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We present direct numerical simulation of a mechanism for creating longitudinal vortices
in pipe flow, compared with a model theory. By furnishing the pipe wall with a pattern
of crossing waves, secondary flow in the form of streamwise vortex pairs is created. The
mechanism, ‘CL1’, is kinematic and known from oceanography as a driver of Langmuir
circulation. CL1 is strongest when the ‘wall wave’ vectors make an acute angle with the
axis, ϕ = 10◦–20◦, changes sign near 45◦ and is weak and of opposite sign beyond this
angle. A competing, dynamic mechanism driving secondary flow in the opposite sense
is also observed, created by the azimuthally varying friction. Whereas at smaller angles
‘CL1’ prevails, the dynamic effect dominates when ϕ � 45◦, reversing the flow. Curiously,
the circulation strength is a faster-than-linearly increasing function of Reynolds number
for small ϕ. We explore an analogy with Prandtl’s secondary motion of the second kind in
turbulence. A transport equation for average streamwise vorticity is derived, and we analyse
it for three different crossing angles, ϕ = 18.6◦, 45◦ and 60◦. Mean-vorticity production
is organised in a ring-like structure with the two rings contributing to rotating flow in
opposite senses. For the larger ϕ, the inner ring decides the main swirling motion, whereas
for ϕ = 18.6◦, outer-ring production dominates. For the larger angles, the outer ring is
mainly driven by advection of vorticity and the inner by deformation (stretching) whereas,
for ϕ = 18.6◦, both contribute approximately equally to production in the outer ring.

Key words: vortex dynamics, microfluidics, pipe flow

1. Introduction

Secondary mean motion in the form of coherent streamwise vortices has often been
employed to favourably manipulate pipe flow and wall-bounded flows. Approaches to flow
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control based directly or indirectly on the creation of streamwise vortices in wall-bounded
flow are many and varied, especially for transitional and turbulent flow, including both
active and passive schemes.

In this study we consider a mechanism for creating streamwise vortices in pipe flow.
While the mechanism is laminar in nature and we study it as such, there is reason
to believe that it is active also in turbulent wall-bounded flows over egg-carton-like
roughness (Bhaganagar, Kim & Coleman 2004; Chan et al. 2018). This possibility is a
strong additional motivation because of the potential benefits observed from deliberately
introducing vortices into such flows. Streamwise vortices generated by means of carefully
designed roughness elements was shown by Fransson et al. (2006) to delay transition
to turbulence, and actively introducing vortices was shown to favourably redistribute
turbulence (Willis, Hwang & Cossu 2010) or suppress it altogether (Kühnen et al.
2018). Active methods implemented experimentally include cross-flow jets (Iuso et al.
2002), blowing and suction (Segawa et al. 2007; Lieu, Moarref & Jovanović 2010) and
individually rotating wall segments (Auteri et al. 2010). A common denominator in all
these approaches is the search for ways to reduce boundary layer skin friction.

The use of specially designed wall roughness elements is a well-established idea for
the manipulation of boundary layer flows. Vortical secondary flow has been shown in a
number of studies to result from spanwise intermittent roughness patches (Willingham
et al. 2014; Anderson et al. 2015) and streamwise aligned obstacles (Sirovich & Karlsson
1997; Vanderwel & Ganapathisubramani 2015; Kevin et al. 2017; Yang & Anderson 2018).
Anderson et al. (2015) identified these structures as Prandtl’s secondary flow of the second
kind, driven by spatial gradients in the Reynolds-stress components. Furthermore, several
studies show that intentionally imposed near-wall streaks and vortices can stabilise the
overall flow regime and delay or prevent transition into turbulence (Du & Karniadakis
2000; Cossu & Brandt 2002, 2004; Fransson et al. 2005, 2006; Pujals, Cossu & Depardon
2010a; Pujals, Depardon & Cossu 2010b). Most directly related to the current study, Chan
et al. (2015, 2018) studied pipe flow by way of direct numerical simulation (DNS) wherein
an ‘egg-carton’ structured wall roughness was introduced composed of sine waves crossing
at right angles, a special case of the geometry considered in the present paper. These
authors also report secondary motion in the form of vortices in the time-averaged flow,
oriented perpendicular to the mean flow.

Bhaganagar et al. (2004) considered wall-bounded turbulent flow with egg-carton-type
roughness from a crossing-wave pattern, comparing it with a smooth wall. While
secondary flows were not studied explicitly, varying the crossing angle and steepness
of the waves was found to affect the outer boundary layer, even though the roughness
elements did not extend beyond the viscous sub-layer, an indication that coherent motions
at a much larger scale were occurring. A somewhat similar study of turbulent flow
over a pyramidal pattern by Hong, Katz & Schultz (2011) showed a mechanism where
roughness-size vortices were created then lifted into the bulk. The fact that the roughness
in both of these studies was contained within the laminar sub-layer makes us conjecture
that the mechanism studied by Akselsen & Ellingsen (2020) and herein, although laminar
in nature, has relevance for turbulent flows, particularly the debate as to whether and how
the outer part of a boundary layer is affected by the detailed morphology of the wall
roughness (Bhaganagar 2008; Antonia & Djenidi 2010).

All of the above mentioned secondary flows induced by wall topography or roughness,
however, are driven by essentially dynamic mechanisms relying on gradients in the
viscous stress. In contrast, we here consider a passive mechanism for vortex generation
which is of kinematic origin and a close analogy of a mechanism for Langmuir
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circulation, a phenomenon known from a traditionally disparate branch of fluid mechanics:
oceanographic flow. Langmuir circulation is a motion in the form of long streamwise and
evenly spaced vortices just beneath the surface of oceans or lakes (Leibovich 1983). The
vortices are often clearly visible as ‘windrows’ – near-parallel lines of debris or foam
gathering in the downwelling regions between vortices (Langmuir 1938). There are two
principal mechanisms by which Langmuir circulation is created and we make deliberate
use of the one often referred to as ‘CL1’ in honour of the pioneering theory of Craik
& Leibovich (1976). The motion is driven by a resonant interaction between sub-surface
shear currents and plane waves crossing at an oblique angle, both typically generated by
the wind. This interaction was suggested as a Langmuir flow mechanism by Craik (1970),
and works by twisting the spanwise vorticity already present in the ambient shear flow
into the streamwise direction via the wave-induced Stokes drift; see Leibovich (1983). In
our case, the near-surface shear layer is replaced by the boundary layer shear, and surface
waves by a wavy wall of the same crossing-wave or ‘egg-carton’ pattern.

To uncover the nature of the Langmuir vortices we consider only laminar flow. Their
stability, prevalence and effects in turbulent pipe flow remain open and potentially
important questions for the future, yet our study does shed a modicum of light on those
questions. When the Navier–Stokes equations are averaged over one streamwise period
of our geometry, a form identical to the Reynolds-averaged Navier–Stokes equations in a
streamwise-uniform geometry is obtained, except that the averaging operator is different.
Averaged pairs of streamwise-oscillating velocity components are then analogous to
Reynolds stresses. These drive the Langmuir mechanism and a competing dynamic drag
mechanism of mean vortical flow. The analogy is closely related to the double-averaging
concept of Nikora et al. (2007), whereby temporal/ensemble averaging is supplemented by
spatial averages over volumes, areas or distances. We explore this concept further in § 5.

Creating vortices in laminar flow is of considerable interest in itself for the purpose of
mixing in microfluidic channels. The use of imprinted wall features for passive mixing is
a long-established method in microfluidic flow systems (Ward & Fan 2015), for instance
the use of oblique ridges to twist and fold the flow has been highly impactful (Stroock
et al. 2002). Vortical motion can greatly enhance heat transfer, important e.g. for direct
liquid cooling of high power density electronic devices; secondary flow (Dean vortices)
generated by guiding fluid through wavy microchannels (e.g. Sui et al. 2010) is a popular
method for efficient mixing with a low pressure drop penalty. Laminar flow in a pipe
somewhat resembling the m = 2 case of our geometry (with m the azimuthal wave
number) was analysed for its heat transfer properties by Chen, Wong & Huang (2006)
and Sajadi et al. (2016), but without reporting details of the velocity field. At an altogether
different scale, attached Langmuir vortices (of the ‘CL2’ kind) appear near suspended
microalgal farms, driven by waves interacting with the periodic current due to the row
structure of canopy elements; the vortices are presumed to be beneficial for nutrient
distribution (Yan, McWilliams & Chamecki 2021).

The mechanisms here considered are superficially similar to, but distinct from, several
phenomena which have received attention in the recent turbulence literature. A theory
for an instability in Couette flow in a channel with periodically modulated walls in the
streamwise directions was recently derived by Hall (2020), in turn related to one previously
analysed by Floryan (2002, 2003, 2015) and Cabal, Szumbarski & Floryan (2002). Unlike
‘CL1’, this is an instability rather than a directly driven secondary flow, occurring
beyond a critical Reynolds number depending on wall corrugations, and the geometry
of these studies varies in the streamwise, but not spanwise, direction. Several studies see
streamwise streaks from purely spanwise boundary modulations (e.g. Colombini & Parker
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1995; Willingham et al. 2014; Anderson et al. 2015; Hwang & Lee 2018) whose relation to
our study we discuss in § 4.1.4. Using simulation, Schmid & Henningson (1992) found that
transition to turbulence was much accelerated through the growth of streamwise vortices
when a pair of finite-amplitude oblique waves were initially imposed. The link to our work
is not obvious, yet we note that the presently reported mechanism is due to interactions of
pairs, rather than triads, of wave modes. Riblets, for instance V-shaped (Walsh 1983) or
biomimetic imitating inter alia birds and sharks (e.g. Chen et al. (2014) and Bechert, Bruse
& Hage (2000), respectively) have been demonstrated to reduce viscous drag in turbulent
boundary layer flows and, like other laterally inhomogeneous roughness geometries, also
exhibit large secondary motion in the form of streamwise rolls (Kevin, Monty & Hutchins
2019). The strong ejections due to fluid being forced upwards where the yawed riblets
converge, however, set this flow somewhat apart.

The outline of the paper is as follows. We begin in § 2 with a model theory for
the Langmuir-type vortical motion, along with, in § 3, theoretical predictions pertinent
to our numerical investigation, which follows in § 4. A discussion of the analogy to
Prandtl’s second mechanism of secondary motion in turbulence follows in § 5 before the
conclusions. Some additional theory of initial vortex growth is found in Appendix A, and
a collection of results of all simulated cases is provided as online supplementary material.

2. Model theory for creation of Langmuir-type vortices

We construct a simplified theory of perturbations, revealing the origin of Langmuir-type
vortices. Our geometry is illustrated in figure 1(a), consisting of an infinitely long circular
pipe whose walls are augmented by the addition of a pattern of crossing waves. The
steepness of these ‘wall waves’ measured in the streamwise direction is presumed to be
small: ε = k1a � 1 where a is the waves’ amplitude and k1 their streamwise wavenumber.
The amplitude is also presumed much smaller than the radius, a/R � 1. We proceed in
increasing orders of a assuming a basic flow of parabolic Poiseuille form with centreline
velocity U0.

We first non-dimensionalise using pipe radius R and U0 of the basic flow

(r, z, a) �→ (r, z, a)R, k �→ kR−1, t �→ tR/U0, p̂ �→ p̂ρU2
0, u �→ uU0,

(2.1a–e)
where u here denotes any measure of fluid velocity, ρ is the fluid density and p̂ the pressure
perturbation on top of the constant pressure gradient driving the mean flow. (r, θ, z) are
the conventional cylindrical co-ordinates. We ignore gravity throughout. The bounding
surface is now perturbed slightly and is found at r = 1 + η̂(θ, z) where |η̂| ∼ a � 1.

We write the resulting three-dimensional velocity field as

u(r, θ, z, t) = U(r)ez + û(r, θ, z, t), (2.2)

where U(r) is the known unperturbed streamwise velocity – the velocity field which we
would observe were the pipe a smooth cylinder – and û = (ûr, ûθ , ûz) is a small velocity
perturbation due to the wall undulations. The Navier–Stokes and continuity equations and
their boundary conditions at the wall read

∂tû + (u · ∇)u + ∇p̂ = Re−1∇2u

∇ · û = 0

}
; 0 ≤ r ≤ 1 + η̂(θ, z), (2.3a)

u · ∇η̂ = ûr

[viscous wall condition]

}
; r = 1 + η̂(θ, z), (2.3b)
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1 1 + η

U(r)

z

r

δ∗

(a) (b)

Figure 1. (a) Pipe geometry for m1 = 3, κ = (k2
1 + m2

1)
1/2 = 5; crestlines (dash-dot) and saddle-point lines

(dash) are shown; (b) geometry and parameters used in § 2. m1 and k1 are, respectively, the azimuthal and
streamwise wave numbers of the imprinted ‘wall-wave’ pattern, nondimensionalised with pipe radius.

where we define the Reynolds number as Re = DUavg/ν where Uavg is the average
velocity, D = 2R the diameter and ν the kinematic viscosity. The viscous wall boundary
condition is treated differently at linear and second order as explained below. In the theory
we use the approximate Re = RU0/ν since the flow is assumed similar to normal Poiseuille
flow for which Uavg = 1

2 U0. Solutions must be smooth at r = 0, and the basic flow is
assumed to satisfy the equations of motion.

Viscosity is treated in a somewhat indirect manner; it manifests primarily in
the ‘zeroth-order’ profile of the unperturbed current, U(r), which satisfies no-slip
boundary conditions at r = 1 and provides the O(1) azimuthal vorticity created by wall
friction.

Next, the linear-order solution is found. Rather than attempt to solve an
Orr–Sommerfeld-like equation in a cylindrical geometry satisfying the no-slip condition
at the wavy wall (which, even if we could, would likely be too involved to be instructive),
we make use of a simple model in the vein of Craik (1970) which captures the kinematics
of how streamlines near the wall are displaced by the wavy pattern. Noticing that the
wave-like first-order perturbation velocities are stable also in the absence of viscosity
when η̂ is small, and may be assumed virtually unaffected by viscosity (this no longer
holds as η̂ increases, as we shall see), they approximately solve a steady inviscid and
linearised form of (2.3), except that an appropriate wall boundary condition must be
devised.

We assume that the boundary flow creates a displacement thickness ∼ δ∗ near the
undulating wall and that the physical pipe wall is at r = 1 + δ∗ + η̂(θ, z). Next, we
impose free-slip boundary conditions at a displaced boundary r = 1 + η̂(θ, z) – see
figure 1(b). Hence, the shape η̂, which we specify does not quite equal the wall shape in
the simulations, yet while direct quantitative comparison is not possible, this model makes
for a simple theory which is able to elucidate the nature of the Langmuir mechanism.

Lowercase variables, which are small, are assumed to be steady and inviscid, and we
expand them in powers of a (formally identical to an expansion in the steepness parameter
ε) according to

q(r, θ, z) = 1
2 q1(r) exp(imθ + ikz)+ c.c.+ O(ε2) harmonics, (2.4)

where q is any small field quantity and subscript ‘1’ denotes the linear solution, and ‘c.c.’
means the complex conjugate. m and k are real constants, the azimuthal and streamwise
wavenumbers of the ansatz solution (2.4), respectively, where m is an integer.
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The governing linearised Euler and continuity equations (2.3a) now read

ikUur,1 = −p′
1 (2.5a)

ikUuθ,1 = −(im/r)p1 (2.5b)

ikUuz,1 + U′ur,1 = −ikp1 (2.5c)

(rur,1)
′ + imuθ,1 + ikruz,1 = 0. (2.5d)

Primes (′) denote the derivative with respect to r. We eliminate velocity components from
(2.5) and obtain a Rayleigh-like boundary value problem for the first-order perturbation
pressure p̂1,

p′′
1 +

(
1
r

− 2
U′

U

)
p′

1 −
(

m2

r2 + k2
)

p1 = 0 (2.6a)

p1(0) = p′
1(0) = 0; p′

1(1) = [kU(1)]2η. (2.6b)

Boundary conditions for p1 were found from (2.3b) using (2.5a); p1(r) is found
numerically from (2.6) using a standard solver for ordinary differential equations.

Armed with the linear-order solution, we proceed to the second order in η̂. Although the
formalism is different due to the cylindrical rather than planar geometry, the procedure is
similar in outline to that of Akselsen & Ellingsen (2020), hence the presentation here is
comparatively briefer. Assume boundary undulations composed of two crossing sinusoidal
waves directed symmetrically about the streamwise direction z

η̂ = a
4

[exp(i(k1z + m1θ))+ exp(i(k1z − m1θ))+ c.c.] = a cos(k1z) cos(m1θ). (2.7)

We impose axial wavenumber k1 > 0 and the integer azimuthal wavenumber m1 ≥ 1
(the case m1 = 0 corresponds to alternating axisymmetric contractions and expansions,
considered e.g. by Hsu & Kennedy (1971), Mahmud, Islam & Das (2001), Nishimura et al.
(2003) and Jane (2018), and would not trigger the CL1 mechanism). The first-order wave
modes involved each have amplitudes a/4 and the four wave vectors (±k1,±m1) (signs
varied individually). Second-order harmonics, in turn, are of the same mathematical form
with wave vectors which are sums of pairs of these, thus being of four different types with
wave vectors ±2(k1,m1), (0, 0), (±2k1, 0) and (0,±2m1). The three first types remain
of order a2 and can be neglected, whereas we retain the last type of harmonic, which
turns out to be resonant with a wave vector modulus 2m1, and grows linearly with time
as a2t until further development is checked by viscous damping (the resonant, linearly
growing solution is given in Appendix A; for an extensive discussion of the planar sibling
system, see Akselsen & Ellingsen 2020). The resonance will manifest in the formation
of μ = 2m1 pairs of streamwise vortices, as sketched in figure 1(a). All second-order
fields henceforth are understood to be of form q̂2(r, θ, z, t) = q̆(r, t) exp(iμθ)+ c.c. with
q̆ ∈ {ŭr, ŭθ , ŭz, p̆}; note that these are independent of z, and hence constitute secondary
motion in the (r, θ) plane. The second-order Navier–Stokes and continuity equations then
read

Dŭr + 2iμ
r2Re

ŭθ + ∂rp̆ = −(u1 · ∇)ur,1, (2.8a)

Dŭθ − 2iμ
r2Re

ŭr + iμ
r

p̆ = −(u1 · ∇)uθ,1, (2.8b)
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Dŭz + U′(r)ŭr − 1
r2Re

ŭz = −(u1 · ∇)uz,1, (2.8c)

(rŭr)
′ + iμŭθ = 0. (2.8d)

Here, D = ∂t − Re−1[∂2
r + r−1∂r − r−2(1 + μ2)] and only the resonant interaction is

retained in the right-hand side expressions in (2.8).
We find it most convenient now to work with the radial velocity component. Upon

eliminating the second-order axial and azimuthal velocities and pressure, one retrieves
an inhomogeneous Orr–Sommerfeld-type equation

1
r2 ∂r

{
rD [∂r(rŭr)

]}− μ2

r2

(
D − 4

r2Re

)
ŭr = R(r); (2.9)

R(r) = 8
(

m1

rk1U

)2 U′

U

[(
k2

1 − m2
1

r2

)
p2

1 + ( p′
1)

2

]
(2.10)

for the radial second-order velocity ŭr(r, t). Note that R and ŭr are proportional to a2.
Equation (2.9) permits fairly simple analytical solutions in the two opposite cases of

transient inviscid flow (Re−1 = 0) and stationary viscous flow (∂t· → 0) representing the
onset and ultimate stages of vortex development, respectively. We consider here only the
latter, which will inform the steady state reached in the simulations. For completeness,
the solution for the initial growth rate is presented in Appendix A.

Assuming a steady state with finite Re, (2.9) has solution

ŭr(r) = r3Re
8μ

∑
s=±1

⎧⎨⎩∑
σ=±1

1
σ + sμ

∫ r

1
dρ
(ρ

r

)s+σμ+3R(ρ)

−
∫ 0

1
dρ
[

1
1 + sμ

+ sr2μ

ρ1+s

(
1 − ρ2 − 1 − ρ2 + s(1 + ρ2)

2(1 − sμ)

)](ρ
r

)s+μ+3R(ρ)
⎫⎬⎭ ,

(2.11)

where no-slip boundary conditions at the wall are imposed. The streamwise velocity is

ŭz(r) = Re
2μ

∑
s=±1

s

(∫ 0

1
dρ
ρμ

rsμ −
∫ r

1
dρ
ρsμ

rsμ

)
ρU′(ρ)ŭr(ρ). (2.12)

Thus, the radial and streamwise velocity perturbations scale as Re and Re2, respectively.
Assuming U′(r) < 0, ŭr and ŭz are of the same sign, so the secondary motion accelerates
the mean flow in areas where the circulation jets towards the wall, and vice versa.

The second-order vortical motion being independent of z we introduce a streamfunction
ψ whose contours are streamlines. By definition ûr,2 = r−1∂θ ψ̂ and ûθ,2 = −∂rψ̂ . In
terms of the streamfunction amplitude ψ̆(r) = 2rŭr/μ we find

ψ̂(θ, r) = ψ̆(r) sin(μθ), ûz(θ, r) = 2ŭz(r) cos(μθ), (2.13a,b)

from which ûθ can be inferred if required.
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Figure 2. Theoretical predictions. (a) Circulation intensity for fixed κ as a function of phase angle ϕ;
δ∗ = 0.05. Only design configurations for which m is an integer are realisable; these are marked with dashed
vertical lines where m1 values are marked as integers. (b–d) Streamlines in the cross-flow plane for m ∈ {1, 2, 3}
and κ = π, which are contours of ψ̂ . Velocity field vectors are shown for m = 1 whereas arrows in (c,d) merely
indicate flow direction. Circulation intensity may be inferred from (a) considering κ = π. Pipe cross-section
outlines are shown at the crests/troughs of the wavy pattern (z = λ/4 and 3λ/4 with λ = 2π/k). Colours
illustrate the value ofψ with light (dark) being positive (negative). (e) Pipe design configurations corresponding
to the dashed vertical lines in (a); 45◦ is marked with a solid vertical line.

3. Theoretical predictions

While the theory in § 2 is simplistic and captures only one of the causes of secondary
flow, its predictions are instructive and will inform our DNS study below. We consider
only m1 ≤ 3 below; higher values create more and smaller vortices closer to the wall but
there is no indication of further change of behaviour. Since our second-order solution
involves only a single azimuthal wavenumber, m = m1, we drop the subscript ‘1’ from
wall-wavevector components henceforth.

Assume a laminar bulk flow profile of Poiseuille type,

U(r) = 1 − r2/(1 + δ∗)2 (3.1)

stretched a displacement length δ∗ beyond the pipe radius, as sketched in figure 1(b).
Henceforth, we use the term crestline to denote a curve following the wall at constant polar
angle θ = nπ/m, n = 0, . . . , 2 m − 1, running over the maxima of crests and troughs,
and saddle-point line for the nearly straight line following the wall midway between these.
Streamlines close to crestlines have the largest undulations in wall-attached flow.

A key parameter is the angle ϕ = arctan(m/k) between the streamwise and azimuthal
wavenumbers of the wall undulation, which we refer to as the crossing angle. We let
0 ≤ ϕ ≤ 90◦. We shall refer to geometries ϕ < 45◦, = 45◦ and > 45◦ as contracted,
regular and protracted egg-carton patterns, respectively. The theoretical dependence of
the circulation strength on ϕ is investigated in figure 2, where the wave vector modulus
κ = (m2 + k2)1/2 is kept constant at three different values while ϕ changes. Figure 2(a)
shows the steady-state circulation strength, represented by the extremum of ψ/Re a2 along
a ray at θ = π/4m running approximately through the centre of the ‘first’ vortex. The
integer m1 can only take values 1, 2, . . . , floor(κ), shown with vertical lines labelled
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Designing pipe flow vortices using Langmuir circulation

with corresponding azimuthal wavenumber m. Corresponding pipe patterns are shown
in figure 2(e). The volume flow rate through a vortex cross-section is proportional to
max|ψ |, and the sign of ψ shows the rotational direction: relative to the pipe wall ψ > 0
indicates flow towards crestlines and away from saddle-point lines, and vice versa.

Several observations are made. The circulation intensity is relatively insensitive to
wavenumber amplitude κ but highly sensitive to ϕ. The Langmuir driving mechanism
is very weak near ϕ = 45◦, the only angle previously investigated for pipe flow to our
knowledge, and ψ̂ changes sign near this angle. (We note in passing that the secondary
flow observed in turbulent pipe flow at ϕ = 45◦ by Chan et al. (2018), corresponded to
negative ψ .) Moreover, the intensity of the ‘reversed’ Langmuir rotation at ϕ > 45◦ is
considerably weaker than that predicted for smaller angles ϕ � 30◦. We note with interest,
and for future reference, that the swirl changes sign close to the pipe wall for ϕ = 45◦, 60◦
and Reτ = 40, 60.

Figure 2(b–d) shows streamlines ψ = const of the flow averaged over an axial wall
wavelength, for the three possible angles when κ = π. Notice again the reversal of rotation
direction for m = 3 where the pattern is protracted.

4. Simulations

We proceed now to study the real flow in the wavy pipe geometry using DNS,
focussing on the effects of the wave crossing angle ϕ, Reynolds number and topography
amplitude. Further plots and figures for all simulation cases may be found in the
Supplementary Materials. Velocities are in units of the mean centreline velocity for each
case.

The numerical simulations were conducted using NEK5000, a high-fidelity spectral
element code (Fischer, Lottes & Kerkemeier 2008). Each computational domain contains
1280 macro-elements with 10 macro-elements in the streamwise direction. The nodes
inside of the element are distributed using the Gauss–Lobatto–Legendre points and a
polynomial order of 7 is used, resulting in approximately 655 360 grid points in total.
The grid points on the no-slip, impermeable wall of the pipe conform to the roughness
topography, the domain length equals to one roughness period and the ends of the pipe are
periodic. The third-order time-stepping scheme and the PN − PN−2 method introduced
by Maday & Patera (1989) was used for the simulations. A constant pressure gradient is
used to drive the flow and the simulations were run with a constant time-step ranging
from dt+ = tU2

τ /ν = 10−4 to 2 × 10−4 (Uτ = √
τw/ρ is the friction velocity, τw the mean

wall shear stress) to ensure that the Courant number is less than 1. The simulations
were initialised with a laminar smooth-wall flow and were run for a duration of at least
t+ = 1600, where the flow has converged to a steady state. A domain length study was
conducted for ϕ = 18.6 with a = 0.05 at Reτ = 80 and no changes to the steady-state flow
were observed when the length of the pipe was increased by 6 and 10 times. In simulations
the phase of the surface deformation is such that η(θ, z) = a sin(kz) sin(mθ).

One primary observation we make through a broad parameter study in this section is
that a competition occurs between two effects, both of which drive secondary motion,
in opposite senses. One is a dynamic effect due to increased wall shear stress where the
roughness is increased near crestlines, the other is the kinematic Langmuir circulation
effect, CL1. The former causes secondary flow in the negative sense as defined, the latter
drives positive-sense rotations for ϕ � 30◦ where it is strongest in accordance with theory.

It is highly useful for our further analysis to introduce streamwise-averaged quantities.
Noting that our flow is steady and periodic with streamwise period (or wavelength)
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λ = 2π/k we define the averaging operator

(· · · ) = 1
λ

∫ λ
0
(· · · ) dz. (4.1)

Based on the principle of volume flux, a measure of circulation strength in the simulated
flows is found as the approximate streamfunction amplitude ψ́ along a radial line of
constant polar angle θ = θ0 running through, or nearly through, the centre of a vortex.
We choose θ0 = π/4m as in the previous section, and define

ψ́(r; θ0) =
∫ r

0
dρûθ (θ0, ρ). (4.2)

4.1. Parameter studies
The dependence of the circulation strength on crossing angle ϕ and Re is studied in
figure 3; rows 1–3 have constant Reτ , columns 1–3 have constant ϕ. All graphs are of
ψ́/Re a2. Note that in all plots of quantities averaged over a streamwise wave period, linear
effects of wall undulations vanish and only contributions from (even) higher orders remain.

We investigate three different crossing angles, ϕ = 18.6◦, 45◦ and 60◦. According to
theory, Langmuir motion should be strongest and positive for the first angle, and much
weaker for the two latter; see figure 2(b). Indeed, the most striking feature in figure 3 is
arguably that the smallest angle shows positive circulation (a,e,i), the other two negative
(b,c, f,g,j,k). However, unlike in the theoretical graph of the Langmuir effect alone,
figure 2, the oppositely directed circulation at 45◦ and 60◦ is not weak, but of comparable
magnitude as for 18.6◦, evidence of another mechanism at play. We propose that there is a
dynamic, viscosity-driven forcing of negative circulation present due to the azimuthally
varying roughness producing alternating regions of higher and lower momentum, as
observed by Chan et al. (2018), which depends only weakly on ϕ. The competing Langmuir
effect is significant only for the smallest angle. Indeed, in all simulations, the flows at
45◦ and 60◦ are highly similar, whereas the 18.6◦ flow is strikingly different (see also
supplementary material available at https://doi.org/10.1017/jfm.2021.696).

4.1.1. Sensitivity to Reynolds numbers and crossing angle ϕ
We define Reτ = UτR/ν and Re = UavgD/ν, where Uavg is the total flow rate divided by
πR2. For Poiseuille flow, Re = 1

2 Re2
τ .

Figure 3 shows simulation results for a = 0.05 and m = 1, varying ϕ along rows and
Reτ , along columns. Three different topography angles ϕ = 18.6◦, 45.0◦ and 60.0◦ –
contracted, regular and protracted egg carton, respectively – are shown, and three different
Reτ = 40, 60, 80. All panels show values of ψ́(r,π/4m)/(Re a2) either as contours or
graphs. The highest Reynolds number based on average velocity achieved in the reported
simulations is 2751. A simulation at Reτ = 100 became turbulent (not included since the
grid used herein is too coarse to properly capture turbulent flow). Our simulations are
not sufficient to draw confident conclusions about stability in each case, which remains a
question for the future.

Studying the bottom row of figure 3, we observe that the expected scaling ψ́ ∝ Re is
reasonably well satisfied throughout the laminar regime for regular and protracted egg
carton, whereas for the contracted egg carton the scaling is far more imperfect. In fact,
for ϕ = 18.6◦, ψ́ increases faster than linearly with Re, a curious observation we discuss
further in § 4.1.3. The departure from the scaling predicted by inviscid theory can be traced
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Figure 3. Simulation results, a = 0.05, κ = π and m = 1. Here, Reτ is the same in the first three rows, and
ϕ is the same in the first three columns, as indicated. (a–c, e–g, i–k) Black curves are contours of ψ́/(Re a2)

indicating streamlines, arrows indicate flow direction; colour contours show deviation of the total streamwise
velocity uz,tot from Poiseuille flow as defined in (4.5). (d,h,l,m–o) Plots of ψ́/(Re a2) along the ray θ = π/4. A
common legend applies to all plots where ϕ varies at constant Reτ (d,h,l), and vice versa (m–o).

back to a greater deviation between the theoretical, inviscid first-order velocity field and
that from simulations, an indication that viscous effects in the boundary layer influence
the results considerably in a non-trivial way, more strongly for the contracted pattern.
A partial explanation is that, for one and the same κ , smaller ϕ corresponds to higher
steepness ε = κa(1 − sin2 ϕ)1/2, and higher-order nonlinear effects manifest more easily.
We subject this curious observation to closer scrutiny in § 4.1.3.

It is instructive to regard the pressure field across the pipe section when averaged
along a streamwise wavelength so that linear-order perturbations vanish, leaving a mean
pressure deviation able to drive steady secondary motion. Compare the pressure fields
in figure 4(e, f,l) wherein ϕ = 45◦, 60◦ and 18.6◦, respectively, for a = 0.05. The flow
and pressure perturbations for the two former are similar: high pressure regions above
crestlines push the flow away from the wall there, driving vortices in the negative sense.
This might intuitively be expected since the flow suffers higher friction here than along
the straighter saddle-point lines. The pressure field for 18.6◦ on the other hand shows
the opposite: low-pressure regions above crestlines attract the secondary flow setting up
positive-sense vortices.
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Figure 4. Simulation results with Reτ = 40. (a) Scaled circulation strength along θ = π/4m for ϕ =
18.6◦,m1 = 1 and increasing a; graphs from top to bottom: a = 0.01, 0.025, 0.05, 0.09, 0.125, 0.2. (b–h, l–n)
Streamwise-averaged flow (streamlines) and pressure (colour contours, average pressure subtracted). Panels
(b–d) have m = 3, all other panels m = 1. Crossing angle ϕ = 18.6◦ except as indicated. Amplitudes are
a = 0.05 (b–f,i,l), a = 0.125 (j,m), a = 0.2 (g,h,k,n). (i–k) Streamlines in a streamwise section of the pipe
through crests/troughs at θ = π/2, lighter (darker) colour indicates higher (lower) average absolute velocity.
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Our suggested interpretation is, as we began to argue above: the dynamic friction
mechanism evident in figure 4(e, f ) will be present for all three values of ϕ in roughly equal
measure; the strong similarity between figures 4(b) and 4(c) indicates that it varies little
with ϕ so long as the flow does not separate. On the other hand, the Langmuir mechanism
is far stronger for ϕ = 18.6◦ than for the two higher values (see figure 2a), and therefore
‘wins’ the competition there.

4.1.2. Sensitivity to amplitude
Interestingly, when increasing the amplitude a, circulation reversal is observed for ϕ =
18.6◦. We again propose an explanation in terms of the two competing mechanisms for
secondary flow. In figure 4(a) we plot the scaled circulation strength ψ̃/Re a2 in the
protracted egg-carton geometry for increasing amplitudes up to a = 0.2. The predicted
∼a2 scaling is accurate for moderate amplitudes a ≤ 0.05, but beyond this point a dramatic
reduction occurs, and as a � 0.1 the direction of rotation reverses with |ψ́ |/a2 eventually
reaching comparable values.

We find the reason to be the onset of flow separation affecting the two mechanisms
differently. The Langmuir swirling is driven by the kinematic sinusoidal deflection of
streamlines; once the flow separates in the troughs, streamlines no longer follow the wall’s
shape (see figure 4i–k) and a further increase in a does not further increase the ‘effective
amplitude’ of the streamline undulations. For ϕ = 45◦ and 60◦ the wall undulations are
less steep in the streamwise direction and the flow does not separate, approximately
retaining the ∼a2 scaling.

4.1.3. Circulaton strength vs increased drag
It is of interest to compare the strength of circulation with the increased pressure loss
from making the wall surface wavy. Using the definition of the Darcy friction factor f =
(2gD/U2

avg)hL, hL being the head loss per streamwise wavelength related to τw by hL =
2τw/ρgR (dimensional units, g is gravitational acceleration), gives

f = 32Re2
τ

Re2 , (4.3)

having used Reτ = (R/ν)
√
τ/ρ and Re = UavgD/ν. We will compare with Poiseuille flow

with the same Reynolds number,

UP(r) = 2Uavg(1 − r2), (4.4)

for which it is readily shown that Re2
P = 1

2 Re2
τ and fP = 64/Re. The relative increase in

friction coefficient is thus (1
2 Re2

τ − Re)/Re which we plot in per cent as the abscissa in
figure 5.

A particularly striking observation can be made from figure 5(a), where three different
crossing angles ϕ are compared for a = 0.05 and m = 1. For each angle, each marker
corresponds to a different Reτ = 40, 60, 80 increasing from left to right; for ϕ = 18.6◦
also Reτ = 20 is included. The points are too few to fully determine scaling, yet it
appears that, whereas for the two larger angles where CL1 is weak the scaled circulation
strength max(|ψ́ |)/Re saturates to a constant value, indicating that absolute circulation
strength increases as ∼Re throughout the laminar regime, for the smallest angle with
strong Langmuir forcing, circulation strength increases faster than ∼Re. This becomes
even clearer when plotted against Re as in figure 5(b) (The faster-than-linear scaling was
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Figure 5. Maximum circulation strength plotted against increase in friction factor (i.e. increased head loss) in
per cent. (a) Comparison of three different crossing angles for m = 1, a = 0.05 – corresponding values of Reτ
are indicated for each marker (common for overlapping markers); (b) same cases as in (a), but with Reynolds
number as abscissa; (c) increasing amplitude for Reτ = 40 and m = 1.

already observed in figure 3m.) The non-monotonic dependence of circulation strength
on amplitude previously discussed in § 4.1.2 is illustrated once more in the scatterplot of
figure 5(c).

4.1.4. High- and low-momentum paths
High-momentum paths (HMPs) and low-momentum paths (LMPs) are conspicuous in
figure 3, where colour contours of

uz(r, θ) = uz,tot(r, θ)− UP(r) (4.5)

are shown. Here, UP(r) = 2Uavg(1 − r2) is a Poiseuille flow of the same volume flux as
the simulated flow. Both for ϕ = 45◦ and 60◦ the intuitively expected behaviour is seen:
lower (higher) momentum resides over crestlines (saddle-point lines) where the roughness
is highest (lowest). At 18.6◦ the picture is the opposite, yet a telling observation is made in
figure 3(a): in a thin layer over the crestline wall a strong velocity deficit from increased
friction is in fact present, but is soon overtaken by CL1 away from the wall (in (e,i) the
layer is so thin as to fall outside the plotted area). This is another indication that the two
effects are simultaneously present and competing. In all cases we note that the rotating
motion is directed away from the wall where there is a LMP, and vice versa.
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In studies of turbulence over spanwise varying roughness of different kinds, secondary
motion has also consistently been directed away from the wall over LMPs and vice versa
irrespective of the kind of roughness (e.g. Willingham et al. 2014; Anderson et al. 2015;
Vanderwel & Ganapathisubramani 2015; Chan et al. 2018; Chung, Monty & Hutchins
2018; Hwang & Lee 2018). Colombini & Parker (1995) show that the situation is more
subtle when a free surface is present, and Stroh et al. (2020) found a richer pattern of
secondary motion when spanwise roughness variations do not create a clear distinction
between the two. While we should be careful not to infer too much from turbulent mean
flow to the present laminar case, it is consistent with our observations. (We bear in mind
the related, but not identical, rule of thumb due to Hinze (1967) that secondary flow is
directed out of (into) areas with net production (dissipation) of turbulent kinetic energy,
by which Hwang & Lee (2018) explain the apparent inconsistency in the sense of rotation
of secondary flows between different types of roughness, compared with, e.g. Wang &
Cheng 2006.)

The direction of swirling for our laminar case is indicated by the streamwise-averaged
equation of motion. Into the z-component of the Navier–Stokes equation (2.3a) we insert
uz,tot = UP(r)+ uz. We use rectangular coordinates, but notice that (u∂x + v∂y)UP =
urU′

P(r) = −4Uavgrur. Ordering in powers of a, applying streamwise averaging (4.1) and
neglecting terms of O(a2) yields

–2Re rur = ∇2uz (4.6)

Near a HMP where uz has a maximum, ∇2uz < 0 and hence ur > 0, and for a LMP the
opposite is true, thus flow is towards the wall near a HMP and vice versa. We note from
the presence of Re that this O(a) mechanism depends on the presence of viscosity.

We can already see that the direction of secondary flow, upwards from crestlines and
down towards saddle-point lines, when Langmuir driving is weak (e.g. for ϕ = 45◦ and
60◦) is not surprising: fluid paths going over crests and troughs suffer higher friction
than the nearly straight saddle-point streamlines, giving rise to a low-momentum channel
pushing the flow towards the centre.

5. Analogy of secondary flow in turbulence

Prandtl (1952) famously divided secondary flow in turbulence into two categories, now
referred to as Prandtl’s secondary flow of the first and second kinds, respectively. The
former stems from inviscid skewing of the mean flow, typically from the flow being guided
by a curved surface; the second kind is driven by the inhomogeneity of Reynolds stresses.

It is commonly stated that Prandtl’s secondary flow of the second part has no counterpart
in laminar flow (e.g. Bradshaw (1987), p. 54). We argue that this might be open to
discussion since we shall see that in streamwise-periodic flow a close analogy is achieved
when Reynolds averaging replaced by streamwise averaging, (4.1).

The velocity and vorticity fields may be divided into a mean and an oscillating part

u = u + ũ; ω = ω + ω̃, (5.1a,b)

with u = (ur, uθ , uz) or (u, v,w), and ω = ∇ × u = (ωr, ωθ , ωz) or (ωx, ωy, ωz), with
accents as appropriate.

926 A9-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

69
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.696


S.Å. Ellingsen, A.H. Akselsen and L. Chan

Let ϑ denote any field quantity henceforth. Note the relations

ϑ̃ = 0; (5.2a)

∂zϑ = 0; (5.2b)

∂iϑ = ∂iϑ, (5.2c)

where i ∈ {x, y} or {r, θ}.
For simplicity, we work first in rectangular coordinates; the direction of mean flow

remains z. Consider the streamwise component of the vorticity equation. Exactly following
the procedure of, e.g. Anderson et al. (2015) but for the definition of the averaging operator,
one finds (with ∇2

⊥ = ∂2
x + ∂2

y )

(u∂x + v∂y)ωz = ωx∂xw + ωy∂yw + (∂2
y − ∂2

x )Rxy + ∂x∂y(Rxx − Ryy)+ ν∇2
⊥ωz, (5.3)

where we define the undulation stress

Rxx = ũũ; Ryy = ṽṽ; Rxy = ũṽ. (5.4a–c)

Replacing streamwise averaging with Reynolds averaging, (5.3) is a classic one (Bradshaw
1987). The undulation stresses are analogous to what in turbulence is often dubbed
dispersive stress (Raupach & Shaw 1982) arising from spatial correlation of time-averaged
quantities; we eschew this term to avoid any confusion with dispersion of surface waves,
featuring in the literature on Langmuir circulations.

In a turbulent flow, the first two terms on the right-hand side of (5.3) would correspond
to Prandtl’s first kind of secondary flow. These add to zero in streamwise-periodic flow,
which is obvious once we note that ωx = ∂yw and ωy = −∂xw.

We are left with the terms involving the undulation stresses, which may be written in
the following two forms

(u∂x + v∂y)ωz = Snorm + Sshear + ν∇2
⊥ωz (5.5a)

= Sdef + Sadv + ν∇2
⊥ωz, (5.5b)

with

Snorm = ∂x∂y(Rxx − Ryy); Sshear = (∂2
y − ∂2

x )Rxy; (5.6a)

Sdef = (ω̃ · ∇)w̃ = 1
2 Snorm + Sshear + ∂xũ∂xṽ − ∂yṽ∂yũ

= 1
2 Snorm + ∂yũ∂yṽ − ∂xṽ∂xũ; (5.6b)

Sadv = −(ũ · ∇)ω̃z = 1
2 Snorm − ∂xũ∂xṽ + ∂yṽ∂yũ. (5.6c)

We let the total mean-vorticity production be

Sprod = Snorm + Sshear = Sdef + Sadv. (5.7)

The form (5.5a) is standard in the turbulence literature, and has the advantage of
highlighting the asymmetry of Rij under x ↔ y as the explicit cause of streamwise
vortices, due to normal and shear stresses, respectively. While a natural choice in wall-
and channel-type geometries, in our present case we find a physical interpretation of the
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individual terms less obvious. Going to cylindrical coordinates mixes the roles of normal
and shear stresses: by expressing u, v in terms of ur, vr and θ one finds,

Rxx − Ryy = 2Rrθ sin 2θ; Rxy = −2Rrθ cos 2θ + 1
2 (Rrr − Rθθ ) sin 2θ, (5.8a,b)

with Rrr = ũ2
r ,Rθθ = ũ2

θ and Rrθ = ũrũθ . Some light might be shed from recasting the full
analysis in cylindrical coordinates, but we choose instead to analyse vorticity transport in
terms of (5.5b), the form favoured by Nikitin, Pimanov & Popelenskaya (2019).

The form (5.5b) is advantageous in that the two production terms Sdef and Sshear are
independent of the choice of coordinate system. Physically, they correspond, respectively,
to production of streamwise-averaged vorticity by periodic deformation and advection of
vorticity, respectively.

To proceed, we expand all terms in (5.5) in a Fourier–Bessel series

F(r, θ) = f0(r)+ f2(r) sin(2mθ)+ f4(r) sin(4mθ)+ · · · , (5.9)

(cosine terms are zero, and odd terms are prohibited by symmetry) where F is any term
and f0, f2, f4 · · · are functions. The sin(±4mθ) terms largely determine the swirling motion
for reasons we now explain.

The mean transport of streamwise-averaged vorticity, (u · ∇)ωz, is shown in figure 6
for the three different crossing angles, with a = 0.05,m = 1 and Reτ = 40. We see that,
in all cases, the amplitude is similar, of the order of 10−5 in these cases, and the leading
contribution is ∝ sin(4 mθ). We observe that the significant transport of mean streamwise
vorticity is organised in a pattern of concentric rings. Consider the two innermost rings in
all figures (a thin ring very near the edge is also manifest which does not appear to affect
the streamwise-averaged flow perceptibly so we shall ignore this fact). In figure 6 we have
indicated the inner and outer rings with a circle and square, respectively. For the two
larger angles the two rings have similar amplitudes and comparison with the streamlines
in figure 3(a–c) shows that the extrema of (u · ∇)ωz correspond to oppositely directed
rotating motions due to the inner ring in the form of elongated streamline loops confined
to an area close to the wall. The larger mean-flow paths correspond to maxima in the inner
ring. In comparison, the outer ring in the ϕ = 18.6◦ case is similar to the other two cases
but for being slightly shifted away from the axis, but strikingly, the inner ring is much
weaker than the outer, allowing the vortices created by vorticity production in the outer
ring to reach into the bulk flow, causing mean rotation in the opposite sense. Apparently,
the presence of Langmuir forcing, instead of adding another source of vorticity production,
effects a partial cancellation of net inner-ring mean-vorticity production, a conclusion
which is surprising to us and should be further investigated in the future.

To continue we analyse the production contributions due to undulatory motion and
the viscous diffusion of average streamwise vorticity. In figure 7 we have calculated
and visualised the terms on the right-hand side of (5.5b) in full. Comparing with
figure 6, we observe that the magnitude of the right-hand side terms individually are
more than two orders of magnitude larger than those on the left-hand side; the vast
majority of mean vorticity production Sprod is cancelled by viscous diffusion ν∇2

⊥ωz. The
dominant contribution in all panels of figure 7 is ∝ sin(2mθ), with higher harmonics only
small corrections, and this term cancels in sum, we conjecture, exactly (numerically, its
amplitude is consistently beneath the level of numerical noise).

Now, it can be observed from the streamwise-averaged flow patterns that the left-hand
side of (5.5) varies no more slowly than ∼ sin(±4 mθ) as a function of θ . This is in
fact a necessity given the observed mean-flow patterns in figures 3 and 4 (and all other
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ϕ = 45° ϕ = 60°ϕ = 18.6° (×10–5)

2
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0

1

(a) (b) (c)

Figure 6. Mean transport of streamwise-averaged vorticity, (u · ∇)ωz, for a = 0.05,m = 1 and Reτ = 40.
Dashed curves indicate the inner and outer circles of vorticity production, marked with a circle and square,
respectively.
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Figure 7. Terms on the right-hand side of (5.5). Each row corresponds to a case in figure 6 with ϕ as
indicated.

simulation cases; see Supplementary Materials) as we now argue. For concreteness,
take the m = 1 cases in figure 3 for example. Note that the streamlines are all closed
within single quadrants of the cross-section, and consider that the cumulative (integrated)
production and diffusion of mean vorticity around a closed streamline must be zero. Since
only the f4-term and higher take both signs inside a single quadrant, periodicity demands
f0 = f2 = 0 for the left-hand side of (5.5), and hence also for the full right-hand side,
as a whole. The argument trivially extends to m > 1, where the same is also invariably
observed. We conjecture that the exact cancellation of sin(2mθ) terms can be proved in
general, but consistent observation in both theory and simulation is sufficient for our
purposes.
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Figure 8. Same as in figure 7, but the terms ∝ sin(4mθ) only.

Since the dominant sin(2mθ)-mode does not contribute to the net production of mean
vorticity, considerably improved clarity is achieved by subtracting it in our plots. Noting
that higher harmonics beyond f4 make up only a small correction, we retain only the f4
term, which is the main driver of vortical motion. Using

f4(r) = 2
π

∫ π

0
dθ ′F(r, θ ′) sin(4mθ ′), (5.10)

we plot the same production and diffusion terms again in figure 8. We still observe that
the majority of production is cancelled by viscous diffusion – the amplitudes in figure 8
are an order of magnitudes higher than those of figure 6. As previously, we again observe
that, for the same a,m and Reτ , the results for 45◦ and 60◦ are highly similar (but for an
overall factor in figure 8) while the 18.6◦ is qualitatively different.

Figure 8 tells an interesting story. Consider first 45◦ and 60◦. Strong production in the
outer ring is due to average advection of undulating vorticity, most of which is cancelled
by the viscous term. A smaller production in the inner ring due to vorticity deformation
is evident in figure 6 for these two angles, and these are not cancelled by viscous
diffusion. The indication is that, although weak compared with advection production, due
to cancellations this inner-ring production nevertheless drives the prevailing secondary
motion evident in streamline plots e.g. in figure 3 (note the difference in scale between
figures 6 and 8).

The picture for 18.6◦ is strikingly different. Here, the outer-ring production has the
opposite sign, and contributions from advection and deformation are roughly equal, in
contrast to the larger angles for which deformation contributes negligibly to the outer-ring
production. Crucially, in the inner ring, oppositely directed production from deformation
is far weaker for 18.6◦, invisible at this scale.
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Naturally, we have a limited basis to predict the extent to which these observations carry
over to turbulent flow. An indication that analogous flow modifications would remain,
however, is that the production terms on the right-hand side of the turbulent equivalent of
(5.5) (with averaging now taken to mean Reynolds averages) are confined to the roughness
sub-layer where the flow is not strongly turbulent (Anderson et al. 2015), yet the resulting
vortices themselves span much of the boundary layer when the roughness is regular in
the spanwise direction (Willingham et al. 2014; Vanderwel & Ganapathisubramani 2015).
This is a question for future study.

6. Summary

By furnishing the walls of a pipe flow with a pattern of crossing waves, longitudinal
vortices can be made by design through a passive kinematic mechanism of Langmuir
circulation, ‘CL1’, which functions by redirecting the vorticity inherently present in the
main flow. The dependence of the vortical secondary motion on Reynolds number Re, wave
crossing angle ϕ and amplitude a was studied with DNS throughout the laminar regime,
and analysed with a simple theoretical model. The CL1 forcing scales as Re a2 for small a,
is strongest for ϕ � 30◦ (‘contracted egg carton’), changes sign in the vicinity of 45◦ and
is typically oppositely directed and much weaker for ϕ � 45◦ (‘protracted egg carton’).
Simulations show how secondary vortices in the opposite sense also appear, driven by a
dynamic mechanism due to differences in wall friction over the wall’s crests/troughs vs
saddle points, a mechanism which is present at all ϕ. The two effects compete, with CL1
prevailing at small ϕ ∼ 10–20◦ where it is strongest, above which the direction of swirling
is reversed.

When CL1 is negligible, circulation strength scales proportional to Re, as would be
expected. Curiously, for ϕ = 18.6◦ where CL1 is strong, circulation increases significantly
faster than ∼Re.

Increasing the wall wave amplitude of the contracted pattern also causes flow reversal,
which we attribute to the weakening of CL1 driving due to flow separation.

An analogy exists between streamwise-averaged flow in periodic laminar flow and
Prandtl’s secondary motion of the second kind in turbulence. In both cases, a transport
equation for average streamwise vorticity ωz is used, and we analyse the source and sink
terms and their effect on vortical motion for three different crossing angles, ϕ = 18.6◦, 45◦
and 60◦ for a = 0.05,Reτ = 40. Again, the picture is strikingly different for the smallest
angle, where Langmuir forcing is strong, to the two larger, where it plays a negligible
role. In all cases the transport of ωz is organised in a ring-like structure with extrema in
the two rings contributing to swirling flow in opposite senses. For the larger angles the
inner ring decides the main swirling motion. For ϕ = 18.6◦, however, the production in
the inner ring is far weaker than that in the outer, with vortical motion due to outer-ring
production prevailing, resulting in flow in the opposite sense. For the larger angles the
outer ring (closest to the pipe wall) is mainly driven by advection of vorticity and the inner
by deformation (stretching). For ϕ = 18.6◦, on the other hand, advection and deformation
terms contribute approximately equally to production in the outer ring, with the same sign.
In all cases the vast majority of production of mean streamwise vorticity is balanced by
viscous diffusion, with net production two orders of magnitude smaller than the individual
contributions from vorticity advection and deformation.

The effect of imposing the CL1 mechanism in a turbulent pipe flow remains an open
question for the future. From our observations we conjecture that it could relate to the
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Figure 9. Initial growth rate compared with final steady-state solution. (a) Initial growth rate, inviscid.
(b) Ultimate, steady-state solution. (c) Streamlines.

previous observation by Bhaganagar et al. (2004) that the crossing angle of small-scale
egg-carton roughness has marked effects extending into the outer turbulent boundary layer.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.696.
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Appendix A. Initial growth rate of Langmuir vortices

The Orr–Sommerfeld-type boundary value problem, (2.9), permits an analytical solution
describing the initial growth of Langmuir vortices, when the latter are assumed to be
inviscid at early times. By setting Re−1 = 0 one obtains solution

ur(r, t) = rt
2μ

∑
s=±1

s

(∫ 0

1
dρ
ρμ

rsμ −
∫ r

1
dρ
ρsμ

rsμ

)
ρ2

r2 R(ρ), (A1)

where R(r) is given in (2.10). The axial velocity component is

uz(r, t) = −1
2 tU′(r)ur(r, t) ∝ a2t2. (A2)

Thus, ur and uθ grow linearly in time whereas uz grows quadratically. A qualitative
comparison between solutions of initial growth rate and the ultimate state of the
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CL1-driven vortices is shown in figure 9. Figure 9(a) shows the dependence on crossing
angle ϕ for fixed κ; compare with the steady state, which is the same as figure 2(a).
Streamlines (contours of ψ̂(r, θ)) are shown in figure 9(c). The second, fourth and sixth
panels from the left, labelled ‘steady state’ are the same as figure 2(b–d). Notably, vortices
move away from the wall after creation before reaching steady state. The same trend was
seen theoretically also for flow over a flat plate by Akselsen & Ellingsen (2020).
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