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ASYMPTOTICS FOR WEIGHTED RANDOM SUMS

MARIANA OLVERA-CRAVIOTO,∗ Columbia University

Abstract

Let {Xi} be a sequence of independent, identically distributed random variables with an
intermediate regularly varying right tail F̄ . Let (N, C1, C2, . . .) be a nonnegative random
vector independent of the {Xi} with N ∈ N ∪ {∞}. We study the weighted random
sum SN = ∑N

i=1 CiXi , and its maximum, MN = sup1≤k<N+1
∑k

i=1 CiXi . This type
of sum appears in the analysis of stochastic recursions, including weighted branching
processes and autoregressive processes. In particular, we derive conditions under which
P(MN > x) ∼ P(SN > x) ∼ E[∑N

i=1 F̄ (x/Ci)] as x → ∞. When E[X1] > 0 and
the distribution of ZN = ∑N

i=1 Ci is also intermediate regularly varying, we obtain
the asymptotics P(MN > x) ∼ P(SN > x) ∼ E[∑N

i=1 F̄ (x/Ci)] + P(ZN > x/ E[X1]).
For completeness, when the distribution of ZN is intermediate regularly varying and
heavier than F̄ , we also obtain conditions under which the asymptotic relations P(MN >

x) ∼ P(SN > x) ∼ P(ZN > x/ E[X1]) hold.

Keywords: Randomly weighted sum; randomly stopped sum; heavy tail; intermediate
regular variation; regular variation; Breiman’s theorem
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1. Introduction

The analysis of randomly weighted sums plays an important role in the insurance and
economic literature. A well-known example in ruin theory interprets the weights as discount
factors and the sequence {Xi} as the net losses of an insurance company to analyze the probability
of ruin either in finite or infinite time (see, e.g. [19]). In economics, the {Xi} can be interpreted
as net incomes of an investment and the weights as random return rates (see, e.g. [11]). In
general, randomly weighted sums appear in the analysis of random stochastic equations (e.g.
autoregressive processes), and have applications in many areas beyond those mentioned above.
If we further assume that the number of terms in the sum can be random, we obtain a randomly
stopped and randomly weighted sum. Such weighted random sums appear in the context of
weighted branching processes and fixed-point equations of smoothing transforms (see [1], [12],
and [15]), and, more recently, in the analysis of information ranking algorithms, e.g. Google’s
PageRank (see [13] and [20]). In all the examples mentioned above, the {Xi} are often assumed
to be heavy tailed. Hence, the results in this paper combine two different topics in the literature
for sums of heavy-tailed random variables: the analysis of randomly weighted sums and the
analysis of randomly stopped sums.

Consider a sequence {Xi}i≥1 of independent, identically distributed (i.i.d.) random variables
with finite mean and a heavy right tail distribution F̄ , where by heavy we mean E[eεX+

1 ] = ∞
for all ε > 0, and x+ = max{x, 0}. Let (N, C1, C2, . . .) be a nonnegative random vector
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Weighted random sums 1143

independent of the {Xi} with N ∈ N∪{∞}. We study the asymptotic behavior of the randomly
weighted and randomly stopped sum

∑N
i=1 CiXi , and of its maximum, sup1≤k<N+1

∑k
i=1 CiXi ;

the weights {Ci} are allowed to be arbitrarily dependent and may depend on N as well, and the
convention throughout the paper is that N + 1 = ∞ if N = ∞. We point out that it is possible
to avoid the introduction of N by redefining the weights C̃i = Ci 1(i ≤ N) and considering the
sum

∑∞
i=1 C̃iXi , but to emphasize the possibility of having a random number of summands,

we choose to keep the results in this paper in terms of N . Throughout the paper, we use
f (x) ∼ g(x) as x → ∞ to denote limx→∞ f (x)/g(x) = 1, and f (x) 	 g(x) as x → ∞ to
denote f (x) = O(g(x)) and g(x) = O(f (x)).

Although the literature of both weighted random sums and randomly stopped sums is
extensive, this is the first paper, to the author’s knowledge, to combine the two, and in doing
so, to obtain the N = ∞ case under conditions that are close to the best possible. The main
results also include an analysis of the cases where the asymptotic behavior of the weighted
random sum does not follow the so-called one-big-jump principle (P(

∑n
i=1 Xi > x) ∼ nF̄ (x)

as x → ∞), and instead is dominated by the sum of the weights, which until now had only
been done for the special case Ci ≡ 1 (see [9] and [14]).

To gain some insight into the asymptotics

P

(
sup

1≤k<N+1

k∑
i=1

CiXi > x

)
∼ P

( N∑
i=1

CiXi > x

)
∼ E

[ N∑
i=1

F̄

(
x

Ci

)]
as x → ∞, (1.1)

note that if the {Xi} are i.i.d. and heavy tailed, and the weights {Ci} satisfy suitable conditions,
then the random variables {CiXi}i≥1 behave as if they were independent, and the one-big-jump
principle gives (1.1). The asymptotic relation

P

( ∞∑
i=1

CiXi > x

)
∼ E

[ ∞∑
i=1

Cα
i

]
F̄ (x) as x → ∞

was established in [18] for nonnegative and regularly varying {Xi} (denoted {Xi} in R−α,

α > 0), and (1.1) was proven in [11] for real valued {Xi} with a regularly varying right tail and
deterministic N for both N = n (finite) and N = ∞. The setting where the {Xi} are real valued
with right tails in the extended regular variation class was studied in [21] (N = n) and [22]
(both N = n and N = ∞); in the latter the {Xi} were allowed to be generally dependent with no
bivariate upper tail dependence. Deterministic, real-valued weights with the {Xi} in R−α were
considered in [16]. We point out that in all the mentioned works where N = ∞, the conditions
imposed on the weights are considerably stronger than those imposed for a finite number of
terms. The first result in this paper establishes (1.1) for i.i.d., real valued {Xi} with finite mean,
a right tail in the intermediate regular variation class, and N potentially random; the conditions
on the weights are basically the same regardless of whether N is deterministic, random, or
infinite. Results for more general classes of heavy-tailed distributions but stronger conditions
on the weights and N = n are given in [19] (for bounded weights) and [6] (for Ci = ∏i

j=1 Yj

and {Yj } ≥ 0 i.i.d. from a specific class of distributions). The finite-mean restriction is due
to our interest in analyzing the asymptotic behavior of the randomly weighted and randomly
stopped sum when it is not solely determined by the one-big-jump principle.

As mentioned earlier, the scope of this paper is to combine the analysis of randomly weighted
sums with that of randomly stopped sums. For instance, if we set Ci ≡ 1 for all i ≥ 1 then the
subexponential asymptotics P(

∑n
i=1 Xi > x) ∼ n P(X1 > x) are known to hold, under suitable
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conditions on N , even for a random number of summands. The asymptotic relation

P

( N∑
i=1

Xi > x

)
∼ E[N ]F̄ (x) as x → ∞ (1.2)

has a long history (see, e.g. [2], [10], and the references therein), although the analysis when
N does not have finite exponential moments is more recent. Relation (1.2) was established
in [8] for several different sets of conditions on N and the {Xi}, including some where N may
be subexponential. Results imposing no conditions on N and the {Xi} in either the regularly
varying or semiexponential classes were derived in [5]. The most general conditions were
recently derived in [9] for {Xi} in the class S∗, which includes most subexponential distributions
with finite mean. Moreover, the results in [9] also include the case where the asymptotic behavior
of the randomly stopped sum is not solely determined by the one-big-jump principle, and, in
particular, it was shown that

P

(
sup

1≤k<N+1

k∑
i=1

Xi > x

)
∼ P

( N∑
i=1

Xi > x

)

∼ E[N ]F̄ (x) + P

(
N >

x

E[X1]
)

as x → ∞,

provided that the {Xi} belong to S∗, E[X1] > 0, and N belongs to the intermediate regular
variation class. The term P(N > x/ E[X1]) corresponds to the situation where the asymptotic
behavior of the random sum is determined by the law of large numbers. This last asymptotic
relation was previously proven in [14] for the case where both N and X1 are nonnegative
and belong to R−α with α ≥ 1, P(N > x) ∼ c P(X1 > x) for some constant c > 0,
and E[X1] < ∞. All the results in [9] are readily applicable to our randomly weighted
sums setting provided that the {Ci} are i.i.d. and independent of N , and that the sequence
{CiXi} belongs to S∗. The second result in this paper extends the analysis to allow the vector
(N, C1, C2, . . .) to have an arbitrary distribution, but restricts the {Xi} to belonging to the
intermediate regular variation class. In this context, the term P(N > x/ E[X1]) is replaced by
P(

∑N
i=1 Ci > x/ E[X1]).

For completeness, the third and final result in this paper corresponds to the case where the
behavior of the randomly stopped and randomly weighted sum is completely determined by
the effects of the sum

∑N
i=1 Ci , which, when the weights {Ci} are i.i.d. and independent of

N , corresponds to the dominance of the law of large numbers. The intuition remains the same
in the presence of weights, as it corresponds to the situation where all the {Xi} behave in an
ordinary way, i.e. according to their mean, and it is the sum of the weights that is unusually
large. Related results to those of Theorem 2.3 can be found in [14] for a regularly varying
number of summands, N , Ci ≡ 1, and nonnegative {Xi} with lighter tails than N .

We end this section with two potential applications. The first one concerns information
ranking algorithms, such as Google’s PageRank algorithm for ranking webpages in the World
Wide Web (WWW). If we let R denote the (scale-free) rank of a randomly chosen webpage
and N denote the number of webpages pointing to it (in-degree), and set Ci = c/Di , where
Di is the number of outbound links (out-degree) of the ith neighboring page and 0 < c < 1 is
a predetermined constant, then it can be shown that R (approximately) satisfies the stochastic
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fixed-point equation

R
d=

N∑
i=1

CiRi + (1 − c), (1.3)

where the {Ri} are i.i.d. copies of R, independent of (N, C1, C2, . . .), and ‘
d=’ denotes equality

in distribution. In the WWW, as in many other social networks, both the in-degree N and
the effective out-degree Di are assumed to be regularly varying. The problem of interest is
to determine the proportion of highly ranked pages, which translates into the analysis of the
asymptotic behavior of P(R > x). The stochastic model leading to (1.3), for the case of i.i.d.
weights {Ci} independent of N , was introduced in [20], and has been studied in detail in [13].
The more realistic case where the vector (N, C1, C2, . . .) is generally correlated serves as a
motivating example for the results presented here.

The second application concerns ruin probabilities. A well-known example in ruin theory
where randomly weighted sums appear is in the analysis of discrete-time risk models (see,
e.g. [19] and [21]). Let {Dj } be a sequence of i.i.d. nonnegative random variables representing
discount factors per period, and let {Xi} be another sequence of i.i.d. real-valued random
variables, independent of the {Dj }, used to denote the per period net losses of an insurance
company; in many settings the {Xi} are assumed to have a heavy right tail. Set the weight
Ci = ∏i

j=1 Dj to be the compound discount factor for period i. If the insurance company
starts with an initial capital x then its discounted surplus after n periods is given by

Wn = x −
n∑

i=1

CiXi, n ≥ 1; W0 = x.

The quantities of interest are the probabilities of ruin in finite and infinite times, respectively
given by

P

(
max

1≤k≤n

k∑
i=1

CiXi > x

)
and P

(
sup
k≥0

k∑
i=1

CiXi > x

)
.

The rest of the paper is organized as follows. Upper bounds for the maximum of the
randomly weighted sum are derived in Section 3, and lower bounds for the randomly stopped
and randomly weighted sum are derived in Section 4. Finally, the proofs of the main results
are given in Section 5.

2. Main results

We start by giving some definitions needed for the statement of the main theorems.

Definition 2.1. Let X be a random variable with right tail distribution F̄ (x) = P(X > x). We
say that F̄ belongs to the intermediate regular variation (IRV) class if

lim
δ↓0

lim sup
x→∞

F̄ ((1 − δ)x)

F̄ (x)
= 1.

We refer the reader to Chapter 2 of [3] for the definitions of regular variation (R−α), extended
regular variation (ERV), and O-regular variation (ORV) that are mentioned throughout the paper.
It is well known that R−α ⊂ ERV ⊂ IRV ⊂ ORV.

https://doi.org/10.1239/aap/1354716592 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716592


1146 M. OLVERA-CRAVIOTO

Definition 2.2. Let F̄ (x) = P(X > x) and f (x) = − log F̄ (x), and define

f∗(λ) = lim inf
x→∞ (f (λx) − f (x)), f ∗(λ) = lim sup

x→∞
(f (λx) − f (x)),

αf = lim
λ→∞

f ∗(λ)

log λ
, βf = lim

λ→∞
f∗(λ)

log λ
.

The constant αf is known as the lower Matuszewska index of f and βf is known as the upper
Matuszewska index of f , and they satisfy 0 ≤ αf ≤ βf ≤ ∞.

Remark. For the ORV family, Theorem 3.4.3 of [3] gives 0 ≤ αf ≤ βf < ∞. Furthermore,
the constants (−c, −d) in the definition of the ERV class satisfy c ≤ αf ≤ βf ≤ d (see [3,
p. 68]).

We are now ready to state the three main theorems of this paper. The first one corresponds to
the setting where the one-big-jump principle dominates the behavior of the weighted random
sum and its maximum. Since the weights {Ci} are nonnegative, we use the convention that
F̄ (t/Ci) = 0 for any t ≥ 0 if Ci = 0.

Theorem 2.1. Suppose that {Xi} is a sequence of i.i.d. random variables with right tail
distribution F̄ ∈ IRV, Matuszewska indices 0 < αf ≤ βf < ∞, and E[|X1|1+ε] < ∞
for some 0 < ε < αf . Let (N, C1, C2, . . .) be a nonnegative random vector independent of

the {Xi} with N ∈ N ∪ {∞}, satisfying E[∑N
i=1 C

αf −ε

i ] < ∞ and E[∑N
i=1 C

βf +ε

i ] < ∞. If

E[N ] < ∞ then the condition E[∑N
i=1 C

αf −ε

i ] < ∞ can be dropped. Let ZN = ∑N
i=1 Ci < ∞

almost surely (a.s.). If

(a) E[X1] < 0,

(b) E[X1] = 0 and P(ZN > x) = O(F̄ (x)) as x → ∞, or

(c) E[X1] > 0 and P(ZN > x) = o(F̄ (x)) as x → ∞
holds, then, as x → ∞,

P

(
sup

1≤k<N+1

k∑
i=1

CiXi > x

)
∼ P

( N∑
i=1

CiXi > x

)
∼ E

[ N∑
i=1

F̄

(
x

Ci

)]
. (2.1)

Remark. It is known that, when N = n, it is enough to have E[∑N
i=1 C

βf +ε

i ] < ∞ for (2.1)
to hold (see [21] and [22]). Note that, for a finite number of terms, this moment condition on
the weights implies that

(E[Zβf +ε
n ])1/(βf +ε) ≤

n∑
i=1

(E[Cβf +ε

i ])1/(βf +ε) < ∞,

which in turn implies that P(Zn > x) = o(F̄ (x)) (since xβf +εF̄ (x) → ∞). However, for
N = ∞ and βf ≥ 1, the existing literature (e.g. [11], [18], and [22]), in which it is
assumed that F̄ ∈ ERV(−c, −d), requires the conditions

∑∞
i=1(E[Cd+ε

i ])1/(d+ε) < ∞ and∑∞
i=1(E[Cc−ε

i ])1/(d+ε) < ∞, which again imply that E[Zβf +ε
∞ ] < ∞. In view of Theorem 2.1,

the existing conditions are clearly too strong, and a simple example where (2.1) holds but∑∞
i=1(E[Cd+ε

i ])1/(d+ε) = ∞ is given below. Moreover, that the conditions of Theorem 2.1 are
close to being the best possible will follow from Theorem 2.2.
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Example 2.1. Suppose that, as x → ∞, F̄ (x) 	 x−α for some α > 1, P(N > x) 	 F̄ (x),
and E[X1] = 0. Furthermore, assume that the {Ci} are i.i.d. and independent of N , with
E[Cα+ε

1 ] < ∞. Now write C̃i = Ci 1(i ≤ N) so that
∑N

i=1 CiXi = ∑∞
i=1 C̃iXi , and note that,

for some constant K > 0,

∞∑
i=1

(E[C̃α+ε
i ])1/(α+ε) = (E[Cα+ε

1 ])1/(α+ε)
∞∑
i=1

P(N ≥ i)1/(α+ε) ≥
∞∑
i=1

K

iα/(α+ε)
= ∞.

Remarks. (i) The conditions of Theorem 2.1 are very similar to those in Theorem 1 of [9] once
we replace the random time τ by the random sum of the weights ZN = ∑N

i=1 Ci .

(ii) The stronger condition E[|X1|1+ε] < ∞, instead of only E[|X1|] < ∞, might be avoidable
with a different proof technique.

The next result corresponds to the case where the behavior of the weighted random sum and
its maximum might be influenced by both the one-big-jump principle and the distribution of
the sum of the weights. This case also illustrates that, when E[X1] > 0, the conditions from
Theorem 2.1 are the best possible.

Theorem 2.2. Suppose that {Xi} is a sequence of i.i.d. random variables with right tail
distribution F̄ ∈ IRV, Matuszewska indices 0 < αf ≤ βf < ∞, E[X1] > 0, and E[|X1|1+ε] <

∞ for some 0 < ε < αf . Let (N, C1, C2, . . .) be a nonnegative random vector independent
of the {Xi} with N ∈ N ∪ {∞}, satisfying E[∑N

i=1 C
αf −ε

i ] < ∞ and E[∑N
i=1 C

βf +ε

i ] < ∞. If
E[N ] < ∞ then the condition E[∑N

i=1 C
αf −ε

i ] < ∞ can be dropped. Let ZN = ∑N
i=1 Ci < ∞

a.s., and suppose further that its tail distribution Ḡ ∈ IRV. Then, as x → ∞,

P

(
sup

1≤k<N+1

k∑
i=1

CiXi > x

)
∼ P

( N∑
i=1

CiXi > x

)

∼ E

[ N∑
i=1

F̄

(
x

Ci

)]
+ P

( N∑
i=1

Ci >
x

E[X1]
)

.

Remark. If {Xi} is a sequence of i.i.d. random variables from R−α with α > 1, then
E[∑N

i=1 F̄ (x/Ci)] can be replaced with E[∑N
i=1 Cα

i ]F̄ (x) in Theorems 2.1 and 2.2. In this
setting, Theorems 2.1 and 2.2 are generalizations of Breiman’s theorem to more than one
summand and dependent weights.

The third, as well as the last, result corresponds to the case where the behavior of the
weighted random sum is dominated solely by the sum of the weights. Note that it is not
necessary for the {Xi} to have any particular structure beyond certain moments and the condition
P(X1 > x) = o(P(ZN > x)) as x → ∞.

Theorem 2.3. Let (N, C1, C2, . . .) be a nonnegative random vector with N ∈ N ∪ {∞}.
Define ZN = ∑N

i=1 Ci < ∞ a.s., and assume that it has a right tail distribution Ḡ ∈ IRV
with Matuszewska indices 0 < αg ≤ βg < ∞. Suppose that {Xi} is a sequence of i.i.d.
random variables, independent of (N, C1, C2, . . .), with E[X1] > 0 and E[|X1|1+ε] < ∞ for

some 0 < ε < αg . Suppose further that E[∑N
i=1 C

αg−ε

i ] < ∞, E[∑N
i=1 C

βg+ε

i ] < ∞, and

P(X1 > x) = o(P(ZN > x)). If E[N ] < ∞ then the condition E[∑N
i=1 C

αg−ε

i ] < ∞ can be
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dropped. Then, as x → ∞,

P

(
sup

1≤k<N+1

k∑
i=1

CiXi > x

)
∼ P

( N∑
i=1

CiXi > x

)
∼ P

( N∑
i=1

Ci >
x

E[X1]
)

.

3. The upper bound

Before proceeding with the derivation of the auxiliary results that will be needed for the
proofs of the main theorems, we state here the notation that will be used in the remainder of
the paper, as well as the main assumption satisfied by the random variables {Xi} and the vector
(N, C1, C2, . . .).

Assumption 3.1. Let {Xi} be a sequence of i.i.d. real-valued random variables with common
tail distribution F̄ (x) = P(X1 > x) and finite mean µ = E[X1], and let (N, C1, C2, . . .)

represent a nonnegative random vector, independent of the {Xi}, with N ∈ N ∪ {∞}. The
vector (N, C1, C2, . . .) is assumed to be generally dependent and the weights {Ci} are not
necessarily identically distributed.

We will also use ‖ · ‖p = (E[| · |p])1/p to denote the Lp-norm, the operator #A to denote the
cardinality of a set A, and the notation x ∨ y = max{x, y} and x ∧ y = min{x, y}. The letter
K will be used to denote a generic positive constant, which is not always the same in different
parts of the paper, i.e. K = K + 1, K = 2K , etc.

The following random variables will be used throughout the paper:

Sk =
k∑

i=1

CiXi, k ∈ N ∪ {∞},

MN = sup
1≤k<N+1

Sk,

ZN =
N∑

i=1

Ci,

IN(t) = #{1 ≤ i < N + 1 : Ci > t},
JN(t) = #{1 ≤ i < N + 1 : CiXi > t},
LN(t) = #{1 ≤ i < N + 1 : CiXi < −t}.

Note that, when N is finite a.s., the supremum in the definition of MN can be replaced by a
maximum and all the ranges 1 ≤ i < N + 1 can be replaced by 1 ≤ i ≤ N . Recall that, since
the weights {Ci} are nonnegative, the convention is that F̄ (t/Ci) = 0 and F(−t/Ci) = 0 for
any t ≥ 0 if Ci = 0.

The first result in this section provides a bound for the partial maximum of sums of
independent random variables with finite exponential moments.

Lemma 3.1. Let {Vi}i≥1 be a sequence of independent random variables. Then, for all θ > 0,

P

(
max

1≤k≤m

k∑
i=1

Vi > t

)
≤ e−θt

m∏
i=1

max{1, E[eθVi ]}.
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Proof. The inequality trivially holds in the case E[eθVi ] = ∞ for some i. Thus, we assume
that E[eθVi ] < ∞ for all i = 1, . . . , m. Let

Lk = exp

{
θ

k∑
i=1

Vi − ϕk(θ)

}
, ϕk(θ) = log

k∏
i=1

E[eθVi ].

Then Lk is a nonnegative martingale satisfying E[Lk] = 1. Define τ = inf{k ≥ 1 : ∑k
i=1 Vi >

t}. Then, by Proposition 3.1 and Theorem 3.2 of [2, Chapter XIII], there exists a probability
measure P̃ such that

P

(
max

1≤k≤m

k∑
i=1

Vi > t

)
= P(τ ≤ m)

= Ẽ[L−1
τ 1(τ ≤ m)]

≤ Ẽ

[
exp

{
−θ

τ∑
i=1

Vi

}
1(τ ≤ m)

] m∏
i=1

max{1, E[eθVi ]}

≤ e−θt
m∏

i=1

max{1, E[eθVi ]}.

The following result gives exponential bounds for sums of independent truncated random
variables, and it follows the same classical heavy-tailed techniques from [4] and [17] (see
also [5]). Note that all of the results in this and the next section are given for random variables
satisfying only moment conditions, that is, neither the {Xi} nor the vector (N, C1, C2, . . .) are
assumed to belong to any particular class of distributions.

Lemma 3.2. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1 with
γη = ‖X1‖η < ∞ for some η > 1. Then, for any 0 < u < v such that

1

v
≤ θ := η − 1

v
log

(
v

u

)
≤ 1

u
,

any z > 0, and any A ⊆ R, we have

P

(
sup

1≤k<N+1

k∑
i=1

CiXi 1(CiXi ≤ v) > z, ZN ∈ A, IN

(
u

γη

)
= 0

)

≤ E

[
1(ZN ∈ A) exp

{
−θz +

(
µ + Kγη

log(v/u)

)+
θZN

}]
,

where K = K(η) > 1 is a constant that does not depend on the distributions of X1, N, C1,

C2, . . . .

Proof. Let X
d= X1, Yi = CiXi , and S

(v)
k = Y1 1(Y1 ≤ v) + · · · + Yk 1(Yk ≤ v). By condi-

tioning on (N, C1, C2, . . .) we obtain

P

(
max

1≤k≤N∧n
S

(v)
k > z, ZN ∈ A, IN

(
u

γη

)
= 0

)

= E

[
1
(

ZN ∈ A, IN

(
u

γη

)
= 0

)
P
(

max
1≤k≤N∧n

S
(v)
k > z

∣∣∣ N ∧ n, C1, . . . , CN∧n

)]
.

https://doi.org/10.1239/aap/1354716592 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716592


1150 M. OLVERA-CRAVIOTO

Note that, conditional on (N∧n, C1, . . . , CN∧n), S
(v)
k is a sum of independent random variables,

so, by Lemma 3.1,

P
(

max
1≤k≤N∧n

S
(v)
k > z

∣∣∣ N ∧ n, C1, . . . , CN∧n

)

≤ e−θz
N∧n∏
i=1

max{1, E[eθYi 1(Yi≤v) | N, C1, . . . , CN∧n]}

= e−θz
N∧n∏
i=1

max{1, E[eθYi 1(Yi≤v) | Ci]}.

We now bound the individual expectations using integration by parts as follows:

E[eθYi 1(Yi≤v) | Ci] = E[eθYi 1(Yi ≤ v) | Ci] + E[1(Yi > v) | Ci]
=

∫ v

−∞
eθt P(Yi ∈ dt | Ci) + P(Yi > v | Ci)

= P

(
Yi ≤ 1

θ

∣∣∣∣ Ci

)
+

∫ 1/θ

−∞
θt P(Yi ∈ dt | Ci) + e P

(
Yi >

1

θ

∣∣∣∣ Ci

)
− eθv P(Yi > v | Ci) + P(Yi > v | Ci)

+
∫ 1/θ

−∞
(eθt − 1 − θt) P(Yi ∈ dt | Ci) + θ

∫ v

1/θ

eθt P(Yi > t | Ci) dt

≤ 1 + θ E[Yi | Ci] + e P

(
Yi >

1

θ

∣∣∣∣ Ci

)

+
∫ 1/θ

−∞
(eθt − 1 − θt) P(Yi ∈ dt | Ci) + θ

∫ v

1/θ

eθt P(Yi > t | Ci) dt.

If η ≥ 2 then the inequality et − 1 − t ≤ t2et+ for t ∈ R gives∫ 1/θ

−∞
(eθt − 1 − θt) P(Yi ∈ dt | Ci) ≤ eθ2

∫ ∞

−∞
t2 P(Yi ∈ dt | Ci) = eθ2 E[Y 2

i | Ci].

If 1 < η < 2 then integration by parts, a change of variables, Markov’s inequality, and the
same inequality used above give∫ 1/θ

−∞
(eθt − 1 − θt) P(Yi ∈ dt | Ci)

= θ

∫ ∞

0
(1 − e−θu) P(Yi ≤ −u | Ci) du +

∫ 1/θ

0
(eθt − 1 − θt) P(Yi ∈ dt | Ci)

≤ θ

∫ ∞

0
(1 − e−θu) E[|Yi |η | Ci]u−η du + eθ2

∫ 1/θ

0
t2 P(Yi ∈ dt | Ci)

≤ E[|Yi |η | Ci]
(

θ2
∫ 1/θ

0

1 − e−θu

θu
u1−η du + θ

∫ ∞

1/θ

u−η du

)

+ eθη

∫ 1/θ

0
tη P(Yi ∈ dt | Ci)
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≤ E[|Yi |η | Ci]
(

θ2
∫ 1/θ

0
u1−η du + θη

η − 1
+ eθη

)

= θη E[|Yi |η | Ci]
(

1

2 − η
+ 1

η − 1
+ e

)
,

where in the third inequality we used the observation that 1 − e−t ≤ t for all t ≥ 0. We then
have ∫ 1/θ

−∞
(eθt − 1 − θt) P(Yi ∈ dt | Ci) ≤ K1θ

η∧2C
η∧2
i E[|X|η∧2], (3.1)

where K1 = K1(η) = e + ((2 − η)−1 + (η − 1)−1) 1(1 < η < 2). Also, for η > 0, we use
Markov’s inequality to obtain

e P

(
Yi >

1

θ

∣∣∣∣ Ci

)
+ θ

∫ v

1/θ

eθt P(Yi > t | Ci) dt

≤ e E[|Yi |η | Ci]θη + E[|Yi |η | Ci]
∫ v

1/θ

θeθt t−η dt.

To analyze the remaining integral, we split it as follows:

θ

∫ v

1/θ

eθt t−η dt ≤ θ1+η

∫ (1/θ)∨(v/2)

1/θ

eθt dt + θ

∫ v

v/2
eθt t−η dt

≤ θηeθv/2 + θv1−η

∫ 1

1/2
eθvuu−η du

≤ θηeθv/2 + θv1−η2η

∫ 1

1/2
eθvu du

≤ θηeθv/2 + 2ηeθvv−η.

Hence,

e P

(
Yi >

1

θ

∣∣∣∣ Ci

)
+ θ

∫ v

1/θ

eθt P(Yi > t | Ci) dt ≤ K2eθvv−ηC
η
i E[|X|η], (3.2)

where K2 = K2(η) = supt≥1(et
ηe−t + tηe−t/2 + 2η). Combining (3.1) and (3.2) we obtain

E[eθYi 1(Yi≤v) | Ci] 1
(

Ci ≤ u

γη

)

≤ (1 + θCi E[X] + K1θ
η∧2C

η∧2
i E[|X|η∧2] + K2eθvv−ηC

η
i E[|X|η]) 1

(
Ci ≤ u

γη

)

≤ 1 + θCi E[X] + Ci

(
K1θ

η∧2
(

u

γη

)η∧2−1

E[|X|η∧2] + K2eθvv−η

(
u

γη

)η−1

E[|X|η]
)

.

We now use the observation that E[|X|η∧2] = ‖X‖η∧2
η∧2 ≤ ‖X‖η∧2

η = γ
η∧2
η to obtain

E[eθYi 1(Yi≤v) | Ci] 1
(

Ci ≤ u

γη

)
≤ 1 + θCiµ + Ciγη(K1θ

η∧2uη∧2−1 + K2eθvv−ηuη−1)

≤ 1 + θCiµ + θCiγηK3(θ
η∧2−1uη∧2−1 + eθvv−ηθ−1uη−1)

=: 1 + θCiµ + θCiγηa(θ, u, v),
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where K3 = K3(η) = max{K1(η), K2(η)}. By using the inequality 1 + t ≤ et for all t ∈ R, it
follows that

P

(
max

1≤k≤N∧n
S

(v)
k > z, ZN ∈ A, IN

(
u

γη

)
= 0

)

≤ E

[
1(ZN ∈ A)e−θz

N∧n∏
i=1

max{1, 1 + θµCi + θa(θ, u, v)γηCi}
]

≤ E

[
1(ZN ∈ A)e−θz

N∧n∏
i=1

max{1, eθµCi+θa(θ,u,v)γηCi }
]

= E[1(ZN ∈ A)e−θz+(µ+a(θ,u,v)γη)+θZN∧n ].
Now choose

θ = 1

v
log

((
v

u

)η−1)
,

which, by assumption, satisfies 1/v ≤ θ ≤ 1/u, and note that

a(θ, u, v) = K3

(η − 1) log(v/u)

(
1 + ((η − 1) log(v/u))η∧2

(v/u)η∧2−1

)

≤ K3

(η − 1) log(v/u)

(
1 + (η − 1)η∧2 sup

t≥1

(log t)η∧2

tη∧2−1

)
.

Defining

K = K(η) = K3

η − 1

(
1 + (η − 1)η∧2 sup

t≥1

(log t)η∧2

tη∧2−1

)
gives

P

(
max

1≤k≤N∧n
S

(v)
k > z, ZN ∈ A, IN

(
u

γη

)
= 0

)

≤ E

[
1(ZN ∈ A) exp

{
−θz +

(
µ + Kγη

log(v/u)

)+
θZN∧n

}]
.

The result now follows by taking n → ∞.

The main result of this section, given in Proposition 3.1 below, provides upper bounds for
P(MN > x). The idea of the proof is to split this probability into several smaller probabilities
corresponding to the different possible behaviors of ZN and JN(·). The bound derived in
Lemma 3.2 will be essential to the analysis of all the probabilities involving truncated
summands. The lemma given below provides a bound for the probability of two or more
summands being large.

Lemma 3.3. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1 with
γ1+ε = ‖X1‖1+ε < ∞ for some ε > 0. Let 0 < ν < 1, w = x1−ν/γ1+ε, and y = x/ log x.
Fix c > 0. Then there exist constants K, x0 > 0 such that, for all x ≥ x0,

P(JN(y) ≥ 2, ZN ≤ cx, IN(w) = 0) ≤ K(log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]
.
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Proof. We start by conditioning on F = σ(N, C1, C2, . . .) to obtain

P(JN(y) ≥ 2, ZN ≤ cx, IN(w) = 0)

= E[1(ZN ≤ cx, IN(w) = 0) E[1(JN(y) ≥ 2) | F ]]
= E

[
1(ZN ≤ cx, IN(w) = 0) E

[
1
( ⋃

1≤i<j<N+1

{CiXi > y, CjXj > y}
) ∣∣∣∣ F

]]

≤ E

[
1(ZN ≤ cx, IN(w) = 0)

∑
1≤i<j<N+1

E[1(CiXi > y, CjXj > y) | F ]
]

= E

[
1(ZN ≤ cx, IN(w) = 0)

∑
1≤i<j<N+1

F̄

(
y

Ci

)
F̄

(
y

Cj

)]

≤ E

[
1(ZN ≤ cx, IN(w) = 0)

( N∑
i=1

F̄

(
y

Ci

))2]
,

where in the third equality we used the conditional independence of the {CiXi} given F , and
the independence of the {Xi} and (N, C1, C2, . . .). We now use Markov’s inequality to obtain

N∑
j=1

F̄

(
y

Cj

)
≤ y−1−ε E[|X1|1+ε]

N∑
j=1

C1+ε
j ≤ Ky−1−ε

(
sup

1≤j<N+1
Cj

)ε

ZN .

It follows that

E

[
1(ZN ≤ cx, IN(w) = 0)

( N∑
i=1

F̄

(
y

Ci

))2]

≤ Ky−1−εwεx E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]

≤ K(log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]
.

The next preliminary lemma shows that if the summands are heavily truncated then the
supremum of the sums is unlikely to be large.

Lemma 3.4. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1 with
γ1+ε = ‖X1‖1+ε < ∞ for some ε > 0. Let 0 < ν < 1, w = x1−ν/γ1+ε, y = x/ log x, and
0 < 1/

√
log x ≤ δ < 1. Then,

P

(
sup

1≤k<N+1

k∑
i=1

CiXi 1(CiXi ≤ y) > δx, ZN ≤ y, IN(w) = 0

)
= o(x−h)

as x → ∞ for any h > 0.
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Proof. We use Lemma 3.2 with A = (−∞, y], v = y, z = δx, and u = x1−ν . Then

P

(
sup

1≤k<N+1

k∑
i=1

CiXi 1(CiXi ≤ y) > δx, ZN ≤ y, IN(w) = 0

)

≤ E

[
1(ZN ≤ y) exp

{
−θδx +

(
µ + Kγ1+ε

log(y/u)

)+
θZN

}]
,

where θ = (ε/y) log(y/u) = (ε log x/x) log(xν/log x). Note that, for these choices of y and
u, there exists x0 = x0(β, ε) > 0 such that the conditions on θ required by Lemma 3.2 are
satisfied for all x ≥ x0. Moreover, on the set {ZN ≤ y} we have

−θδx +
(

µ + Kγ1+ε

log(y/u)

)+
θZN ≤ −θδx

(
1 − |µ|y√

log x

x
− Kγ1+εy

√
log x

x log(xν/ log x)

)

≤ −θδx

(
1 − |µ|√

log x
− Kγ1+ε√

log x

)

≤ −ενδ(log x)2
(

1 − log log x

ν log x

)(
1 − 2Kγ1+ε√

log x

)
,

where in the last inequality we used |µ| ≤ E[|X1|] ≤ (E[|X1|1+ε])1/(1+ε) = γ1+ε and K > 1.
We then have, for sufficiently large x,

E

[
1(ZN ≤ y) exp

{
−θδx +

(
µ + Kγ1+ε

log(y/w)

)+
θZN

}]
≤ e−ενδ(log x)2ϕ(x), (3.3)

where

ϕ(x) =
(

1 − log log x

ν log x

)(
1 − 2Kγ1+ε√

log x

)
.

Since δ > 1/
√

log x, it holds that

e−ενδ(log x)2ϕ(x) ≤ e−εν(log x)3/2ϕ(x) = o(xh)

as x → ∞ for any h > 0.

The last preliminary lemma of this section provides a bound for the case when the summands
are moderately truncated and ZN is not too large.

Lemma 3.5. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1 with
µ ≥ 0 and γ1+ε = ‖X1‖1+ε < ∞ for some ε > 0. Let 0 < ν < 1, w = x1−ν/γ1+ε,
y = x/ log x, and 0 < 1/

√
log x ≤ δ < 1. Then, as x → ∞,

P

(
MN > x, JN((1 − δ)x) = 0, y < ZN ≤ x

µ + δ
, IN(w) = 0

)

= O

(
x−εν/2 P(ZN > y) + e−εν

√
log x/µ P

(
ZN >

x

2µ

)
1(µ > 0)

)
.
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Proof. Let A = (y, x/(µ+ δ)), v = (1− δ)x, and u = x1−ν . Then, by Lemma 3.2 we have

P

(
MN > x, JN((1 − δ)x) = 0, y < ZN ≤ x

µ + δ
, IN(w) = 0

)

≤ P

(
sup

1≤k<N+1

k∑
i=1

CiXi 1(CiXi ≤ (1 − δ)x) > x, y < ZN ≤ x

µ + δ
, IN(w) = 0

)

≤ E

[
1
(

y < ZN ≤ x

µ + δ

)
exp

{
−θx +

(
µ + Kγ1+ε

log((1 − δ)xν)

)+
θZN

}]
, (3.4)

where θ = ε log((1 − δ)xν)/((1 − δ)x). We now separate the rest of the analysis into two
cases.

Case 1: µ = 0. Equation (3.4) is bounded by

exp

{
−θx

(
1 − Kγ1+ε

δ log((1 − δ)xν)

)}
P(ZN > y)

≤ K exp

{
−εν

(
1 − Kγ1+ε

√
log x

log((1 − δ)xν)

)
log x

}
P(ZN > y)

≤ K

xεν/2 P(ZN > y) for sufficiently large x.

Case 2: µ > 0. Note that

Kγ1+ε

log((1 − δ)xν)
θZN ≤ εKγ1+ε

(1 − δ)(µ + δ)
< ∞,

so (3.4) is bounded by

K E

[
1
(

y < ZN ≤ x

µ + δ

)
e−θ(x−µZN)

]

≤ K E

[
1
(

y < ZN ≤ x

µ + δ

)
e−εν log x(x−µZN)/x

]

= K

xεν
E

[
1
(

y < ZN ≤ x

µ + δ

)
eενµ log xZN/x

]
.

Now note that by writing 1(y < ZN ≤ x/(µ + δ)) ≤ 1(y < ZN ≤ x/(2µ)) + 1(x/(2µ) <

ZN ≤ x/(µ + δ)) (if δ ≥ µ, the second indicator is 0) we obtain

1

xεν
E

[
1
(

y < ZN ≤ x

µ + δ

)
eενµ log xZN/x

]

≤ 1

xεν/2 P(ZN > y) + eενµ log x/(µ+δ)

xεν
P

(
ZN >

x

2µ

)
.

Since

x−ενeενµ log x/(µ+δ) = e−ενδ log x/(µ+δ) ≤ exp

{
− εν

√
log x

µ + 1/
√

log x

}
≤ Ke−εν

√
log x/µ,

the result follows.
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We are now ready to provide upper bounds for P(MN > x). As mentioned earlier, the idea is
to split the probability into all the different combinations of events relating ZN and JN(·). We
emphasize again that no particular structure on the distributions of ZN or the {Xi} is imposed
beyond moment conditions.

Proposition 3.1. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1
with γ1+ε = ‖X1‖1+ε < ∞ for some ε > 0. In addition, assume that E[∑N

i=1 C
β+ε
i ] < ∞

for some β > 0. Then, there exist constants K, x0 > 0 such that, for all x ≥ x0 and
0 < 1/

√
log x ≤ δ < 1,

(a) for µ ≥ 0,

P(MN > x) ≤ E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
(1 − δ)x

Ci

)]
+ P((µ + δ)ZN > x)

+ K

(
(log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]
+ 1

xβ+ε/2

)

+ K

(
x−εν/2 P(ZN > y) + e−εν

√
log x/µ P

(
ZN >

x

2µ

)
1(µ > 0)

)
,

(b) for µ < 0,

P(MN > x) ≤ E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
(1 − δ)x

Ci

)]

+ K

(
(log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]
+ 1

xβ+ε/2

)
,

where y = x/ log x, ν = ε/(2(β + ε)), and w = x1−ν/γ1+ε.

Proof. We separate the analysis into two cases: µ ≥ 0 and µ < 0.
Case 1: µ ≥ 0. We start by splitting the probability as follows:

P(MN > x) ≤ P(MN > x, (µ + δ)ZN ≤ x) + P((µ + δ)ZN > x)

≤ P(MN > x, JN((1 − δ)x) = 0, (µ + δ)ZN ≤ x, IN(w) = 0) (3.5)

+ P(IN(w) ≥ 1) + P(JN((1 − δ)x) ≥ 1, IN(w) = 0)

+ P((µ + δ)ZN > x).

Let F = σ(N, C1, C2, . . .), and recall that the {Xi} are independent of (N, C1, C2, . . .). Then,
from the union bound we obtain

P(JN((1 − δ)x) ≥ 1, IN(w) = 0)

= E

[
1(IN(w) = 0) E

[
1
( N⋃

i=1

{CiXi > (1 − δ)x}
) ∣∣∣∣ F

]]

≤ E

[
1(IN(w) = 0)

N∑
i=1

E[1(CiXi > (1 − δ)x) | F ]
]

= E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
(1 − δ)x

Ci

)]
. (3.6)
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Applying the union bound, Fubini’s theorem, and the conditional Markov inequality, we
obtain

P(IN(w) ≥ 1) = E

[
1
( N⋃

i=1

{Ci > w}
)]

≤ E

[ N∑
i=1

1(Ci > w)

]

=
∞∑
i=1

P(Ci > w, N ≥ i)

=
∞∑
i=1

E[1(N ≥ i) E[1(Ci > w) | N ]]

≤ 1

wβ+ε

∞∑
i=1

E[Cβ+ε
i 1(N ≥ i)]

= γ
β+ε
1+ε

xβ+ε/2 E

[ N∑
i=1

C
β+ε
i

]
. (3.7)

Now, to analyze the probability in (3.5), split it according to how many summands are greater
than y as follows:

P(MN > x, JN((1 − δ)x) = 0, ZN ≤ y, IN(w) = 0)

+ P

(
MN > x, JN((1 − δ)x) = 0, y < ZN ≤ x

µ + δ
, IN(w) = 0

)
≤ P(MN > x, JN(y) = 0, ZN ≤ y, IN(w) = 0) (3.8)

+ P(MN > x, JN(y) = 1, JN((1 − δ)x) = 0, ZN ≤ y, IN(w) = 0) (3.9)

+ P(MN > x, JN(y) ≥ 2, JN((1 − δ)x) = 0, ZN ≤ y, IN(w) = 0) (3.10)

+ P

(
MN > x, JN((1 − δ)x) = 0, y < ZN ≤ x

µ + δ
, IN(w) = 0

)
. (3.11)

We start by analyzing (3.9), which we can bound by separating the summands in MN into those
that are smaller than or equal to y and those that are greater than y, as the following derivation
shows:

P(MN > x, JN(y) = 1, JN((1 − δ)x) = 0, ZN ≤ y, IN(w) = 0)

= P

(
sup

1≤k<N+1

{ k∑
i=1

CiXi 1(CiXi ≤ y) +
k∑

i=1

CiXi 1(CiXi > y)

}
> x,

JN(y) = 1, JN((1 − δ)x) = 0, ZN ≤ y, IN(w) = 0

)

≤ P

(
sup

1≤k<N+1

k∑
i=1

CiXi 1(CiXi ≤ y) > δx, ZN ≤ y, IN(w) = 0

)
. (3.12)
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We can bound (3.8) similarly to obtain

P(MN > x, JN(y) = 0, ZN ≤ y, IN(w) = 0)

= P

(
sup

1≤k<N+1

k∑
i=1

CiXi 1(CiXi ≤ y) > x, JN(y) = 0, ZN ≤ y, IN(w) = 0

)

≤ P

(
sup

1≤k<N+1

k∑
i=1

CiXi 1(CiXi ≤ y) > x, ZN ≤ y, IN(w) = 0

)
. (3.13)

Clearly, (3.13) is not greater than (3.12), and to bound (3.12), we use Lemma 3.4 to obtain

P

(
sup

1≤k<N+1

k∑
i=1

CiXi 1(CiXi ≤ y) > δx, ZN ≤ y, IN(w) = 0

)
≤ K

xh

for any h > 0 (in particular, h = β + ε/2).
By Lemma 3.3, (3.10) is bounded by

P(JN(y) ≥ 2, ZN ≤ y, IN(w) = 0) ≤ K(log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]
.

Finally, by Lemma 3.5, (3.11) is bounded by

P

(
MN > x, JN((1 − δ)x) = 0, y < ZN ≤ x

µ + δ
, IN(w) = 0

)

≤ K

(
x−εν/2 P(ZN > y) + e−εν

√
log x/µ P

(
ZN >

x

2µ

)
1(µ > 0)

)
.

This completes the case.
Case 2: µ < 0. The case of negative mean requires some additional work, since in order

to use the preliminary lemmas we need to have some control over ZN . For this purpose, let
κ = 2(β + ε)/(νε|µ|) and define τ = sup{1 ≤ n ≤ N : Zn ≤ κx}. Now split the probability
of interest as

P(MN > x) ≤ P(JN((1 − δ)x) ≥ 1, IN(w) = 0) + P(IN(w) ≥ 1) (3.14)

+ P(MN > x, JN((1 − δ)x) = 0, IN(w) = 0),

and note that the probabilities in (3.14) are bounded by (3.6) and (3.7). For the remaining
probability, we use the union bound to obtain

P(MN > x, JN((1 − δ)x) = 0, IN(w) = 0)

≤ P
(

sup
1≤k<τ+1

Sk > x, JN((1 − δ)x) = 0, IN(w) = 0
)

(3.15)

+ P
(

sup
τ<k<N+1

Sk > x, JN((1 − δ)x) = 0, IN(w) = 0, τ < N
)
. (3.16)

Since τ ≤ N and Zτ ≤ κx, (3.15) is bounded by

P(Mτ > x, Jτ ((1 − δ)x) = 0, Zτ ≤ κx, IN(w) = 0).
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We now split this last probability in a similar way to the previous case:

P(Mτ > x, Jτ ((1 − δ)x) = 0, Zτ ≤ κx, IN(w) = 0)

≤ P(Mτ > x, Jτ (y) = 0, Zτ ≤ κx, Iτ (w) = 0) (3.17)

+ P(Mτ > x, Jτ (y) = 1, Jτ ((1 − δ)x) = 0, Zτ ≤ κx, Iτ (w) = 0) (3.18)

+ P(Jτ (y) ≥ 2, Zτ ≤ κx, IN(w) = 0). (3.19)

By using the same arguments as in the µ ≥ 0 case, we find that the sum of the probabilities
in (3.17) and (3.18) is bounded by

2 P

(
sup

1≤k≤τ

k∑
i=1

CiXi 1(CiXi ≤ y) > δx, Zτ ≤ κx, Iτ (w) = 0

)
,

which, by Lemma 3.2 (with u = x1−ν , v = y, A = (−∞, κx], and N = τ ), is in turn bounded
by

2 E

[
1(Zτ ≤ κx) exp

{
−θδx +

(
µ + Kγ1+ε

log(xν/ log x)

)+
θZτ

}]
≤ 2e−θδx

for sufficiently large x and θ = (ε log x/x) log(xν/ log x). We now note that, since δ ≥
1/

√
log x, then e−δθx ≤ e−ε

√
log x log(xν/ log x) = o(x−β−ε/2) as x → ∞. By adapting the proof

of Lemma 3.3 to substitute N by τ but keeping the condition IN(w) = 0, we find that (3.19) is
bounded by

K(log x)1+ε

xεν
E

[
1(IN(w) = 0)

τ∑
i=1

F̄

(
y

Ci

)]

≤ K(log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]
.

Finally, to analyze (3.16), let X̃i = Xi − µ/2, S̃k = C1X̃1 + · · · + CkX̃k , and note that we
can write the probability as

P

(
sup

τ<k<N+1

(
S̃k − |µ|Zk

2

)
> x, JN((1 − δ)x) = 0, IN(w) = 0, τ < N

)

≤ P

(
sup

τ<k<N+1
S̃k − |µ|Zτ+1

2
> x, JN((1 − δ)x) = 0, IN(w) = 0, τ < N

)

≤ P

(
sup

τ<k<N+1

k∑
i=1

CiX̃i 1
(

CiX̃i ≤ (1 − δ)x + Ci |µ|
2

)
>

(
1 + |µ|κ

2

)
x,

IN(w) = 0, τ < N

)

≤ P

(
sup

1≤k<N+1

k∑
i=1

CiX̃i 1
(

CiX̃i ≤ (1 − δ)x + |µ|w
2

)
>

(
1 + |µ|κ

2

)
x,

IN(w) = 0

)
. (3.20)
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By Lemma 3.2 (with u = x1−ν , v = (1 − δ)x + |µ|w/2, and A = R), (3.20) is bounded by

E

[
exp

{
−φ

(
1 + |µ|κ

2

)
x +

(
µ

2
+ Kγ1+ε

log(v/u)

)+
φZN

}]
≤ e−φ(1+|µ|κ/2)x

for sufficiently large x, where φ = (ε/((1 − δ)x + |µ|w/2)) log((1 − δ)xν + |µ|/(2γ1+ε)).
The last step is to note that

− (1 + |µ|κ/2)εx

(1 − δ)x + |µ|w/2
log

(
(1 − δ)xν + |µ|

2γ1+ε

)
= − (1 + |µ|κ/2)ε

1 − δ
log((1 − δ)xν) + o(1)

≤ −
(

1 + |µ|κ
2

)
ε log xν + O(1)

= −(β + ε + εν) log x + O(1)

as x → ∞, which implies that (3.20) is o(x−β−ε). This completes the proof.

4. The lower bound

We give in this section lower bounds for the tail distribution of the randomly weighted and
randomly stopped sum. The idea of the proof is to split the probability P(SN > x) into several
different probabilities, similarly to what was done for the upper bounds, and just keep those
that determine the asymptotics. The first lemma is a preliminary step for Lemma 4.2, and the
main lower bounds are given in Lemmas 4.2 and 4.3.

Lemma 4.1. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1 with
γ1+ε = ‖X1‖1+ε < ∞ for some ε > 0. Let 0 < ν < 1, w = x1−ν/γ1+ε, y = x/ log x, and
δ > 0. Then, there exist constants K, x0 > 0 such that, for all x ≥ x0,

P(JN((1 + δ)x) = 1, ZN ≤ y, IN(w) = 0)

≥ E

[
1(ZN ≤ y, IN(w) = 0)

N∑
i=1

F̄

(
(1 + δ)x

Ci

)]

− K

xνε log x
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
x

Ci

)]
.

Proof. Let Bi = {CiXi > (1 + δ)x, sup1≤j<N+1, j �=i CjXj ≤ (1 + δ)x, ZN ≤ y,

IN(w) = 0}, and note that the Bis are disjoint. Therefore,

P(JN((1 + δ)x) = 1, ZN ≤ y, IN(w) = 0) = E

[
1
( N⋃

i=1

Bi

)]
= E

[ N∑
i=1

1(Bi)

]
.

Let F = σ(N, C1, C2, . . .), and use the independence of the {Xi} and F to obtain

E

[ N∑
i=1

1(Bi)

]

= E
[
1(ZN ≤ y, IN(w) = 0)

×
N∑

i=1

E
[
1(CiXi > (1 + δ)x) 1

(
sup

1≤j<N+1, j �=i

CjXj ≤ (1 + δ)x
) ∣∣∣ F

]]
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= E

[
1(ZN ≤ y, IN(w) = 0)

N∑
i=1

E[1(CiXi > (1 + δ)x) | F ]
]

− E

[
1(ZN ≤ y, IN(w) = 0)

×
N∑

i=1

E
[
1(CiXi > (1 + δ)x) 1

(
sup

1≤j<N+1, j �=i

CjXj > (1 + δ)x
) ∣∣∣ F

]]

≥ E

[
1(ZN ≤ y, IN(w) = 0)

N∑
i=1

F̄

(
(1 + δ)x

Ci

)]

− E

[
1(ZN ≤ y, IN(w) = 0)

×
∑

1≤i �=j<N+1

E[1(CiXi > (1 + δ)x) 1(CjXj > (1 + δ)x) | F ]
]
,

where in the last step we used the union bound. To bound the last expectation, note that the
conditional independence of the {CiXi} given F yields

E

[
1(ZN ≤ y, IN(w) = 0)

∑
1≤i �=j<N+1

E[1(CiXi > (1 + δ)x) 1(CjXj > (1 + δ)x) | F ]
]

≤ E

[
1(ZN ≤ y, IN(w) = 0)

( N∑
i=1

F̄

(
(1 + δ)x

Ci

))2]
.

Now use the same arguments from Lemma 3.3 to see that this last term is bounded from above
by

K

x1+ε
ywε E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
(1 + δ)x

Ci

)]

≤ K

xνε log x
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
x

Ci

)]
.

The following result provides the first of the two terms determining the asymptotic behavior
of P(SN > x), the one corresponding to the one-big-jump principle. Lemma 4.3 below will
give the term corresponding to the case where the sum of the weights, ZN , is large.

Lemma 4.2. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1 with
γ1+ε = ‖X1‖1+ε < ∞ for some ε > 0. Let 0 < ν < 1, w = x1−ν/γ1+ε, y = x/ log x, and
0 < 1/

√
log x ≤ δ < 1. Then, for any h > 0, there exist constants K, x0 > 0 such that, for all

x ≥ x0,
P(SN > x, JN((1 + δ)x) ≥ 1, LN(y) = 0, ZN ≤ y, IN(w) = 0)

≥ E

[
1(ZN ≤ y, IN(w) = 0)

N∑
i=1

F̄

(
(1 + δ)x

Ci

)]

− K

(
(log x)ε

xνε
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
x

Ci

)]
+ 1

xh

)
.
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Proof. We start by noting that

P(SN > x, JN((1 + δ)x) ≥ 1, LN(y) = 0, ZN ≤ y, IN(w) = 0)

= P(JN((1 + δ)x) ≥ 1, ZN ≤ y, IN(w) = 0) (4.1)

− P(JN((1 + δ)x) ≥ 1, LN(y) ≥ 1, ZN ≤ y, IN(w) = 0) (4.2)

− P(SN ≤ x, JN((1 + δ)x) ≥ 1, LN(y) = 0, ZN ≤ y, IN(w) = 0). (4.3)

From Lemma 4.1 we find that (4.1) is greater than or equal to

E

[
1(ZN ≤ y, IN(w) = 0)

N∑
i=1

F̄

(
(1 + δ)x

Ci

)]
− K

xνε log x
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
x

Ci

)]
.

To bound (4.2), note that

{JN((1 + δ)x) ≥ 1, LN(y) ≥ 1} =
⋃

1≤i �=j<N+1

{CiXi > (1 + δ)x, CjXj < −y}.

Now let F = σ(N, C1, C2, . . .), and use the union bound plus the conditional independence
of the {CiXi} given F to obtain

P(JN((1 + δ)x) ≥ 1, LN(y) ≥ 1, ZN ≤ y, IN(w) = 0)

= E[1(ZN ≤ y, IN(w) = 0) E[1(JN((1 + δ)x) ≥ 1, LN(y) ≥ 1) | F ]]
≤ E

[
1(ZN ≤ y, IN(w) = 0)

∑
1≤i �=j<N+1

F̄

(
(1 + δ)x

Ci

)
F

(
− y

Cj

)]

≤ E

[
1(ZN ≤ y, IN(w) = 0)

( N∑
i=1

F̄

(
(1 + δ)x

Ci

))( N∑
j=1

F

(
− y

Cj

))]
.

Using the same arguments from Lemma 3.3, we see that the last expectation is bounded by

Kwε

yε
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
(1 + δ)x

Ci

)]
≤ K(log x)ε

xνε
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
x

Ci

)]
.

Finally, to bound (4.3), note that

{SN ≤ x, JN((1 + δ)x) ≥ 1, LN(y) = 0}

⊆
{ N∑

i=1

CiXi 1(−y ≤ CiXi ≤ (1 + δ)x) ≤ −δx

}

⊆
{ N∑

i=1

CiXi 1(Ci |Xi | ≤ y) ≤ −δx

}

⊆
{ N∑

i=1

Ci |Xi | 1(Ci |Xi | ≤ y) ≥ δx

}
,
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from where it follows that

P(SN ≤ x, JN((1 + δ)x) ≥ 1, LN(y) = 0, ZN ≤ y, IN(w) = 0)

≤ P

( N∑
i=1

Ci |Xi | 1(Ci |Xi | ≤ y) ≥ δx, ZN ≤ y, IN(w) = 0

)
.

Now apply Lemma 3.4 with Xi replaced by |Xi | to obtain

P

( N∑
i=1

Ci |Xi | 1(Ci |Xi | ≤ y) ≥ δx, ZN ≤ y, IN(w) = 0

)
= o(x−h)

as x → ∞ for all h > 0.
Combining the bounds derived above for (4.1), (4.2), and (4.3) gives the result.

Lemma 4.3. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1 with
µ > 0 and γ1+ε = ‖X1‖1+ε < ∞ for some ε > 0. In addition, assume that ZN < ∞
a.s. and E[∑N

i=1 C
β+ε
i ] < ∞ for some β > 0. Let ν = ε/(2(β + ε)), w = x1−ν/γ1+ε, and

0 < 1/
√

log x ≤ δ ≤ 1
2 . Then there exist constants K, x0 > 0 such that, for all x ≥ x0,

P

(
SN > x, ZN >

(1 + δ)x

µ
, IN(w) = 0

)

≥ P

(
ZN >

(1 + δ)x

µ

)
− Ke−εν

√
log x P

(
ZN >

x

µ

)
− K

xβ+ε/2 .

Proof. We start by noting that

P

(
SN > x, ZN >

(1 + δ)x

µ
, IN(w) = 0

)

≥ P

(
ZN >

(1 + δ)x

µ

)
− P

(
SN ≤ x, ZN >

(1 + δ)x

µ
, IN(w) = 0

)
− P(IN(w) ≥ 1).

From (3.7) we obtain
P(IN(w) ≥ 1) ≤ Kx−β−ε/2.

Now let X̄i = µ − Xi , X̂i = µ/2 − Xi , S̄N = ∑N
i=1 CiX̄i , and ŜN = ∑N

i=1 CiX̂i . Note that

P

(
SN ≤ x, ZN >

(1 + δ)x

µ
, IN(w) = 0

)

= P

(
S̄N ≥ µZN − x,

(1 + δ)x

µ
< ZN ≤ 4x

µ
, IN(w) = 0

)
(4.4)

+ P

(
ŜN ≥ µZN

2
− x, ZN >

4x

µ
, IN(w) = 0

)
. (4.5)

To analyze (4.4), define J̄N (t) = #{1 ≤ i < N + 1 : CiX̄i > t} and note that (4.4) is bounded
by

P

(
S̄N ≥ δx,

(1 + δ)x

µ
< ZN ≤ 4x

µ
, IN(w) = 0

)

≤ P

(
S̄N ≥ δx, J̄N (x) = 0,

(1 + δ)x

µ
< ZN ≤ 4x

µ
, IN(w) = 0

)
(4.6)

+ P

(
J̄N (x) ≥ 1,

(1 + δ)x

µ
< ZN ≤ 4x

µ
, IN(w) = 0

)
. (4.7)
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By Lemma 3.2 with v = x, u = x1−ν , and A = ((1 + δ)x/µ, 4x/µ], (4.6) is bounded by

P

( N∑
i=1

CiX̄i 1(CiX̄i ≤ x) ≥ δx,
(1 + δ)x

µ
< ZN ≤ 4x

µ
, IN(w) = 0

)

≤ E

[
1
(

(1 + δ)x

µ
< ZN ≤ 4x

µ

)
exp

{
−θδx + K‖X̄1‖1+ε

log(xν)
θZN

}]

≤ exp

{
−θδx + 4K‖X̄1‖1+ε

µ log(xν)
θx

}
P

(
ZN >

x

µ

)

≤ Ke−εν
√

log x P

(
ZN >

x

µ

)
,

where θ = (ε/x) log(xν). To analyze (4.7), let F = σ(N, C1, C2, . . .) and use the union
bound to see that it is bounded by

E

[
1
(

(1 + δ)x

µ
< ZN ≤ 4x

µ
, IN(w) = 0

)
E[1(J̄N (x) ≥ 1) | F ]

]

≤ E

[
1
(

(1 + δ)x

µ
< ZN ≤ 4x

µ
, IN(w) = 0

) N∑
i=1

E[1(CiX̄i > x) | Ci]
]

≤ E[|X̄1|1+ε]
x1+ε

E

[
1
(

(1 + δ)x

µ
< ZN ≤ 4x

µ
, IN(w) = 0

) N∑
i=1

C1+ε
i

]

≤ Kwε

x1+ε
E

[
1
(

(1 + δ)x

µ
< ZN ≤ 4x

µ

)
ZN

]

≤ K

xνε
P

(
ZN >

x

µ

)
. (4.8)

Now, to analyze (4.5), define ĴN (t) = #{1 ≤ i < N + 1 : CiX̂i > t} and split the probability
into

P

(
ŜN ≥ µZN

2
− x, ZN >

4x

µ
, IN(w) = 0, ĴN (µZN) = 0

)

+ P

(
ŜN ≥ µZN

2
− x, ZN >

4x

µ
, IN(w) = 0, ĴN (µZN) ≥ 1

)

≤ P

( N∑
i=1

CiX̂i 1(CiX̂i ≤ µZN) ≥ µZN

2
− x, ZN >

4x

µ
, IN(w) = 0

)
(4.9)

+ P

(
ZN >

4x

µ
, IN(w) = 0, ĴN (µZN) ≥ 1

)
. (4.10)

Applying the same steps used to derive (4.8), we see that (4.10) is bounded by

E[|X̂1|1+ε] E

[
1
(

ZN >
4x

µ
, IN(w) = 0

)
(µZN)−1−ε

N∑
i=1

C1+ε
i

]

≤ Kwε E

[
1
(

ZN >
4x

µ

)
Z−ε

N

]

≤ K

xνε
P

(
ZN >

4x

µ

)
.
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Finally, to bound (4.9), we can repeat the proof of Lemma 3.2, with the difference that ZN

now appears in the truncation and the level to be exceeded. Set v = µZN , u = x1−ν ,
z = µZN/2 −x, and � = (ε/(µZN)) log(x−1+νµZN), and note that on the set {ZN > 4x/µ}
we have 1/v ≤ � ≤ 1/u for sufficiently large x, as required. Now, using the same proof as
that of Lemma 3.2, we see that (4.9) is bounded, for sufficiently large x, by

E

[
1
(

ZN >
4x

µ

)
exp

{
−�

(
µZN

2
− x

)
+

(
−µ

2
+ K‖X̂1‖1+ε

log(x−1+νµZN)

)+
�ZN

}]

≤ E

[
1
(

ZN >
4x

µ

)
e−�(µZN/2−x)

]
.

Now note that on {ZN > 4x/µ} we have

−�

(
µZN

2
− x

)
= −ε(µZN/2 − x)

µZN

log(x−1+νµZN) ≤ −ε

4
log(4xν),

which shows that (4.9) is bounded by Kx−εν/4 P(ZN > 4x/µ). This completes the proof.

5. Proofs of the main theorems

In this section we give the proofs of the theorems in Section 2. We start by stating two
preliminary lemmas. Lemma 5.1 is included only for completeness since part (a) is a direct
consequence of the representation theorem for the ORV class, Theorem 2.2.7 of [3], and part (b)
is contained in Theorem 2.3 of [7].

Lemma 5.1. Suppose that F̄ ∈ ORV with Matuszewska indices 0 < αf ≤ βf < ∞. Then,
for any ε > 0,

(a) there exists x0 > 0 such that F̄ (x) ≥ x−βf −ε for all x ≥ x0,

(b) there exist x0 > 0 and M < ∞ such that, for all λ > 1 and x ≥ x0,

1

M
λ−βf −ε ≤ F̄ (λx)

F̄ (x)
≤ Mλ−αf +ε.

The second preliminary lemma below establishes the one-big-jump asymptotics for the
random weighted sum using the properties of the IRV class.

Lemma 5.2. Suppose that the {Xi} and the vector (N, C1, C2, . . .) satisfy Assumption 3.1.
Assume further that F̄ ∈ IRV and has Matuszewska indices 0 < αf ≤ βf < ∞, and that
ZN < ∞ a.s., E[∑N

i=1 C
αf −ε

i ] < ∞ and E[∑N
i=1 C

βf +ε

i ] < ∞ for some 0 < ε < αf . If

E[N ] < ∞ then the condition E[∑N
i=1 C

αf −ε

i ] < ∞ can be dropped. Let ν = ε/(2(βf + ε)),
γ > 0, w = x1−ν/γ , y = x/ log x, and δ = 1/

√
log x. Then, as x → ∞,

M := E

[ N∑
i=1

F̄

(
x

Ci

)]

∼ E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
(1 − δ)x

Ci

)]

=: U
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∼ E

[
1(ZN ≤ y, IN(w) = 0)

N∑
i=1

F̄

(
(1 + δ)x

Ci

)]

=: L.

Proof. We start with the upper bounds,

U ≤ E

[
1(IN(w) = 0) sup

1≤j<N+1

F̄ ((1 − δ)x/Cj )

F̄ (x/Cj )

N∑
i=1

F̄

(
x

Ci

)]
≤ sup

t≥x/w

F̄ ((1 − δ)t)

F̄ (t)
M,

and L ≤ M. It follows that

lim sup
x→∞

L

M
≤ lim sup

x→∞
U

M
≤ 1.

Now, for the lower bounds we have

U ≥ M − E

[
1(IN(w) ≥ 1)

N∑
i=1

F̄

(
x

Ci

)]
and

L ≥ E

[
1(IN(w) = 0) inf

1≤j<N+1

F̄ ((1 + δ)x/Cj )

F̄ (x/Cj )

N∑
i=1

F̄

(
x

Ci

)]

− E

[
1(ZN > y, IN(w) = 0)

N∑
i=1

F̄

(
x

Ci

)]

≥ inf
t≥x/w

F̄ ((1 + δ)t)

F̄ (t)

(
M − E

[
1(IN(w) ≥ 1)

N∑
i=1

F̄

(
x

Ci

)])

− E

[
1(ZN > y, IN(w) = 0)

N∑
i=1

F̄

(
x

Ci

)]
.

It remains to show that

lim
x→∞

E[1(IN(w) ≥ 1)
∑N

i=1 F̄ (x/Ci)] + E[1(ZN > y, IN(w) = 0)
∑N

i=1 F̄ (x/Ci)]
M

= 0.

To obtain a lower bound for M, we use Lemma 5.1(b) and Fatou’s lemma as follows:

lim inf
x→∞

M

F̄ (x)
≥ E

[ N∑
i=1

lim inf
x→∞

F̄ (x/Ci)

F̄ (x)

]
≥ K E

[ N∑
i=1

C
αf −ε

i ∧ C
βf +ε

i

]
> 0. (5.1)

Thus, it suffices to prove that

0 = lim
x→∞ E

[
1(IN(w) ≥ 1)

N∑
i=1

F̄ (x/Ci)

F̄ (x)

]
(5.2)

= lim
x→∞ E

[
1(ZN > y, IN(w) = 0)

N∑
i=1

F̄ (x/Ci)

F̄ (x)

]
.
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We analyze the second limit by noting that by Lemma 5.1(b) we have, for all sufficiently large x,

E

[
1(ZN > y, IN(w) = 0)

N∑
i=1

F̄ (x/Ci)

F̄ (x)

]
≤ K E

[ N∑
i=1

C
αf −ε

i ∨ C
βf +ε

i

]

≤ K E

[ N∑
i=1

C
αf −ε

i

]
+ K E

[ N∑
i=1

C
βf +ε

i

]

< ∞,

so, by dominated convergence,

lim sup
x→∞

E

[
1(ZN > y, IN(w) = 0)

N∑
i=1

F̄ (x/Ci)

F̄ (x)

]

≤ K E

[
lim sup
x→∞

1(ZN > y)

N∑
i=1

C
αf −ε

i ∨ C
βf +ε

i

]

= 0. (5.3)

For the limit in (5.2), we first split the expectation to obtain

E

[
1(IN(w) ≥ 1)

N∑
i=1

F̄ (x/Ci)

F̄ (x)

]
≤ E

[
1(IN(w) ≥ 1)

N∑
i=1

F̄ (x/Ci)

F̄ (x)
1(Ci ≤ w)

]

+ E

[
1(IN(w) ≥ 1)

N∑
i=1

1(Ci > w)

F̄ (x)

]
. (5.4)

Dominated convergence again gives

lim sup
x→∞

E

[
1(IN(w) ≥ 1)

N∑
i=1

F̄ (x/Ci)

F̄ (x)
1(Ci ≤ w)

]

≤ K E

[
lim sup
x→∞

1(IN(w) ≥ 1)

N∑
i=1

C
αf −ε

i ∨ C
βf +ε

i

]

= 0.

Finally, to bound (5.4), note that, by (3.7),

E

[
1(IN(w) ≥ 1)

N∑
i=1

1(Ci > w)

]
≤ E

[ N∑
i=1

1(Ci > w)

]
≤ K

xβf +ε/2 .

The observation that, by Lemma 5.1(a), limx→∞ xβf +ε/2F̄ (x) = ∞ completes the proof.

Remark. The proof given above requires that E[∑N
i=1 C

αf −ε

i ∨ C
βf +ε

i ] < ∞ to derive (5.3),

which is clearly implied by the two conditions E[∑N
i=1 C

αf −ε

i ] < ∞ and E[∑N
i=1 C

βf +ε

i ] <

∞. To see that the first condition can be dropped when E[N ] < ∞, note that

E

[ N∑
i=1

C
αf −ε

i ∨ C
βf +ε

i

]
≤ E[N ] + E

[ N∑
i=1

C
βf +ε

i

]
< ∞.
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We are now ready to prove the main theorems from Section 2. The first result corresponds
to the setting where the asymptotic behavior of both P(MN > x) and P(SN > x) is determined
by the one-big-jump principle.

Proof of Theorem 2.1. Let α = αf , β = βf , and M = E[∑N
i=1 F̄ (x/Ci)]. Note that by

(5.1) we have M ≥ KF̄ (x), and by Lemma 5.1(a) we have limx→∞ xβ+hF̄ (x) = ∞ for any
h > 0, from where it follows that

Kx−β−ε/2 = o(M) (5.5)

as x → ∞. Let ν = ε/(2(β + ε)), w = x1−ν/γ1+ε, y = x/ log x, and δ = 1/
√

log x. Then,
from Lemmas 4.2 and 5.2 we obtain, for all three cases,

lim inf
x→∞

P(MN > x)

M
≥ lim inf

x→∞
P(SN > x)

M
≥ 1.

For the upper bound, we first note that, by Lemma 5.1(b),

(log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]

≤ (log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

K

(
y

x

)−β−ε

F̄

(
x

Ci

)]

≤ K(log x)β+1+2ε

xεν
M

= o(M) (5.6)

for all sufficiently large x. We split the rest of the analysis of the upper bounds into the three
different cases.

Case 1: µ < 0. It follows, from Proposition 3.1(b), Lemma 5.2, and relations (5.5) and (5.6),
that

lim sup
x→∞

P(MN > x)

M
≤ 1.

Case 2: µ = 0 and P(ZN > x) = O(F̄ (x)). We use Proposition 3.1(a), Lemma 5.2, and
relations (5.5) and (5.6) to obtain

lim sup
x→∞

P(MN > x)

M
≤ 1 + lim sup

x→∞
P(δZN > x) + Kx−εν/2 P(ZN > y)

M
.

To see that the last limit is 0, use Lemma 5.1 to obtain

lim sup
x→∞

P(δZN > x) + Kx−εν/2 P(ZN > y)

M
≤ K lim sup

x→∞
F̄ (x/δ) + x−εν/2F̄ (y)

F̄ (x)

≤ K lim sup
x→∞

(
δα−ε + x−εν/2

(
x

y

)β+ε)

= K lim sup
x→∞

(
1

(log x)(α−ε)/2
+ (log x)β+ε

xεν/2

)
= 0.
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Case 3: µ > 0 and P(ZN > x) = o(F̄ (x)). We use Proposition 3.1(a), Lemma 5.2, and
relations (5.5) and (5.6) to obtain

lim sup
x→∞

P(MN > x)

M

≤ 1 + lim sup
x→∞

P((µ + δ)ZN > x) + Kx−εν/2 P(ZN > y) + Ke−εν
√

log x/µ P(ZN > x/(2µ))

M

≤ 1 + K lim sup
x→∞

P((µ + δ)ZN > x) + e−εν
√

log x/µ P(ZN > y)

F̄ (x)
.

For the first summand in the limit, we use Lemma 5.1 to see that

lim sup
x→∞

P((µ + δ)ZN > x)

F̄ (x)
≤ lim sup

x→∞
P((µ + δ)ZN > x)

F̄ (x/(µ + δ))
lim sup
x→∞

F̄ (x/(µ + δ))

F̄ (x)

≤ K lim sup
x→∞

P(ZN > x/(µ + δ))

F̄ (x/(µ + δ))

= 0.

For the second limit, we use Lemma 5.1 again as follows:

lim sup
x→∞

e−εν
√

log x/µ P(ZN > y)

F̄ (x)
≤ lim sup

x→∞
P(ZN > y)

F̄ (y)

e−εν
√

log x/µF̄ (y)

F̄ (x)

≤ lim sup
x→∞

P(ZN > y)

F̄ (y)
K lim sup

x→∞
e−εν

√
log x/µ(log x)β+ε

= 0.

The next proof corresponds to the setting where the asymptotic behavior of P(MN > x) and
P(SN > x) is determined by both the one-big-jump principle and the tail behavior of ZN .

Proof of Theorem 2.2. Let α = αf , β = βf , and M = E[∑N
i=1 F̄ (x/Ci)]. Note that by

(5.1) we have M ≥ KF̄ (x), and, by Lemma 5.1(a), we have limx→∞ xβ+hF̄ (x) = ∞ for any
h > 0, from where it follows that Kx−β−ε/2 = o(M) as x → ∞. Let ν = ε/(2(β + ε)),
w = x1−ν/γ1+ε, y = x/ log x, and δ = 1/

√
log x.

Note that since ZN is intermediate regularly varying,

P((µ + δ)ZN > x) ∼ P

(
ZN >

x

µ

)

as x → ∞. Also, since IRV ⊂ ORV, it holds that

lim sup
x→∞

P(ZN > x/(2µ))

P(ZN > x/µ)
< ∞.

Moreover, if we let 0 ≤ βg < ∞ be the lower Matuszewska index of Ḡ(x) = P(ZN > x), then
Lemma 5.1(b) gives

lim sup
x→∞

x−εν/2 P(ZN > y)

P(ZN > x/µ)
≤ K lim sup

x→∞
x−εν/2

(
log x

µ

)βg+ε

= 0.
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These observations combined with Proposition 3.1(a), Lemma 5.2, and relations (5.5) and (5.6)
give

lim sup
x→∞

P(MN > x)

M + P(ZN > x/µ)

≤ 1 + K lim sup
x→∞

x−εν/2 P(ZN > y) + e−εν
√

log x/µ P(ZN > x/(2µ))

P(ZN > x/µ)

= 1.

For the lower bound, we use P(ZN > (1 + δ)x/µ) ∼ P(ZN > x/µ), Lemmas 4.2, 4.3
and 5.2, and relations (5.5) and (5.6) to obtain

lim inf
x→∞

P(MN > x)

M + P(ZN > x/µ)
≥ lim inf

x→∞
P(SN > x)

M + P(ZN > x/µ)
= 1.

This completes the proof.

The last proof corresponds to the setting where the tail behavior of P(MN > x) and
P(SN > x) is solely determined by the sum of the weights, ZN .

Proof of Theorem 2.3. Let α = αg , β = βg , ν = ε/(2(β + ε)), w = x1−ν/γ1+ε,
y = x/ log x, and δ = 1/

√
log x. Recall that F̄ (x) = P(X1 > x) and Ḡ(x) = P(ZN > x).

Note that, since Ḡ ∈ IRV, then

P

(
ZN >

(1 + δ)x

µ

)
∼ P((µ + δ)ZN > x) ∼ P

(
ZN >

x

µ

)

as x → ∞.
We start with the upper bound, for which we use Proposition 3.1(a) to obtain

lim sup
x→∞

P(MN > x)

P(ZN > x/µ)

≤ 1 + K lim sup
x→∞

1

P(ZN > x/µ)

×
{

E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
(1 − δ)x

Ci

)]

+ (log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]
+ 1

xβ+ε/2

+ x−εν/2 P(ZN > y) + e−εν
√

log x/µ P

(
ZN >

x

(2µ)

)}
.

Since the distribution of ZN belongs to IRV ⊂ OR, then limx→∞ xβ+ε/2 P(ZN > x/µ) = ∞
by Lemma 5.1(a). Also, by the same arguments used in the proof of Theorem 2.2,

lim sup
x→∞

x−εν/2 P(ZN > y) + e−εν
√

log x/µ P(ZN > x/(2µ))

P(ZN > x/µ)
= 0.
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For the two remaining terms, we use Lemma 5.1 to obtain, for sufficiently large x,

1

Ḡ(x/µ)

{
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
(1 − δ)x

Ci

)]

+ (log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

F̄

(
y

Ci

)]}

≤ sup
t≥y/w

F̄ (t)

Ḡ(t)

{
E

[
1(IN(w) = 0)

N∑
i=1

Ḡ((1 − δ)x/Ci)

Ḡ(x/µ)

]

+ (log x)1+ε

xεν
E

[
1(IN(w) = 0)

N∑
i=1

Ḡ(y/Ci)

Ḡ(x/µ)

]}

≤ sup
t≥y/w

F̄ (t)

Ḡ(t)

{
E

[
K

N∑
i=1

(
Ci

(1 − δ)µ

)α−ε

∨
(

Ci

(1 − δ)µ

)β+ε]

+ (log x)1+ε

xεν
E

[
K

N∑
i=1

(
Cix

µy

)α−ε

∨
(

Cix

µy

)β+ε]}

≤ K sup
t≥y/w

F̄ (t)

Ḡ(t)

{
1 + (log x)β+1+2ε

xεν

}

≤ K sup
t≥y/w

F̄ (t)

Ḡ(t)
.

Since F̄ (x) = o(Ḡ(x)) as x → ∞, we have lim supx→∞ supt≥y/w F̄ (t)/Ḡ(t) = 0. The expec-

tation preceding the supremum is finite if either E[∑N
i=1 Cα−ε

i ] < ∞ and E[∑N
i=1 C

β+ε
i ] < ∞,

or E[N ] < ∞ and E[∑N
i=1 C

β+ε
i ] < ∞ (see the remark following the proof of Lemma 5.2).

For the lower bound, we use P(ZN > (1 + δ)x/µ) ∼ P(ZN > x/µ) and Lemma 4.3 to
obtain

lim inf
x→∞

P(MN > x)

P(ZN > x/µ)
≥ lim inf

x→∞
P(SN > x)

P(ZN > x/µ)
≥ 1.

This completes the proof.
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