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Abstract

Eukaryotic cells are constantly subject to DNA damage, often with detrimental consequences for the health of the
organism. Cells mitigate this DNA damage through a variety of repair pathways involving a diverse and large number
of different proteins. To better understand the cellular response to DNA damage, one needs accurate measurements of
the accumulation, retention, and dissipation timescales of these repair proteins. Here, we describe an automated
implementation of the “quantitation of fluorescence accumulation after DNA damage” method that greatly enhances
the analysis and quantitation of the widely used technique known as laser microirradiation, which is used to study the
recruitment of DNA repair proteins to sites of DNA damage. This open-source implementation (“qFADD.py”) is
available as a stand-alone software package that can be run on laptops or computer clusters. Our implementation
includes corrections for nuclear drift, an automated grid search for the model of a best fit, and the ability to model both
horizontal striping and speckle experiments. To improve statistical rigor, the grid-search algorithm also includes
automated simulation of replicates. As a practical example, we present and discuss the recruitment dynamics of the
early responder PARP1 to DNA damage sites.

Impact Statement

Live-cell microscopy and data analysis have been particularly impactful in the study of complex DNA repair
processes. Over recent years, innovations in microscopy have allowed for imaging of processes occurring
inside cells or even inside nuclei. These improvements have been particularly impactful in the study of DNA
repair processes. For example, the method known as laser microirradiation has become a popular in vivo
technique to study how fluorescently tagged DNA repair proteins accumulate, reside, and then dissipate from
sites of DNA damage induced by laser damage of the DNA in live cells. Unfortunately, analysis of laser
microirradiation data is often performed incorrectly or incompletely, thus precluding comparisons between
different studies or with other methods. Because the correct and quantitative analysis of biological processes is
essential for a more complete understanding of life processes, we previously developed the “quantitation of
fluorescence accumulation after DNA damage” method, which allows for the determination of true diffusion
coefficients and thus enables comparison with other methods. Here, we describe the automated and improved
implementation known as qFADD.py, which allows any biologist to accurately quantitate their data from laser
microirradiation.
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1. Introduction

Living cells are constantly bombarded by DNA damaging agents, from sources both within and outside
the cell. This damage can take many forms, such as double-strand DNA breaks, single-strand breaks, or
base oxidation events!' . If unchecked, the resulting base changes (mutations), deletions, or chromo-
some fusion and breakage events result in permanent changes in the genome, with often detrimental
effects for the cell. To protect from these damage events, cells have evolved a complex array of DNA
repair pathways that utilize a wide variety of signaling and repair enzymes, each with varying activities
throughout the cell cycle and the DNA damage response”. While specific pathways counteract particular
modes of damage, some proteins can participate in several repair processes, and inhibiting one repair
cascade can alter the typically conserved sequential accumulation of signaling and repair proteins.
Improper regulation of DNA damage sensing and repair proteins is strongly correlated with, and can even
result in, several cancers®®. To this end, a better understanding of DNA damage pathways and the
dynamics of the participating proteins is important to develop better cancer therapeutics, many of which
function by introducing excessive DNA damage in rapidly growing cancer cells. As such, suppressing
DNA damage repair in these cells will lead to more effective cancer drugs.

Accurate measurement of accumulation kinetics for the many proteins involved in signaling and
repairing DNA damage events is necessary to understand the complex interplay within and between the
various repair pathways. Laser microirradiation is one popular in vivo technique to study these kinetics due
to its ability to track protein dynamics as a direct response to locally induced damage'’~'". In this method,
cells are transfected to express one or several fluorescently tagged proteins (depending on microscope
capability). A defined region of chromatin is damaged with a short-wavelength (~400 nm) laser and then
monitored for time-dependent accumulation of the labeled protein(s) via fluorescence microscopy'>'™.
Historically, these data have been fit with such methods as: determining the time required for half of the total
accumulation (#,,), fitting the time series to a single exponential, and fitting the time series with multiple
exponentials™' !>, While straightforward to implement, we have previously shown that these methods
lack the ability to differentiate between different nuclear shape profiles and therefore suffer from averaging
diverse nuclei into a single, representative time series''”. Moreover, as they are not direct measures of
diffusion, the output from these analysis methods cannot be directly compared to orthogonal diffusion
methods such as FRAP or fluorescence correlation spectroscopy”' ',

To address these limitations, we recently developed a novel method for the analysis of data from laser
microirradiation experiments, namely “quantitation of fluorescence accumulation after DNA damage”
(Q-FADD)'?. Q-FADD models protein motion as a free-diffusion process and compares the simulated
curves to the experimental data in the analysis of laser microirradiation data, which then allows the
results to be compared to other diffusion-based methods. The accumulation of protein at sites of DNA
damage is described by two variables: D, the effective diffusion coefficient, and F, the mobile fraction
of proteins. These two values are varied to generate an optimal fit to the experimental data. Because
shape and size are explicitly represented in the fitting process for each nucleus, Q-FADD is a more
appropriate method compared with averaging multiple nuclei and calculating average ¢,8 or expo-
nential fits. We originally developed Q-FADD through a combination of MATLAB and Mathematica
notebooks that are not readily accessible to many cell biologists. To make our analytical method more
widely available, we developed “qFADD.py” (Figure 1)—an open-source Python implementation of
the Q-FADD workflow that exhibits several significant improvements and updates compared to the
original method. Other than a more user-friendly application, we have implemented a grid-search
algorithm that automatically generates and compares multiple simulated model replicates over a wide
range of parameter combinations (D,4and F). This improvement reduces the trial-and-error approach in
the original version and the potential for user bias, thereby increasing the statistical certainty of reported
best-fit models. Additionally, the new companion program (“image analyzer.py”) accounts for nuclear
drifting, thereby reducing the number of microirradiation datasets that may need to be discarded from
analysis or give faulty outputs if not discarded. Laser microirradiation data of the PARPI signaling
protein are presented as examples for the pipeline, and the interpretation of qFADD.py outputs are
discussed.
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Figure 1. Workflow of the qFADD.py pipeline. Image stacks (snapshots as a function of time) of
Sfluorescently tagged protein accumulation (top left) and a single shape of the region of interest (RO, top
right) are collected by the user on a confocal microscope—here, Nikon/.nd?2 files, but all bioformats-
readable files are supported. These files are imported into the image analyzer.py program, which applies
motion corrections to the raw image stacks. The output from image_analyzer.py includes the quantitated
accumulation time-series data, a drift-corrected movie, and a single trace of the nuclear envelope with the
ROl inside the nucleus for input to the gFADD.py modeling program (middle row of boxes). An example
ROI for highly damaged “horizontal striping” analysis mode is shown, but qFADD.py is also capable of
modeling in “speckle” analysis mode for more localized recruitment events. gFADD.py then conducts the
grid-search fitting on a range of Degr and F (mobile fraction) values defined by the user to identify the
best-fit model. A plot of the model versus experiment fit is generated, and all sampled models throughout
the grid are sorted by fit quality in a human-readable text file (all_models.csv, bottom row). A visual
comparison between models is also provided in a heatmap-style plot of model qualities for rapid
assessment of overall performance of the defined grid.
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2. Methods

Both qFADD.py and associated preprocessing program, image analyzer.py, are written in Python
(v3.6.5), and the code is freely available on GitHub (https://github.com/Luger-Lab/Q-FADD). The
GitHub site includes three folders: Documentation, Example Usage, and src. The Documentation folder
has installation instructions (install.md) and a detailed set of instructions for using the graphical user
interface (GUI; qFADD _gui_documentation.pdf). The Example Usage folder has sample raw data as
well as a folder of precomputed results for reference. The src folder contains source .ui and .py files. The
stand-alone GUIs (“qFADD_gui.py” and “image analyzer gui.py”) were constructed with PySide2 and
Qt (v5)". Parallel operation is achieved through the mpi4py module, which is constructed on top of the
openMPI library!'*?), and tasks can either be run locally or submitted to an SLURM queuing system©".
Below we describe both the preprocessing and the fitting procedure.

2.1. Extraction of accumulation time-series data

In the laser microirradiation method, fluorescently tagged proteins are expressed in a cell line of choice.
Then, DNA damage is induced in a region of interest (ROI) within the nucleus using a highly focused laser
beam, and an accumulation of the fluorescently labeled protein(s) in the damaged ROI is tracked. One
common approach for inducing damage is through “horizontal striping,” where cells receive a large
amount of damage that spans the full width of the nucleus. Alternatively, the beam can be focused to a
narrow ROI, thereby inducing damage in a highly localized area (hereby referred to as the “speckle”
method). The raw data from these measurements are typically a time-lapsed image stack of the
accumulation process (i.e., individual snapshots of the nucleus over the full-time course of data collection)
and a single TIFF image file outlining the ROI, and these are then combined to define the fluorescence
intensity time series within the ROI (Figure 1).

Previously, the Q-FADD workflow accomplished this through a MATLAB notebook that utilized the
BioFormats library!'**?. In the Python workflow presented here, this is handled with the “image ana-
lyzer.py” program, which uses the Python implementation of BioFormats along with microscope-specific
libraries™”. This program takes the single ROI TIFF file and the time-lapsed image stack as inputs, and it
saves plain text files containing the accumulation data, a mask of the nuclear envelope, and a trace of the
ROI to be utilized by the main qFADD.py program.

During this conversion, there are several corrections that must be applied to maximize the integrity of
the accumulation data. First, continuous exposure to the fluorescence excitation laser can cause photo-
bleaching of the fluorophores over the course of the experiment, and the effects of photobleaching must be
deconvolved from accumulation and dissipation processes. Therefore, the program applies a scaling
factor to the intensity measured at each frame under the assumption that the total number of fluorescent
molecules in the nucleus should remain constant:

I() , ( 1 )
Lnet (1)
where /' (2) is the scaled and outputted ROI intensity value at time ¢, I(?) is the ROl intensity value from the
raw image at time ¢, s is the scaling factor, /,, is the frame-averaged total pixel intensities contained within
the nucleus in areference set of frames, and 7,,.,(?) is the sum of pixel intensities in the nucleus at time ¢. The
number of frames to include in the reference set for I, is declared by the user at runtime, and we elected to
reference the first six frames in the example below, as they contained only images of the nucleus prior to
the DNA damage event.

The second potential artifact within accumulation data may result from nuclei with lateral drift during
image acquisition. In these samples, the nuclear region of DNA damage may migrate beyond the damage
ROI expected by the camera, yielding artificially low accumulation counts in later stages of the time
course. To correct this error, image_analyzer.py uses the scikit-image library*®, where image translations
are identified by determining the cross-correlation between the initial frame and all subsequent frames in
Fourier space™. Notably, this provides the ability to correct for linear motion in the field of view but not

I'(t) =1(t)xs =1(t)*
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for rotations of the nucleus, both in- and out-of-plane with the camera, or for deformation of the nuclear
profile. As such, users should still be selective when identifying nuclei for probing and further analysis.

2.2. The nuclear diffusion model in Q-FADD

In the Q-FADD approach, fluorescence intensity accumulation is modeled using free diffusion in the two-
dimensional space of the image slice!'”. The nuclear mask coordinates are used to determine the
boundaries of motion, and movement within the nucleus is conducted on a grid, analogous to the
pixel-level information of the acquisition camera. A large number of simulated molecules (here,
10,000) are initially placed randomly along the nuclear grid, and a subset of these molecules—the
“mobile fraction” (F)—is selected to participate in the simulated diffusion. Control studies showed that
using significantly fewer particles (1,000) is insufficient to generate reproducible results and using more
sample points (16,000) yields no change in outcome beyond a negligible reduction in noise for the
accumulation kinetics. For all the proteins we have tested and for those reported in numerous other
publications (reviewed in Reference (9)), uniform distribution within the nucleus (at the resolution of the
experiment) provides a good description of the proteins of interest. Physically, the mobile fraction
parameter arises from the fact that some molecules within the nucleus will not move to sites of DNA
damage for various reasons that include their tight binding to chromatin or that the amount of DNA
damage is small compared with the total number of available proteins.

Molecules within the mobile fraction then undergo diffusion through a Monte Carlo scheme. For every
iteration, each mobile particle is able to move either “left” or “right” with equal probability, and the
magnitude of the motion is defined by a constant step size per iteration (4x, in pixels or “grid points”). The
same is true for the motion in the “up” and “down” directions. This results in motion described by

1 (Ax-p)?

Dy =3 EPE @)
where D, is the effective diffusion coefficient, Ax is the step size in pixels per iteration, p is the pixel
resolution, and 4¢ is the associated timestep with each iteration. We note that we chose this simplest
definition of D4 because it is sufficient to explain all the proteins we have tested (Occam’s razor), but
that D4 within the complicated milieu of the nucleus may include sub-diffusive processes or reaction-
limited kinetics. From our experience, 4t should typically be on the order of 0.2 s per step, or about one
order of magnitude higher resolution than the framerate of the camera. However, longer timesteps may
be required to model slower diffusing particles, and the loss of sampling between experimental
timepoints should be offset with an increased number of replicates per (D.z F) pair. Doy is used in
place of the exact diffusion coefficient as the modeled—and experimentally observed—motion is a
convolution of rapid binding and unbinding processes in addition to molecular diffusion.

During the Monte Carlo routine, boundary conditions are applied such that movement beyond the
nuclear envelope is rejected. Furthermore, once a molecule has entered the simulated region of DNA
damage (defined as the intersection between the ROI of the experiment and the nuclear mask), then it is
considered to be trapped at the site of DNA damage. As such, the program is designed to model the
accumulation kinetics of damage-response proteins, but it does not account for dissipation of proteins
upon DNA repair or completion of signaling task. Users should therefore be careful interpreting results of
proteins that dissipate very quickly according to the intensity time series.

The simulated trajectory is then converted to an intensity time series by counting the number of
molecules contained within the ROI at a given iteration of the simulation. To allow for one-to-one
comparison between the simulation and the experiment, both time series are normalized. In this way, /(¢)
defines the fold increase of fluorescence (or the number of simulated particles) from the initial frame,
rather than the exact number of proteins/particles themselves. For the experimental data, normalization is
achieved by dividing the ROI intensity of each frame by the average ROI intensity of the pre-damaged
frames. In the simulated trajectories, this corresponds to dividing the number of particles in the ROI by the
number of particles randomly initialized in the region prior to motion. The simulated intensity time series
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Figure 2. Scatterplots comparing the different goodness-of-fit metrics reported by gFADD.py. Scatterplot
of I° versus root-mean-squared deviation (RMSD) values for individual diffusion models fit to the same
nucleus. Each point is color-coded to match replicate simulations using identical (Deg; F) combinations
(cumulative set of 11 replicas from 10 combinations shown here). While not linearly correlated, v and
RMSD are in perfect agreement for their ranking of each gFADD.py run. Nevertheless, the changing slope
to a more vertical line near ° = 1.0 shows that the RMSD metric is better able to differentiate between
models of similar high quality since small differences in r° correspond to larger differences in RMSD.

is then interpolated to the experimental timepoints, and fits to data are reported using two different quality-
of-fit metrics: the 7* metric and the root-mean-squared deviation (RMSD) between the modeled accu-
mulation time series and the experimentally observed fold increase of fluorescence intensity in the ROI.
The RMSD metric is defined as

1
RMSD = \/ NZ (Lyrapp —Tewp)’ A3)

where the sum is carried out over the N timepoints in the curve, and [, z4pp is the normalized fluorescence
intensity at the interpolated timepoint associated with an experimental normalized intensity, /,,,.

In our experience, both 7> and RMSD metrics agree on which parameter combination yields the best
model. The benefit of using RMSD is that it is in the same units of normalized intensity and can better
differentiate models of high-fit qualities (Figure 2). The RMSD value thereby tells the user an average
discrepancy between the experiment and the model. In this way, RMSD values closer to zero represent
high-quality fits and poor-fits diverge to large values. In contrast, #* values ~ 1.0 represent good fits, and
because many users may be more familiar with this metric, we present both as outputs from the gFADD.py
program and here within the manuscript.

2.3. Automated model fitting

The initial version of the Q-FADD algorithm provided the basic algorithm for accurately quantitating
the accumulation of repair proteins to sites of DNA damage. However, it still required users to manually
seek out individual combinations of D,;and F through trial and error, which can be difficult, can require
large investments of user time and effort, and benefits from prior experience. In the new qFADD.py
workflow, the task of identifying the model of best fit has been largely removed from the user by
utilizing a grid-search algorithm of the values D4 and F. In this approach, users define their desired
range and resolution of D,y and F values, and the program evaluates the quality of fit for each
combination of values. Computational efficiency of this search is enhanced by running tasks in parallel,
where each processor is assigned a list of (D, F) parameter pairs to evaluate. Because Q-FADD is a
sampling-based algorithm, multiple replicates are simulated per grid point to ensure that the fit qualities
are statistically relevant and not the result of spurious random sampling. As a readout, users can decide
between representing the model with either the replica trajectory with the median fit or as an averaged
trajectory across all the replicas before fitting to the experiment. With an appropriate number of
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replicates (n > 10 replicates), the model qualities of median and averaged trajectories are typically found
to be in good agreement with one another.

While grid-search algorithms will identify the single most likely combination of parameters to fit the
experimental data, they also produce a variety of alternative models that adequately explain the results. As
such, the qFADD.py program both prints the best-fitting model and stores the entire library of sampled
parameters and their modeled goodness-of-fit values in an easy-to-read text file. In this way, users can
explore the full catalog of potential models and supplement their intuition gained from orthogonal
measurements, rather than fully replacing those results.

2.4. image_analyzer.py and qFADD.py parameters for example usage

To demonstrate how to use and interpret the qFADD.py workflow, we provide an example using data from
a laser microirradiation experiment using mouse embryonic fibroblast (MEF) cells that overexpress the
DNA damage signaling protein PARP1, tagged with the green fluorescent protein (GFP-PARP1). A full
methods description for this experimental setup has been published'”. Cell images were captured on a
Nikon A1R laser scanning confocal microscope (Nikon, Tokyo, Japan). Accumulation of GFP-PARP1
was monitored using a 488-nm wavelength argon-ion laser, and DNA damage was introduced with a
405-nm diode laser focused at ~1.7 mW on a rectangular ROI for 1 s. Six frames were captured prior to
DNA damage for the purpose of normalizing the accumulation time series, and the detector resolution was
86.77 nm per pixel. In total, we collected and analyzed data on 11 independent nuclei. One image stack is
provided at the GitHub site as an example (example _files.zip), and a modest lateral drift is observed over
the course of this collection (Supplemental Movies 1 and 2; available at the GitHub site). This causes the
physically damaged region to move slightly beyond the ROI of the camera in the +x direction, meaning
that this nucleus should have been potentially excluded unless drift correction was applied, depending on
the decision of the user. More drastic motion was observed in a different image stack (Supplemental
Movies 3 and 4; available at the GitHub site), and we present this individual nucleus to understand the
importance of motion correction in the qFADD.py pipeline (Section 3.1). Presented results were
generated using a local installation of qFADD.py.

First, the image stack and ROI TIF files were run through image analyzer.py, where both protein
accumulation and the nuclear mask were tracked by the fluorescently labeled protein channel (“EGFP”).
Nuclear masking via the EGFP channel was selected because the protein was overexpressed and localized
to the nucleus to provide a quasi-uniform outline of the nuclear boundary. Although it may seem intuitive
to use the “DAPI” channel that marks DNA instead, this channel has regions of variable brightness that
make it more difficult to generate a nuclear outline. Next, the X- and Y-limits of the ROI were, respectively,
adjusted by —10 and 10 pixels to account for edge effects in the irradiated region, and drift correction was
applied. The first six (pre-irradiated) frames were used to normalize the time series and correct for
photobleaching. Then, the nuclear mask and ROl trace files, along with the accumulation time series, were
used as input for the grid-based fitting of D,and F in qFADD.py grid. To sample D, values, the step size
Ax ranged from 1 to 15 pixels per iteration with a grid point every integer value. To sample the mobile
fraction, F' values spanned from 100 to 1,000 parts per thousand (ppt) with a grid point every 100 ppt.
Reported fits are the median model from each set of replicates, and 11 replicate trajectories were run per
grid point. Each simulation was conducted at a timestep of 0.2 s per step, which yields a D zrange of 0.02—
4.2 ym?/s (see Equation (2)).

3. Results
3.1. Effects of motion correction

To probe the effects of neglecting motion correction on the measured accumulation time series and
modeled diffusion behavior, we ran the image stack containing the nucleus with the largest lateral motion
through image analyzer.py with and without motion correction applied, while all other settings were held
constant. Indeed, we find that there is a quantitative difference between the raw versus motion corrected
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Figure 3. Comparison of accumulation time series for raw (blue) and drifi-corrected (orange) pro-
cessing. Notably, the curve extracted from the raw movies indicates a dissipation of tagged protein, but
properly applying drift correction demonstrates that this is an artifact of the damage site exiting the
region of interest. Moreover, non-corrected movies show less overall accumulation.

time-series data (Figure 3). While the maximum accumulation amount between the two procedures
differed by only 3.3%, the time series extracted from the raw image stack appears to show PARPI
dissipating from the ROI at late timepoints. With motion correction applied, there is no dissipation of
PARP1 from the damage site in this timescale, which was visually confirmed by inspecting the images
(Supplemental Movies 3 and 4). Additionally, the best-fit diffusion coefficients differ by nearly 15% (2.3
versus 2.7 um?/s for the raw and motion-corrected data, respectively). This comparison demonstrates the
importance of properly accounting for nuclear motion during protein accumulation, and as this is now
implemented in the preprocessing that also accounts for photobleaching, it is readily accessible to the
experimentalist.

3.2. Interpreting results from a single recruitment image stack

As an example of the new grid-search method, we inspect the qFADD.py modeling results for the nucleus
containing a modest amount of lateral motion. This nucleus was selected due to its high-fit quality
(Figure 4), the presence of several alternative models with appreciably high qualities of fit—which shows
the selective power of the grid-search algorithm—and replicates of the same (D, F) combinations
displayed wide ranges of model qualities, as discussed below.

By inspecting the grid-search models of the motion-corrected accumulation time series from a single
nucleus (Figure 5a), we find a range of potential models with a mobile fraction of 300 ppt that possess
high-fit qualities. In this region, there are four models possessing r* values greater than 0.9, and two of
these models have 7* values greater than 0.97 (Deg= 11 pix/step, 2.3 um?/s, * =0.9807, RMSD = 0.0515
and D= 10 pix/step, 1.9 um?/s, > = 0.9742, RMSD = 0.0596). We note that these top two models differ
by only 1 pix/step. We delve further into the details of the 11 replicates sampled during the gFADD.py grid
search to make several important points (Figure 5b). First, we note that each of the models has a range of
RMSD values, and that by performing the simulations only once, one may not end up with the best
solution. This finding emphasizes the value of performing replicate simulations in a procedure that is
based on sampling random movement of particles. Second, for the best model identified during the grid
search (D p=2.3 um?/s, F =300 ppt; left-most model in Figure 5b), we find that the 72 values range from
0.9572 to 0.9910 (RMSD range of 0.0767—-0.0351). This narrow range of the fitting parameters * and
RMSD emphasizes the robustness of this fit to random error in the model. Third, the parameter
combination that ranked second (D.y= 1.9 um?/s, F = 300 ppt) contains both the best single replicate
in the entire search and the worst-fit replicate (+* = 0.8529, RMSD = 0.0788), and this model is notably
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Figure 4. Comparison of the gFADD.py grid-search-identified “best-fit” model to the experimental
accumulation time series for a single nucleus. (Top) Simulated accumulation via free diffusion (red line)
versus the experimental profile (black dots). (Bottom) Residuals of the fit between the simulation and the
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Figure 5. Comparisons of sampled model performances during the gqFADD.py grid-search algorithm for
a single nucleus. (a) Heatmap showing multiple local regions of relatively high (° > 0.9) fit, showing that
several different parameter sets may adequately describe the experimental profile for the accumulation at
the region of interest (ROI) in a single nucleus. However, only the population centered around a mobile
fraction of 300 ppt contains the models with v° values greater than 0.95. (b) Violin plots showing the root-
mean-squared deviation distributions across the 11 independent replicates for the 10 best-performing
(Dess F) combinations on the same experimental dataset at the ROI in a single nucleus. Lower values
correlate to simulated models that are more similar to the experimental profile. These plots show that
because of the random sampling nature of the algorithm, some parameter combinations have spuriously
high (or even low) fit qualities. Thus, by performing 10+ replicates, the median fit qualities (solid lines)
provide a more robust ranking metric. The mean Degr and F from the best-ranked model for each nucleus
are then averaged to determine the mean Dqgr and F for the population of other nuclei studied under the
same conditions.
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worse than any in the best-fit model (note extended neck in the violin plot). In summary, the grid search
employed within gFADD.py efficiently protects users from bias from single replicates and the automated
search robustly identifies the model of optimum fit by scanning a wide range of values and running
multiple replicates per parameter combination.

3.3. Combining results from multiple nuclei and comparing between populations

Above, we demonstrated the functionality of the gFADD.py grid-search approach for a single nucleus.
However, one of the strengths of the Q-FADD approach is the ability to identify a distribution of D zand
F values across a large number of nuclei, correctly accounting for their differing shapes and sizes. To
facilitate the analysis of multiple nuclei, both the qFADD.py and image analyzer.py programs can be
run in a “batch” mode. To use the “batch” processing mode, every nucleus in the dataset must have
identical parameters such as number of normalization frames prior to irradiation, the time of the
irradiation event, and a sufficient timescale such that maximum accumulation was reached. To facilitate
comparisons between different conditions or different proteins, we provide the “qfadd_distribution.py”
program, which generates violin plots from a set of Q-FADD results with multiple nuclei. In an example
application, we collected and analyzed microirradiation data for 11 and 19 different nuclei for PARP1
and PARP2, respectively, and plotted the range of diffusion coefficients and mobile fraction for the
11 best-fit models for each of these proteins as identified by the grid search in qFADD.py (Figure 6).
This comparison shows that there is a significant difference between the modeled diffusion rates in the
two datasets (Dp=3.1 £0.3 vs. 0.62 £ 0.10 um?/s, p-value < .001), but no significant difference in the
mobile fraction comparison (F =318 £ 34 ppt vs. 381 £ 22 ppt, p-value = .13). In general, we find that
Dy and F are determined with good reproducibility and very similar percentage variations in the
standard error of the mean of all the determined values (6—14%), depending of course on the protein and
the sample size. These data agree with previous observations that PARP1 reaches sites of DNA damage
significantly more quickly than PARP2, as previously reported”:'?) and demonstrates the value of this
program for multiple datasets.
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Figure 6. Examples of the comparison violin plots that can be generated with the qfadd_distribution.py
program. (a) Plot of Degr generated when comparing between multiple datasets. The PARPI distribution
is representative of the 11 cells sampled in the work of this manuscript. The PARP? distribution is
extracted from our previous study on PARP2 dynamics’”. The SSRP1 dataset demonstrates data from the
SSRP1 subunit of FACT (11 cells). As previously observed, the Dssfor PARPI was significantly faster than
that of PARP?2 (p-value < .001), and both PARP1 and PARP?2 are significantly faster than SSRP1 (p-value
<.001). (b) Comparison plot of mobile fractions (F), which demonstrates no significant difference
between PARPI and PARP2, but a significant difference for SSRP1 (p-value < .001).
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4. Discussion

The qFADD.py analysis pipeline is an open-source Python implementation of the Q-FADD method"'
with updated image processing, diffusion-fitting procedures, and additional analysis tools. The soft-
ware is available as a stand-alone program for local installation (https://github.com/Luger-Lab/Q-
FADD). By providing these tools, researchers can readily analyze their own microirradiation data,
while labs with cluster access can make efficient use of the parallelized grid search algorithm on their
local resources.

The qFADD.py pipeline has introduced several significant improvements over the original imple-
mentation. One major improvement is the addition of nuclear tracking to the image processing workflow,
which corrects for lateral drift and allows researchers to avoid discarding valuable image stacks, as well as
safeguarding them from interpreting nuclear drift as the dissipation of fluorescently labeled proteins from
the damage site. This allows researchers to maximize the number of usable datasets in their analysis and
improves statistical rigor when comparing accumulation kinetics between cell conditions or proteins of
interest. We have shown here that modeling accumulation kinetics from non-corrected image stacks can
lead to quantifiable differences in predicted values. Furthermore, the time-series data extracted by the
image analyzer.py program is not limited to use only in the gFADD.py program, but it can also be used to
extract dissipation time series for modeling parameters such as off-rate kinetics. We note that the
corrections applied in image analyzer.py only corrects for lateral drift and cannot account for cells that
undergo rotations either in- or out-of-plane with the camera.

While motion correction during image processing extends the number of nuclei that can be included in
final datasets, careful selection of nuclei should still be performed while collecting microscope data. Nuclei
with blebs may pose issues for accurately tracing the nuclear envelope, and these nuclei may subsequently
yield D zand mobile fraction combinations that can satisfy the experimental curve but with an improper
nuclear geometry, thereby representing a false-positive result. Additionally, users should carefully control
microscope temperature and humidity to maintain healthy cells over the course of collections.

The second key improvement to the original Q-FADD algorithm is the utilization of the automated grid
search to identify the best-fit model from a collection of potential models. With the use of multiple
replicates per parameter set, this method determines the best-fit model in a statistically robust way,
whereas a user’s trial-and-error search may be prone to identifying spuriously high-fit models. On the
other hand, the grid-search method requires a balance of resolution and computational efficiency, as
searching out a wide range of mobile fractions on the single ppt level is exceptionally demanding. Instead,
users should first identify general regions of high model fidelity utilizing a coarse grid step (such as 100
ppt), and then focus in on the boundaries of said regions at higher resolution (such as 10 or 25 ppt) to
extract more precise values of this metric. However, the resolution limit of the mobile fraction parameter is
largely dependent on the recruitment speed, protein expression levels, and fluorescent labeling efficiency,
so users should be careful to avoid overfitting the mobile fraction value with single ppt resolution in
systems where 10-50 ppt will suffice.

In summary, the qFADD.py pipeline, with its automated workflow, provides researchers with a
straightforward way to model the kinetics of proteins that operate in a variety of DNA repair pathways.
In combination with multi-photon approaches, this method allows the opportunity to simultaneously
probe the dynamics of several proteins within the same nucleus, rather than relying on separate image
stacks from different nuclei.
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