366

156 A. Martinsson and P. Su

Finally, for black-peg Mastermind with k≥ n, the leading term in Theorem 1.2 is of order k.
This can be attained by using k guesses to determine which colours appear in the codeword and
then reduce to the case of n colours. On the other hand, �(k) is clearly necessary as this is the
expected number of queries needed to guess the correct colour in a single position, provided the
codeword is chosen uniformly at random. �

References
[1] Cantor, D. G. and Mills, W. (1966) Determination of a subset from certain combinatorial properties. Can. J. Math. 18

42–48.
[2] Chen, Z., Cunha, C. and Homer, S. (1996) Finding a hidden code by asking questions. In Computing and Combinatorics

(J.-Y. Cai and C. K. Wong, eds), Springer, pp. 50–55.
[3] Chvátal, V. (1983) Mastermind. Combinatorica 3(3-4) 325–329.
[4] Doerr, B., Doerr, C., Spöhel, R. and Thomas, H. (2016) Playing Mastermind with many colors. J. ACM 63(5)

ArticleNo:42.
[5] Erdős, P. and Rényi, A. (1963) On two problems of information theory. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8

229–243.
[6] Focardi, R. and Luccio, F. L. (2010) Cracking bank pins by playing Mastermind. In Fun with Algorithms (P. Boldi and L.

Gargano, eds), Springer, pp. 202–213.
[7] Goodrich, M. (2009) The Mastermind attack on genomic data. In 2009 30th IEEE Symposium on Security and Privacy,

pp. 204–218.
[8] Goodrich, M. (2009) On the algorithmic complexity of the Mastermind game with black-peg results. Inform. Process.

Lett. 109(13) 675–678.
[9] Jäger, G. and Peczarski, M. (2011) The number of pessimistic guesses in Generalized Black-peg Mastermind. Inform.

Process. Lett. 111(19) 933–940.
[10] Knuth, D. E. (1976/77) The computer as master mind. J. Recreational Math. 9(1) 1–6.
[11] Koyama, K. (1993) An optimal Mastermind strategy. J. Recreational Math. 25 251–256.
[12] Lindström, B. (1964) On a combinatory detection problem I. I. Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 195–207.
[13] Lindström, B. (1965) On a combinatorial problem in number theory. Can. Math. Bull. 8(4) 477–490.
[14] Shapiro, H. S. and Fine, N. J. (1960) E1399. Am. Math. Mon. 67(7) 697–698.
[15] Stuckman, J. and Zhang, G.-Q. (2006) Mastermind is NP-complete. INFOCOMP J. Comput. Sci. 5 25–28.
[16] Viglietta, G. (2012) Hardness of Mastermind. In Proceedings of the 6th International Conference on Fun with Algorithms,

FUN’12, Springer, pp. 368–378.

Cite this article: Martinsson A and Su P (2024). Mastermind with a linear number of queries. Combinatorics, Probability and
Computing 33, 143–156. https://doi.org/10.1017/S0963548323000366

https://doi.org/10.1017/S0963548323000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000366
https://doi.org/10.1017/S0963548323000366

	Introduction
	Game of Mastermind
	Our results
	Related work

	Proof outline
	Signed permutation Mastermind
	Finding a zero query
	Finding pairwise elementwise distinct one queries
	Reduction to signed permutation Mastermind

	Proof of Theorem 1.1
	Solving signed permutation Mastermind

	Playing Mastermind with arbitrarily many colours

