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Abstract

Let ψ be a decreasing function. We prove zero-infinity Hausdorff measure criteria for the set of
dual ψ-approximable points and for the set of inhomogeneous multiplicative ψ-approximable points
on nondegenerate planar curves. Our results extend theorems of Huang [‘Hausdorff theory of dual
approximation on planar curves’, J. reine angew. Math. 740 (2018), 63–76] and Beresnevich and Velani
[‘A note on three problems in metric Diophantine approximation’, in: Recent Trends in Ergodic Theory
and Dynamical Systems, Contemporary Mathematics, 631 (American Mathematical Society, Providence,
RI, 2015), 211–229] from s-Hausdorff measure, where s ∈ R, to the more general g-Hausdorff measure,
where g is a suitable class of dimension functions.
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Keywords and phrases: Diophantine approximation on manifolds, Jarník type theorems, Hausdorff
measure and dimension.

1. Introduction

Khintchine’s theorem (1924) is a fundamental result in the metric theory of Diophan-
tine approximation. It asserts that the Lebesgue measure of the set

W(ψ) := {x ∈ [0, 1) : |qx − p| < ψ(q) for infinitely many (p, q) ∈ Z × N}
of ψ-approximable numbers is either zero or full according as the sum

∑∞
q=1 ψ(q)

converges or diverges. Here and throughout, ψ : N→ [0,∞) is a decreasing function
such that ψ(q)→ 0 as q→ ∞, referred to as an approximating function. Throughout,
we identify I = [0, 1).

There are various higher dimensional generalisations of W(ψ) leading to simul-
taneous, dual and multiplicative approximation. In this note, we are concerned with
the dual (one linear form) and multiplicative problems on manifolds. We define the
sets for the inhomogeneous setting which is considered to be more general than
the homogeneous setting and where results are often more difficult to prove than
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392 M. Hussain and J. Schleischitz [2]

in the homogeneous setting. Fix θ := (θ1, . . . , θn) ∈ In. Denote x = (x1, . . . , xn) ∈ Rn,
p = (p1, . . . , pn) ∈ Zn, q = (q1, . . . , qn) ∈ Zn and ‖q‖ := max{|q1|, . . . , |qn|}. Define the
sets

Sθn(ψ) = {x ∈ In : max
1≤i≤n
|qxi − pi − θi| < ψ(q) for i.m. (p, q) ∈ Zn+1 \ {0}},

Dθn(ψ) = {x ∈ In : |q · x − p − θ| < ψ(‖q‖) for i.m. (p, q) ∈ Zn+1 \ {0}},

Λθn(ψ) =
{
x ∈ In :

n∏
i=1

|qxi − pi − θi| < ψ(q) for i.m. (p, q) ∈ Zn+1 \ {0}
}
.

Here and throughout, i.m. stands for infinitely many. The sets, Sθn(ψ),Dθn(ψ) and Λθn(ψ)
are called the set of simultaneous, dual and multiplicative ψ-approximable points.
A fundamental aim in Diophantine approximation is to quantify the ‘size’ of these
sets in terms of Lebesgue measure, Hausdorff measure and Hausdorff dimension,
which we generally refer to as the metrical theory. The metrical theory for the
above sets, termed the independent variable setting, is relatively well developed as
compared to the dependent variable theory (that is, when x is restricted to a manifold).
Indeed, to estimate the size of the intersections of the above sets with a k-dimensional,
nondegenerate submanifoldM ⊆ Rn is an intricate and challenging problem. However,
some remarkable advances have been made. We state the latest results for all three
sets in terms of Hausdorff measure. The Lebesgue measure or Hausdorff measure of
the sets typically split into two parts: the convergence case and the divergence case.
The convergence/divergence of the corresponding series depend upon the properties of
the approximating function ψ and/or dimension function g. Before we discuss the state
of the art and our results, we briefly summarise the notation used. For the definitions
of Hausdorff measure and dimension, see Section 1.5.

1.1. Notation. Throughout, by a dimension function g, we mean an increasing
continuous function g : R→ R with g(0) = 0. By Hg-measure, we mean the
g-dimensional Hausdorff measure which is proportional to the standard Lebesgue
measure when g(r) = rn. In the case where the dimension function is of the form
g(r) := rs for some s < k, Hg is simply denoted as H s. For real quantities A, B and a
parameter t, we write A �t B if A ≤ c(t)B for a constant c(t) > 0 that depends on t only
(while A and B may depend on other parameters). We write A �t B if A �t B �t A. If
the constant c > 0 depends only on parameters that are constant throughout a proof,
we simply write A � B and B � A.

1.2. Dual approximation. The convergence Lebesgue measure result for D0
n ∩M

was established first in [3] and then, for any nondegenerate manifold, in a generalised
form in [11]. The divergence Lebesgue measure was established for any nondegenerate
manifold in [10]. The divergence case for theHg-measure ofD0

n ∩M was established
in [6] as a consequence of the ubiquity framework. Regarding the convergence case
for Hg-measure of D0

n ∩M, progress has been made for various manifolds but
not generalised as in the divergence case. The Hg-measure for convergence for the

https://doi.org/10.1017/S0004972723000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000291


[3] Jarník type theorems on manifolds 393

parabola was proved in [20] under some mild assumptions on the dimension function g,
and then Huang [18] proved that H s(D0

2(ψ) ∩ C) = 0 for all nondegenerate planar
curves C. We refer the reader to [1] for the inhomogeneous variant of Huang’s result.

In a recent paper [23], we (with David Simmons) proved the Hg-measure con-
vergence result for hypersurfaces of dimension at least 3 for both homogeneous and
inhomogeneous settings with a nonmonotonic multivariable approximating function.
The results of [23] have been extended in [21] to certain classes of nondegenerate
sub-manifolds of co-dimension greater than one. For co-dimension two or three,
examples of manifolds where the dependent variables can be chosen as quadratic forms
are provided. In that paper, the method requires the manifold to have even dimension
at least a minimum of four and half the dimension of the ambient space. Hence, the
results of [21, 23] are not applicable to one-dimensional manifolds (curves). However,
results of similar nature for the special class of Veronese curves have been obtained
in [22]. For general planar curves, the best result is due to Huang.

THEOREM 1.1 (Huang, [18]). Let ψ be a decreasing approximating function and
s ∈ (0, 1]. Let C be any C(2) planar curve which is nondegenerate everywhere except
possibly on a set of zero Hausdorff s-measure. Then,

H s(D0
2 ∩ C) = 0 if

∞∑
q=1

ψs(q)q2−s < ∞.

A natural problem is to extend Theorem 1.1 toHg-measure on nondegenerate planar
curves. By elaborating ideas presented by Huang [18], it is possible to do so with some
restrictions on g.

For convenience, we will assume that the planar curve C is the graph of a smooth
map h : U → R, where U ⊆ R is a connected bounded open set. Assume that the
second derivative h′′ of the map h satisfies

Hg(SC
def
= {x ∈ U : h′′(x) = 0}) = 0. (I)

Condition (I) was implicitly stated in Huang’s paper but, for clarity, we state it
explicitly and for the Hg-measure. For a detailed discussion about the corresponding
condition in higher dimensions, see [23, Section 3]. We prove the following result.

THEOREM 1.2. Let ψ be a decreasing approximating function. Let h be a C(2) function
satisfying condition (I) and let C be the graph of h. Let g be a dimension function
such that r �→ r−1g(r) is decreasing and r−1g(r)→ ∞ as r → 0. Assume that g has the
property that, for some ε > 0 and for any r ∈ (0, 1),

g(r) ≤ r2/3+ε . (1.1)

Then,

Hg(D0
2(ψ) ∩ C) = 0 if

∞∑
q=1

q2g
(
ψ(q)

q

)
< ∞.
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Observe that (1.1) becomes stronger as ε increases since r < 1 and it does not make
sense with exponent larger than 1 (that is, for ε > 1/3) since the dimension of the
curve is only 1. By combining Theorem 1.2 with the corresponding divergence theorem
proved in [6], we obtain the following complete dichotomy statement.

THEOREM 1.3. Let ψ be a decreasing approximating function. Let h be a C(2) function
satisfying condition (I) and let C be the graph of h. Let g be a dimension function such
that r−1g(r) is decreasing and r−1g(r)→ ∞ as r → 0. Assume that g has the property
(1.1). Then,

Hg(D0
2(ψ) ∩ C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

q=1

g
(
ψ(q)

q

)
q2 < ∞,

∞ if
∞∑

q=1

g
(
ψ(q)

q

)
q2 = ∞.

An immediate corollary of Theorem 1.3, which was proved explicitly in [2], is the
following Hausdorff dimension result: for τ > 2, if we write D0

2(τ) for D0
2(q→ q−τ),

we have

dimH (D0
2(τ) ∩ C) =

3
τ + 1

.

Moreover,H s(D0
2(τ) ∩ C) = ∞ for s = 3/(τ + 1). To give a more subtle example, let

logi
+ q = log+ · · · log+︸���������︷︷���������︸

i times

q, log+(q) := max{1, log q} (1.2)

and for some ε > 0, τ > 2 and α2, . . . ,αt ∈ R, let

ψε(q) = q−τ · (log+ q)−ε
t∏

i=2

(logi
+ q)αi .

Then we have the following exact logarithmic order statement for approximation on
the parabola.

COROLLARY 1.4. Let ε > 0. Then for any fixed αj and with ψε as defined above, there
is a dimension function gε such that

Hgε(D0
2(ψ0) ∩ C) = ∞ whileHgε(D0

2(ψε) ∩ C) = 0.

Consequently, the set (D0
2(ψ0) \ D0

2(ψε)) ∩ C is not empty and indeed uncountable.

We refer the reader to [5, page 257] for explicit choices of gε.

1.3. Multiplicative approximation. For the set Λθn(ψ), hardly anything is known
beyond a nondegenerate planar curve C and this time, the most recent result is by
Beresnevich and Velani [9]. Even in the independent variable cases, most of the
progress has been achieved quite recently (see for example [14, 15, 24]).
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THEOREM 1.5 (Beresnevich and Velani, [9]). Let ψ be any approximating function
and s ∈ (0, 1). Let C be a C(3) curve in R2 with nonzero curvature everywhere apart
from a set of s-dimensional Hausdorff measure zero. Then,

H s(Λθ2(ψ) ∩ C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

q=1

q1−sψs(q) < ∞,

∞ if
∞∑

q=1

q1−sψs(q) = ∞.

Note that the case s = 1 is not covered by this theorem and represents a challenging
open question. We refer the reader to [16] for further details.

We extend this theorem to the g-dimensional Hausdorff measure by combining
arguments of this paper with arguments used by Beresnevich and Velani [9]. For this
improvement, we first introduce a condition on the dimension function g.

CONDITION G. For some α ∈ (0, 1), the dimension function g is such that g(t) · t−α is
nonincreasing. Equivalently, for this value of α ∈ (0, 1),

g(xy) ≤ xαg(y) for x ≥ 1, y > 0. (1.3)

For power functions g(t) = ts with s ∈ (0, 1), the condition holds with α = s. More
generally, for example, we may consider any function of the form

g(t) = tα(log+ t−1)−β(log+ log+ t−1)−γ, β ≥ 0, γ ≥ 0,

with the notation log+ as in (1.2). By a small twist of condition G, we can in fact take
any γ ∈ R in the following results unless β = 0.

THEOREM 1.6. Let ψ be any approximating function. Let C be a C(3) curve in R2 with
nonzero curvature everywhere apart from a set of g-dimensional Hausdorff measure
zero. Let g be a dimension function satisfying condition G. Then,

Hg(Λθ2(ψ) ∩ C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

q=1

qg
(
ψ(q)

q

)
< ∞,

∞ if
∞∑

q=1

qg
(
ψ(q)

q

)
= ∞.

1.4. Some remarks on simultaneous approximation. We first quote a result which
is a combined statement of the divergence cases proven by Beresnevich [4] for any
nondegenerate manifolds and the convergence case for hypersurfaces by Huang [19].

THEOREM 1.7 (Beresnevich–Huang). Let n ≥ 3 and s > 1
2 (n − 1). Let M denote a

compact hypersurface in Rn with nonvanishing Gaussian curvature except possibly
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on a set of zero Hausdorff s-measure. Let ψ be an approximating function. Then,

H s(S0
n(ψ) ∩M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

q=1

qn
(
ψ(q)

q

)s+1
< ∞,

∞ if
∞∑
q

qn
(
ψ(q)

q

)s+1
= ∞.

The divergence part is valid for any nondegenerate analytical submanifold. Proving
the convergence part, however, for any nondegenerate manifold represents a chal-
lenging problem and progress thus far has been limited to hypersurfaces and only
for the s-dimensional Hausdorff measure with some limitations imposed on the real
number s. Regarding the more general weighted settings, the Hg-measure on planar
curves was established in [25] and the lower bound of the Hausdorff dimension for
any nondegenerate manifold in [7].

It is possible to extend the convergence case of Theorem 1.7 to any g-Hausdorff
measure without much effort by replacing the H s-measure with Hg-measure for any
dimension function g.

THEOREM 1.8 (Beresnevich–Huang). Let g be a dimension function with r−1g(r)→ ∞
as r → 0. Then, with notation and assumptions of Theorem 1.7, Hg(S0

n(ψ) ∩M) = 0
as soon as

∞∑
q=1

g
(
ψ(q)

q

)
qn−1ψ(q) < ∞.

However, extending the divergence case of Theorem 1.7 to an arbitrary dimension
function is not that straightforward.

1.5. Hausdorff measure and dimension. For completeness, we give a very brief
introduction to Hausdorff measures and dimension. For further details, see [12, 17].

Let Ω ⊂ Rn. If 0 < ρ ≤ ∞, any finite or countable collection {Bi} of subsets of Rn

such that Ω ⊂ ⋃i Bi and diam(Bi) ≤ ρ is called a ρ-cover of Ω. Let

Hg
ρ (Ω) = inf

∑
i

g(diam(Bi)),

where the infimum is taken over all possible ρ-covers {Bi} of Ω. The g-dimensional
Hausdorff measure ofΩ is defined to be

Hg(Ω) = lim
ρ→0
Hg

ρ (Ω).

The map Hg : P(Rn)→ [0,∞] defines an outer measure on all sets in Rn, which
becomes a proper measure when restricted to the subset of Hg-measurable sets, that
is, sets A that satisfyHg(B) = Hg(A ∩ B) +Hg(B \ A) for any B ∈ Rn. In the case that
g(r) = rs (s ≥ 0), the measureHg is denotedH s and is called s-dimensional Hausdorff
measure. For any set Ω ⊂ Rn, one can easily verify that there exists a unique critical
value of s at which the function s �→ H s(Ω) ‘jumps’ from infinity to zero. The value
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taken by s at this discontinuity is referred to as the Hausdorff dimension of Ω and
denoted by dimH Ω; that is,

dimH Ω := inf{s ≥ 0 : H s(Ω) = 0}.
The countable collection {Bi} is called a fine cover of Ω if for every ρ > 0, it contains
a subcollection that is a ρ-cover of Ω.

We state the Hausdorff measure analogue of the famous Borel–Cantelli lemma (see
[12, Lemma 3.10]) which will allow us to estimate the Hausdorff measure of certain
sets via calculating the Hausdorff g-sum of a fine cover.

LEMMA 1.9 (Hausdorff–Cantelli lemma). Let {Bi} ⊂ Rn be a fine cover of a set Ω and
let g be a dimension function such that

∑
i g(diam(Bi)) converges. Then,Hg(Ω) = 0.

2. Proof of Theorem 1.2

To keep the length of the proof in control, where it is exactly the same as in [18],
we only sketch it with reference to Huang’s paper. Since the aim is to extend Huang’s
proof which is valid for s-dimensional Hausdorff measure to g-dimensional Hausdorff
measure, we start by replacing the s-coverings with g-coverings until we encounter
nontriviality. As established in [18, Proposition 1], we need to show the convergence
of the series ∑

(q1,q2,p)∈Z3

g(|μ(q1, q2, p)|),

under our assumption. Here,

μ(q1, q2, p) = {x ∈ I : |q1x + q2h(x) + p| < ψ(q)},
where (t, h(t)) for t ∈ I is the local parametrisation of the curve C as a function,
M = 1 +maxx∈I |h′(x)| and q = max{|q1|, |q2|}. We notice that Huang’s proof essentially
works for general measuresHg until we arrive at (3.15) in his paper, which corresponds
to the case (q1, q2) ∈ Θ2 below. Define

Θ1 = {(q1, q2) ∈ Z2 : |q1| > 2M|q2|}, Θ2 = Z
2 \ (Θ1 ∪ (0, 0)),

and distinguish two cases:

(q1, q2) ∈ Θ1; (q1, q2) ∈ Θ2.

Let (q1, q2) ∈ Θ1. Then using [18, Lemma 2],

|μ(q1, q2, p)| ≤ ψ(|q1|)
|q1|

.

Since for given q1 there are only� q2
1 choices for the pair (p, q2), the sum with (q1, q2)

restricted to Θ1 can be estimated as∑
p∈Z,(q1,q2)∈Θ1

g(|μ(q1, q2, p)|) �
∑

q1∈Z,q1�0

g(ψ(q1)/|q1|)q2
1,

which converges by assumption.
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We now treat the more delicate sum with (q1, q2) ∈ Θ2. As in [18], we distinguish
p � p0 and p = p0, where p0 is defined by F(x0) − p0 ∈ (−1/2, 1/2], where F(x) =
q1x + q2h(x). Notice that q1/q2 ∈ [−2M, 2M] since (q1, q2) in Θ2.

When p � p0, proceeding as in [18] for a general dimension function g, we see that
for fixed (q1, q2) ∈ Θ2 and q := max{|q1|, |q2|},∑

p�p0

g(|μ(q1, q2, p)|) �
∑
p�p0

g(ψ(q) · |q(p − p0)|−1/2).

For fixed q, we have � q choices of (q1, q2) ∈ Θ2 and |p| ≤ Cq = C max{|q1|, |q2|} for
an absolute constant C > 0, so we have to show the convergence of

S :=
∞∑

q=1

∑
p�p0,|p|≤Cq

q · g(ψ(q)|q(p − p0)|−1/2).

We readily check that

S �
∞∑

q=1

∑
1≤p≤Cq

q · g
(
ψ(q)

q
·
√

q/p
)
.

Observe that

g(xy) ≤ max{1, x}g(y) for x > 0, y > 0. (2.1)

Indeed, if x > 1, then by the assumption of the decay of r �→ r−1g(r), we have
g(xy)/(xy) ≤ g(y)/y or equivalently g(xy) ≤ xg(y) for any y > 0, and if otherwise
0 < x < 1, then it follows trivially since g is increasing. Application of (2.1) with
y = ψ(q)/q and x =

√
q/p yields

S �
∞∑

q=1

q · g
(
ψ(q)

q

) ∑
1≤p≤Cq

max
{( q

p

)1/2
, 1
}
.

We show that the inner sum is of order� q. To see this, we split the sum over 1 ≤ p ≤
Cq into two sums, over 1 ≤ p ≤ q and q < p ≤ Cq. The sums can be estimated as

q1/2 ·
q∑

p=1

p−1/2 � q1/2 ·
∫ q

1
p−1/2 � q1/2 · q1/2 = q

and
Cq∑

p=q+1

1 � q.

Thus,
∞∑

q=1

∑
p�p0,|p|≤Cq

q · g(ψ(q)|q(p − p0)|−1/2) �
∞∑

q=1

q · qg
(
ψ(q)

q

)
=

∞∑
q=1

q2g
(
ψ(q)

q

)
,

where the rightmost series converges by assumption.
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Now we treat the critical case p = p0. Proceeding as in [18] but for a general
dimension function g, we have to show the convergence of∑

(q1,q2)∈Θ2

g(|μ(q1, q2, p0)|), (2.2)

with

Θ2 = {(q1, q2) ∈ Z2 : |q1| ≤ 2M|q2|} \ {(0, 0)},

as defined above. Following the method of [18] of estimating (2.2) in this wider
generality shows that to prove (2.2), it suffices to show that

∑
k≥1

(ψ(2k)1−ε22k + k2k)g
(√

ψ(2k)
2k

)
< ∞. (2.3)

By assumption,
∑

q≥1 q2g(ψ(q)/q) converges and thus

∑
k≥1

g
(
ψ(2k)

2k

)
23k < ∞.

Hence, for all sufficiently large k,

g(ψ(2k)/2k) < 2−3k.

This implies ψ(2k) < 2−2k, for sufficiently large k, because of the assumption that
r−1g(r)→ ∞ as r → 0 and the assumption of (1.1). Thus, we can estimate the argument
of g above by

ψ(2k)
2k < 2−3k.

Assume (1.1), which is equivalent to g(
√

x) ≤ xγ for some γ > 1
3 , which we consider

fixed in what follows. We see that the series in (2.3) can be bounded by

∑
k≥1

(ψ(2k)1−ε22k + k2k)g
(√

ψ(2k)
2k

)
≤
∑
k≥1

ψ(2k)1−ε22k−3kγ +
∑
k≥1

k2k2−3kγ.

The rightmost series is finite since γ > 1
3 . Therefore, it suffices to show the conver-

gence of the series
∑

k≥1 ψ(2k)1−ε22k−3kγ, which can be rewritten as
∑
k≥1

(
ψ(2k)

2k

)1−ε
23k−3kγ−kε . (2.4)

Since x �→ g(x)/x decreases for x ∈ (0, 1), we have g(x)/x ≥ g(1)/1, or equivalently
g(x) ≥ g(1)x. Thus, for any large k, the expression in (2.4) can be bounded by(

ψ(2k)
2k

)1−ε
≤ 1

g(1)1−ε g
(
ψ(2k)

2k

)1−ε
≤ 2−3k(1−ε)

g(1)1−ε .
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For the sum over k of the products in (2.4) to converge, we require 3 − 3γ − ε <
3(1 − ε) or equivalently 1 − γ < 1 − 2

3ε, which by γ > 1
3 is true as soon as ε < 1

2 . The
claim is proved.

3. Proof of Theorem 1.6

The proof of this theorem splits naturally into two parts: the divergence case and
the convergence case.

3.1. The divergence case. The divergence case can be proven for any C2 nondegen-
erate submanifold of Rn by using similar arguments to those in [24]. We first quote a
result of Bugeaud.

THEOREM 3.1 (Bugeaud, [13]). Let n ≥ 1 be an integer. Let ψ be an approximating
function. Let g be a dimension function such that r−ng(r)→ ∞ as r → 0. Assume that
r �→ r1+ng(2ψ(r)/r) and r �→ rψn(r) are nonincreasing. Then,

Hg(Sθn(ψ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

r=1

rng
(2ψ(r)

r

)
< ∞,

∞ if
∞∑

r=1

rng
(2ψ(r)

r

)
= ∞.

In fact, the monotonicity of ψ is only needed in the divergence part and when n = 1.
By Theorem 3.1, and since g is increasing,

Hg(Λθ1
1 (ψ)) = Hg(Sθ1

1 (ψ)) = ∞ if
∞∑

r=1

rg
(
ψ(r)

r

)
= ∞.

As in [9], assume that the planar curve C := {(x,F (x)) : x ∈ I} is the graph of a C(3)

function F : I → R defined on a finite closed interval I and that F ′′ is continuous and
nonvanishing on I. We may for simplicity assume I = I = [0, 1].

Since any factor in the definition of Λθ2(ψ) can be trivially estimated from above
by 1 by a proper choice of numerators pi within the definition of Λθ2(ψ), we have the
inclusion

Λ := {(x,F (x)) : x ∈ Λθ1
1 (ψ) ∩ I} ⊂ C ∩ Λθ2(ψ).

Since F ∈ C(1), we see that F is locally bi-Lipschitz and therefore the map x �→
(x,F (x)) preservesHg-measure. Thus, for any dimension function g,

Hg(C ∩ Λθ2(ψ)) ≥ Hg(Λ) = Hg(Λθ1
1 (ψ) ∩ I).

Therefore,

Hg(C ∩ Λθ2) = ∞ if
∞∑

r=1

rg
(
ψ(r)

r

)
= ∞.
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3.2. The convergence case. In this section, we prove the convergence case of
Theorem 1.6, basically following [9] with some twists towards the end. Assume that
the series

∑
q qg(ψ(q)/q) converges. Then, by the monotonicity of ψ and Cauchy

condensation,
∞∑

q=1

qg(ψ(q)/q) �
∞∑

t=1

22tg
(
ψ(2t)

2t

)
< ∞.

In particular, for large t,

22tg
(
ψ(2t)

2t

)
< 1.

Recall that the set Λθ2(ψ) can be written as{
(x1, x2) ∈ I2 :

∣∣∣∣∣x1 −
p1 + θ1

q

∣∣∣∣∣
∣∣∣∣∣x2 −

p2 + θ2

q

∣∣∣∣∣ < ψ(q)
q2 for i.m. (p1, p2, q) ∈ Z3 \ {0}

}
.

As in [9], we note that for any � ∈ N, the set Λθ2(ψ) ∩ C can be covered by the union
over t ≥ � of the sets

⋃
2t≤q<2t+1

⋃
m∈Z,2|m|

√
ψ(2t)≤1

q⋃
p1,p2=−1

Sθ(q, m, t, p1, p2) ∩ C,

where Sθ(q, m, t, p1, p2) is defined as the set of (x1, x2) ∈ I2 that satisfy∣∣∣∣∣x1 −
p1 + θ1

q

∣∣∣∣∣ ≤ 2m
√

2ψ(2t)
2t ,

∣∣∣∣∣x2 −
p2 + θ2

q

∣∣∣∣∣ ≤ 2−m
√

2ψ(2t)
2t .

(The sets depend on t as well; this is a small formal inaccuracy in [9].)
By continuity and nonvanishing of F ′′, we see that F ′ has at most one local

extremum. Hence, each set C ∩ Sθ(q, m, t, p1, p2) lies in the union of at most two boxes,
that is, the projection to the first coordinate lies in two intervals. From a metrical point
of view, we may without loss of generality assume that F ′ is increasing in I so that
there is in fact only one box. (Again, this argument closes a minor gap from [9]). Then,
since |F ′′| is bounded from below by a positive constant on the compact interval I, it
can easily be seen that

diam(C ∩ Sθ(q, m, t, p1, p2)) � 2−|m|
√
ψ(2t)
2t .

Now we quote a result from [8] that counts the number of rational points close to
a nondegenerate curve. Since I is compact, this implies that F ′′ is bounded between
two positive constants. Given θ ∈ R2, δ > 0 and Q ≥ 1, consider the set

Aθ(Q, δ) :=
{
(p1, q) ∈ Z × N :

Q < q ≤ 2Q, (p1 + θ1)/q ∈ I,
‖qF ((p1 + θ1)/q) − θ2‖ < δ

}
.

Let Nθ(Q, δ) = #Aθ(Q, δ).
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THEOREM 3.2 [8]. Let F ∈ C(3)(I), bounded on every x ∈ I. If ε > 0, then for any
Q ≥ 1 and 0 ≤ δ ≤ 1/2, Nθ(Q, δ) � δQ2 + Q1+ε , where the implied constant is inde-
pendent of δ and Q.

By using this theorem with δ = 2|m|
√
ψ(2t), Q = 2t, for every ε > 0, we have

Nθ(Q, δ) � 2|m|
√
ψ(2t)22t + 2(1+ε)t.

So from the above cover,

Hg(Λθ2(ψ) ∩ C) �
∞∑

t=1

∑
m∈Z,2|m|

√
ψ(2t)≤1

g
(
2−|m|
√
ψ(2t)
2t

)
· (2|m|

√
ψ(2t)22t + 2(1+ε)t).

Until now, the method and calculations have not changed much from [9] with the
exception of considering the g-measure instead of the s-measure. So the question is
under what ‘nice’ conditions on g can we make the sum convergent, thus both sums

S1 :=
∞∑

t=1

∑
m∈Z,2|m|

√
ψ(2t)≤1

g
(
2−|m|
√
ψ(2t)
2t

)
· 2|m|
√
ψ(2t)22t

and

S2 :=
∞∑

t=1

∑
m∈Z,2|m|

√
ψ(2t)≤1

g
(
2−|m|
√
ψ(2t)
2t

)
· 2(1+ε)t

convergent. By (1.3), let

y =
ψ(2t)

2t , x = 2−|m|ψ(2t)−1/2 ≥ 1.

By the same geometric sum argument as in [8],∑
m∈Z,2|m|

√
ψ(2t)≤1

2(1−α)|m| � (
√
ψ(2t))α−1.

Using this estimate, along with (1.3) with x, y as above, the sum S1 can be bounded by

S1 =

∞∑
t=1

∑
m∈Z,2|m|

√
ψ(2t)≤1

g
(
2−|m|
√
ψ(2t)
2t

)
2|m|
√
ψ(2t)22t

≤
∞∑

t=1

∑
m∈Z,2|m|

√
ψ(2t)≤1

g
(
ψ(2t)

2t

)
2−α|m|(

√
ψ(2t))−α · 2|m|

√
ψ(2t)22t
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=

∞∑
t=1

g
(
ψ(2t)

2t

)
· 22t(
√
ψ(2t))(1−α)

∑
m∈Z,2|m|

√
ψ(2t)≤1

2(1−α)|m|

�
∞∑

t=1

g
(
ψ(2t)

2t

)
22t.

The last sum converges by hypothesis and Cauchy condensation.
Now we bound the sum S2. Since the claim of the theorem becomes weaker if we

increase ψ, we may assume

ψ(2t) ≥ 2−(2−2ε)t/α

or equivalently

ψ(2t)−α/2 ≤ 2t(1−ε).

Otherwise, we can just take the pointwise maximum of ψ and the right-hand side
function above whose sum over t converges as soon as ε < 1. Observe further that for
given t,

#{m : 2|m|
√
ψ(2t) ≤ 1} � log(1/ψ(2t)) � ψ(2t)−ε0

for any ε0 > 0. Hence, given ε > 0, we choose any ε > ε (for example, ε = 2ε) and
then we can choose ε0 > 0 small enough so that still

ψ(2t)−α/2 · #{m : 2|m|
√
ψ(2t) ≤ 1} ≤ 2t(1−ε).

We can therefore estimate

S2 =

∞∑
t=1

∑
m∈Z,2|m|

√
ψ(2t)≤1

g
(
2−|m|
√
ψ(2t)
2t

)
· 2(1+ε)t

≤
∞∑

t=1

∑
m∈Z,2|m|

√
ψ(2t)≤1

g
(
ψ(2t)

2t

)
2t(1+ε)ψ(2t)−α/22−α|m|

�
∞∑

t=1

g
(
ψ(2t)

2t

)
2t(1+ε)ψ(2t)−α/2 · #{m : 2|m|

√
ψ(2t) ≤ 1}

�
∞∑

t=1

g
(
ψ(2t)

2t

)
2t(1+ε)2t(1−ε)

=

∞∑
t=1

g
(
ψ(2t)

2t

)
22t.

Again, the latter sum converges by Cauchy condensation. Hence, both sums converge
and, thus, by the Hausdorff–Cantelli lemma,

Hg(Λθ2(ψ) ∩ C) = 0 if and only if
∑

q

qg(ψ(q)/q) < ∞.
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