Canad. Math. Bull. Vol. 60 (3), 2017 pp. 470–477 http://dx.doi.org/10.4153/CMB-2017-003-7 © Canadian Mathematical Society 2017

Maurer–Cartan Elements in the Lie Models of Finite Simplicial Complexes

Urtzi Buijs, Yves Félix, Aniceto Murillo, and Daniel Tanré

Abstract. In a previous work, we associated a complete differential graded Lie algebra to any finite simplicial complex in a functorial way. Similarly, we also have a realization functor from the category of complete differential graded Lie algebras to the category of simplicial sets. We have already interpreted the homology of a Lie algebra in terms of homotopy groups of its realization. In this paper, we begin a dictionary between models and simplicial complexes by establishing a correspondence between the Deligne groupoid of the model and the connected components of the finite simplicial complex.

Let MC(L) be the set of Maurer–Cartan elements of a differential graded Lie algebra (L, d) over \mathbb{Q} (henceforth DGL). The group L_0 of elements of degree 0, endowed with the Baker–Campbell–Hausdorff product, acts on MC(L) by

$$x\mathfrak{G} z = e^{\mathrm{ad}_x}(z) - \frac{e^{\mathrm{ad}_x} - 1}{\mathrm{ad}_x}(dx),$$

with $x \in L_0$ and $z \in MC(L)$. We denote by MC(L) the orbit space for this action.

In [1], we constructed a functor \mathcal{L} from the category of finite simplicial complexes to the category of complete differential graded Lie algebras (henceforth cDGL), $X \mapsto \mathcal{L}_X$. Rational homotopy has been mainly introduced and used for simply connected spaces [5,10,11]. In [11], there is also an extension to non-simply connected spaces over \mathbb{R} via fiber bundles (see [7] for an adaptation to \mathbb{Q}). Recently, the classical approach has been extended to non-simply connected spaces in [6], and the functor \mathcal{L} gives the corresponding extension for DGL's.

In this paper we prove the following relation between \mathcal{L}_X and the topology of *X*.

Theorem For any finite simplicial complex X, there is a bijection

$$\pi_0(X_+) \cong \mathrm{MC}(\mathcal{L}_X),$$

where $X_{+} = X \sqcup \{*\}.$

The case of the interval X = [0,1] was solved in [2]. In Section 1, we make the necessary recalls on Maurer–Cartan elements and the functor \mathcal{L} . Section 2 is devoted

Received by the editors May 17, 2016; revised October 24, 2016.

Published electronically February 21, 2017.

Author U. B. has been partially supported by the Ramón y Cajal MINECO programme. Authors U. B. and A. M. have been partially supported by the Junta de Andalucía grant FQM-213. Author D. T. has been partially supported by the ANR-11-LABX-0007-01 "CEMPI". The authors are partially supported by the MINECO grant MTM2013-41768-P.

AMS subject classification: 55P62, 16E45.

Keywords: complete differential graded Lie algebra, Maurer-Cartan elements, rational homotopy theory.

to a decomposition of \mathcal{L}_X when X is connected. Finally, the proof of the theorem is done in Section 3.

1 Functor \mathcal{L} and Maurer–Cartan Elements

Recall that a DGL(*L*, *d*) is *complete* if $L = \lim_{\leftarrow n} L/L^{[n]}$, where $L^{[n]}$ denotes the sequence of ideals defined by

$$L^{[1]} = L$$
 and $L^{[n+1]} = [L, L^{[n]}], n \ge 2$.

When *V* is finite dimensional, $\widehat{\mathbb{L}}(V) = \lim_{n \in \mathbb{L}} \mathbb{L}(V) / \mathbb{L}(V)^{[n]}$ is the completion of the free graded Lie algebra $\mathbb{L}(V)$.

Let (L, d) be a cDGL. An element $u \in L_{-1}$ is a *Maurer–Cartan element* if

$$du = -\frac{1}{2}[u, u].$$

In [8], R. Lawrence and D. Sullivan constructed a cDGL \mathcal{L}_I that is, in a sense that we will make precise later, a model for the interval I = [0, 1]. More precisely,

$$\mathcal{L}_{I} = (\widehat{\mathbb{L}}(a, b, x), d)$$

where *a* and *b* are Maurer–Cartan elements and *x* is an element of degree 0 with

$$dx = \mathrm{ad}_x \ b + \frac{\mathrm{ad}_x}{e^{\mathrm{ad}_x} - 1}(b - a) = [x, b] + \sum_{n=0}^{\infty} \frac{B_n}{n!} \mathrm{ad}_x^n(b - a).$$

Here, the B_n are the well known Bernoulli numbers. This model has been described in detail in [4,9].

In a cDGL(*L*, *d*), two Maurer–Cartan elements u_1 and u_2 are *equivalent* if they are in the same orbit for the gauge action. By construction, this is equivalent to the existence of a morphism of DGL's, $f: \mathcal{L}_I \to (L, d)$ with $f(a) = u_1$ and $f(b) = u_2$. The map *f* is called *a path from* u_1 to u_2 . The set of equivalence classes of Maurer–Cartan elements is denoted $\widetilde{MC}(L)$.

Our purpose is the determination of MC(L) for a family of cDGL's directly related to topology. In fact, the cDGL \mathcal{L}_I is the first example of a Lie model for a general simplicial complex. More generally, there is a functor \mathcal{L} , unique up to isomorphism, $X \mapsto \mathcal{L}_X$, from the category of finite simplicial complexes to the category of cDGL's. As any finite simplicial complex is a subcomplex of some Δ^n , it is sufficient to construct the models, \mathcal{L}_{Δ^n} , of the Δ^n 's.

Proposition 1.1 ([1, Theorem 2.8]) The cDGL \mathcal{L}_{Δ^n} is defined, up to isomorphism, by the following properties.

- (i) The cDGL's L_{Δⁿ} are natural with respect to the injections of the subcomplexes Δ^p, for all p < n.
- (ii) For n = 0, we have $\mathcal{L}_{\Delta^0} = (\widehat{\mathbb{L}}(a), d)$ where a is a Maurer-Cartan element.
- (iii) The linear part d_1 of the differential of \mathcal{L}_{Δ^n} is the desuspension of the differential δ of the chain complex $C_*(\Delta^n)$.

In the case where $\Delta^1 = [0,1]$, we recover the Lawrence–Sullivan construction. For each finite simplicial complex, *X*, contained in Δ^n , the Lie subalgebra $\widehat{\mathbb{L}}(s^{-1}C_*(X))$ is preserved by the differential of \mathcal{L}_{Δ^n} and gives a model \mathcal{L}_X of *X*.

When *a* is a Maurer–Cartan element in \mathcal{L}_X , we denote by d_a the perturbed differential $d_a = d + ad_a$. The first properties of $\mathcal{L}_X = (\widehat{\mathbb{L}}(W), d)$ are contained in the following statements extracted from [1, 3].

- (a) If d_1 denotes the linear part of the differential d, then (W, d_1) is isomorphic to the desuspension of the simplicial chain complex $C_*(X)$ of X.
- (b) If $f: X \to Y$ is the inclusion of a subcomplex, then $\mathcal{L}_f: \mathcal{L}_X \to \mathcal{L}_Y$ is equal to $\widehat{\mathbb{L}}(s^{-1}C_*(f))$.
- (c) $H(\mathcal{L}_X) = 0$ ([3, Theorem 4.1]).
- (d) If X is simply connected, and a is the Maurer-Cartan element associated with a 0-simplex, then (Ê(W), d_a) is quasi-isomorphic to the usual rational Quillen model of X [1, Theorem 7.4(ii)].
- (e) If X is connected and a is the Maurer–Cartan element associated with a 0-simplex, then $H_0(\widehat{\mathbb{L}}(W), d_a)$ is isomorphic to the Malcev Completion of $\pi_1(X)$ ([1, Theorem 9.1]).

Recall that the Lawrence–Sullivan interval \mathcal{L}_I is isomorphic to the cylinder construction ([12]) on a Maurer–Cartan element ([3, Theorem 6.3]). More precisely, consider the cDGL($\widehat{\mathbb{L}}(a, c, y), d$) with $|y| = 0, |c| = -1, da = -\frac{1}{2}[a, a], dy = c$ and dc = 0 that we equip with a derivation *s* of degree +1, defined by s(a) = y, s(c) = s(y) = 0. Then the morphism

(1.1)
$$\psi: \left(\widehat{\mathbb{L}}(a,b,x),d\right) \longrightarrow \left(\widehat{\mathbb{L}}(a,c,y),d\right)$$

defined by $\psi(a) = a$, $\psi(b) = e^{sd+ds}(a)$, $\psi(x) = y$ is an isomorphism of DGL's. In particular,

$$\psi(b) = a + c + \sum_{n \ge 1} \frac{(sd)^n}{n!}(a) = e^{ad_{-y}}(a) + \frac{e^{ad_{-y}}-1}{ad_{-y}}(c).$$

Definition 1.2 Two Maurer–Cartan elements u, v in a $cDGL(\widehat{\mathbb{L}}(V), d)$ are called *equivalent of order r* if there is a morphism

$$\varphi: \left(\widehat{\mathbb{L}}(a, b, x), d\right) \longrightarrow \left(\widehat{\mathbb{L}}(V), d\right)$$

with $\varphi(x) \in \mathbb{L}^{\geq r}(V)$, $\varphi(a) = u$ and $\varphi(b) = v$. We denote this relation by $u \sim_{O(r)} v$.

This relation is a key point in the proof of Proposition 2.1. We end this section with two properties of $\sim_{O(r)}$.

Lemma 1.3 Let u be a Maurer-Cartan element in $(\widehat{\mathbb{L}}(V), d)$. We suppose u = v + w with $w \in \mathbb{L}^{\geq r}(V)$, and the existence of an element $z \in \mathbb{L}^{\geq r}(V)$ with dz = w + t and $t \in \mathbb{L}^{\geq r+1}(V)$. Then, we have $u \sim_{O(r)} v + w'$ with $w' \in \mathbb{L}^{\geq r+1}(V)$.

Proof Let
$$f:(\widehat{\mathbb{L}}(a,c,y),d) \to (\widehat{\mathbb{L}}(V),d)$$
 be the morphism defined by $f(a) = u$, $f(y) = -z$, and $f(c) = -dz$. Then $f \circ \psi$ is a path in $(\widehat{\mathbb{L}}(V),d)$ with $f\psi(a) = u$,

472

Maurer-Cartan Elements in Lie Models

 $f\psi(x) = -z$. To determine $f\psi(b)$, we first observe that

$$\psi(b) = a + c + \sum_{n\geq 1} \frac{(sd)^n}{n!}(a)$$

Remark also that $f(sd)^n(a) \in \mathbb{L}^{\ge r+1}(V)$, for $n \ge 1$. Therefore,

$$f \circ \psi(b) \in f(a) + f(c) + \mathbb{L}^{\geq r+1}(V) = u - dz + \mathbb{L}^{\geq r+1}(V) = v - t + \mathbb{L}^{\geq r+1}(V),$$

with $t \in \mathbb{L}^{\geq r+1}(V)$.

Lemma 1.4 Let $(u_r)_{r \ge n_0}$ be a sequence of Maurer-Cartan elements in $(\widehat{\mathbb{L}}(V), d)$ such that $u_r = z + v_r$ with $v_r \in \mathbb{L}^{\ge r}(V)$. If $u_r \sim_{O(r)} u_{r+1}$ for each $r \ge n_0$, then we have $u_{n_0} \sim_{O(n_0)} z$.

Proof By hypothesis, for $r \ge n_0$, there is a morphism

$$\varphi_r: (\widehat{\mathbb{L}}(a, b, x), d) \longrightarrow (\widehat{\mathbb{L}}(V), d)$$

with $\varphi_r(a) = u_r$, $\varphi_r(b) = u_{r+1}$ and $\varphi_r(x) \in \mathbb{L}^{\geq r}(V)$. For $r > n_0$, we define w_r to be the Baker–Campbell–Hausdorff product

$$w_r = \varphi_{n_0}(x) * \varphi_{n_0+1}(x) * \cdots * \varphi_{r-1}(x).$$

From the associativity established in [8], the element w_r is a path from u_{n_0} to u_r . We form the infinite product

$$w = \varphi_{n_0}(x) * \varphi_{n_0+1}(x) * \cdots,$$

which is well defined in $\widehat{\mathbb{L}}(V)$ as the limit of the w_r . Now we claim that the element w is a path of order n_0 from u_{n_0} to z; *i.e.*, we have $u_{n_0} \sim_{O(n_0)} z$. Consider the element

$$y = dw - [w, z] - \sum_{n \ge 0} \frac{B_n}{n!} \operatorname{ad}_w^n (z - u_{n_0}),$$

where the B_n are the Bernoulli numbers. The element y has the same image in $\mathbb{L}(V)/\mathbb{L}^{\geq r}(V)$ as

$$dw_r - [w_r, u_r] - \sum_{n\geq 0} \frac{B_n}{n!} \operatorname{ad}_{w_r}^n (u_r - u_{n_0}).$$

This last expression is equal to 0, because w_r is a path from u_{n_0} to u_r . This implies y = 0 and proves the result.

2 Model of a Finite Connected Simplicial Complex

Proposition 2.1 Let X be a connected finite simplicial complex of dimension n; then we have an isomorphism of cDGL's

$$\mathcal{L}_X \cong \left(\widehat{\mathbb{L}}(V), d\right) \widehat{\amalg}_i \left(\widehat{\mathbb{L}}(u_i, v_i), d\right),$$

where $dv_i = u_i$, $du_i = 0$, $V = V_{\leq n-1}$, $V = \mathbb{Q}a \oplus V_{\geq 0}$, *a* is a Maurer–Cartan element and $\widehat{\square}$ denotes the completion of the coproduct. Moreover, the differential of any $x \in V_{\geq 0}$ verifies $dx + [a, x] \in \widehat{\mathbb{L}}^{\geq 2}(V_{\geq 0})$. **Proof** By Lemma 2.2, this is true if dim X = 1. Proceed by induction on *n*. We can therefore suppose that

$$X = Y \cup \bigcup_{j=1}^{k} \Delta_{j}^{n} \text{ and } (\mathcal{L}_{Y}, d) \cong (\widehat{\mathbb{L}}(V), d) \widehat{\mathrm{u}}_{i}(\widehat{\mathbb{L}}(u_{i}, v_{i}), d)$$

with $n \ge 2$, dim $Y \le n - 1$, $V = V_{\le n-2} = \mathbb{Q}a \oplus W$, $W = W_{\ge 0}$, $|v_i| \le n - 2$, $dv_i = u_i$. We set $u'_i = u_i + [a, v_i]$ and we get an isomorphism of DGL's

$$(\widehat{\mathbb{L}}(V), d_a) \widehat{\lim}_i (\widehat{\mathbb{L}}(u'_i, v_i), d_a) \longrightarrow (\mathcal{L}_Y, d_a)$$

with $d_a v_i = u'_i$, $d_a u'_i = 0$. Now, by construction of the model \mathcal{L}_X , there are cycles $\Omega_i \in (\mathcal{L}_Y)_{n-2}$ such that

$$(\mathcal{L}_X, d_a) = \left(\mathcal{L}_Y \widehat{\amalg} \widehat{\amalg}_{j=1}^k \mathbb{L}(x_j), d_a\right), \quad |x_j| = n-1, \quad d_a x_j = \Omega_j.$$

Since the inclusion $(\widehat{\mathbb{L}}(V), d_a) \hookrightarrow (\widehat{\mathbb{L}}(V), d_a) \widehat{\amalg} \widehat{\amalg}_i (\widehat{\mathbb{L}}(u'_i, v_i), d_a)$ is a quasi-isomorphism, we can choose $\Omega_i \in \widehat{\mathbb{L}}(W)$.

Let $(x_j)_{j \in \mathcal{A}}$ be the family of the x_j 's such that the differential $dx_j = \Omega_j$ has a nonzero linear part Ω_j^1 . We set $\mathcal{B} = \{1, \ldots, k\}\setminus\mathcal{A}$ and denote by \mathcal{K} the ideal generated by $\{x_j, \Omega_j^1 \mid j \in \mathcal{A}\}$. If V' is a direct summand of $\bigoplus_{j \in \mathcal{A}} \mathbb{Q}\Omega_j^1$ in V, we have an isomorphism $(\widehat{\mathbb{L}}(V'), d) \cong (\widehat{\mathbb{L}}(V), d)/\mathcal{K}$. From [1, Proposition 2.4], we deduce that the canonical surjection $\rho: (\widehat{\mathbb{L}}(V), d) \to (\widehat{\mathbb{L}}(V), d)/\mathcal{K}$ is a quasi-isomorphism. Since the DGL $(\widehat{\mathbb{L}}(V'), d)$ is cofibrant ([3, Proposition 5.5]), we can lift ρ in a quasi-isomorphism

$$\varphi: \left(\widehat{\mathbb{L}}(V'), d\right) \widehat{\amalg} \widehat{\amalg}_{j \in \mathcal{A}} \widehat{\mathbb{L}}(x_j, \Omega_j) \longrightarrow \left(\widehat{\mathbb{L}}(V), d\right)$$

and get an isomorphism

$$\mathcal{L}_X \cong \widehat{\mathbb{L}} \Big(V' \oplus \oplus_{j \in \mathbb{B}} \mathbb{Q} x_j \Big) \widehat{\mathrm{u}} \Big(\widehat{\mathrm{u}}_{j \in \mathcal{A}} \widehat{\mathbb{L}} (x_j, \Omega_j) \widehat{\mathrm{u}}_i \widehat{\mathbb{L}} (u_i, v_i) \Big).$$

Lemma 2.2 Let X be a 1-dimensional connected finite simplicial complex; then we have an isomorphism of cDGL's

$$\mathcal{L}_X \cong \left(\widehat{\mathbb{L}}(V), d\right) \widehat{\mathrm{II}}\left(\widehat{\mathbb{L}}(u_i, v_i), dv_i = u_i\right),$$

with $V = \mathbb{Q}a \oplus V_0$, $da = -\frac{1}{2}[a, a]$ and dx = -[a, x] for any $x \in V_0$.

Proof Let x_0 be a vertex of X and let a denote the corresponding Maurer–Cartan element in \mathcal{L}_X . By hypothesis, X is a connected finite graph, and we denote by \mathcal{T} a maximal tree in X. For each vertex v_i different from x_0 , there is a unique path $\mathcal{P}_{v_i} \in \mathcal{T}$ of minimal length from x_0 to v_i . We remark that each edge in \mathcal{T} is the terminal edge of some path \mathcal{P}_{v_i} for some vertex v_i different from x_0 . The vertices v_i correspond to Maurer–Cartan elements a_i in \mathcal{L}_X . With each path \mathcal{P}_{v_i} we associate the Baker–Campbell–Hausdorff product p_i of the edges composing this path.

If b_k is an edge that does not belong to \mathcal{T} , we denote by v_{k_0} and v_{k_1} its endpoints. If each of them is different from x_0 , we form the loop consisting of the path $\mathcal{P}_{v_{k_0}}$ followed by b_k and $(\mathcal{P}_{v_{k_1}})^{-1}$. If $v_{k_0} = x_0$, we form the loop consisting of b_k and $(\mathcal{P}_{v_{k_1}})^{-1}$ and do similarly if $v_{k_1} = x_0$. Then we denote by c_k the Baker–Campbell–Hausdorff product of the edges composing this loop.

474

Maurer-Cartan Elements in Lie Models

From these two constructions, we get a morphism of DGL's

$$f: (\mathcal{L}', d) := \left(\widehat{\mathbb{L}}(a, a_i, p_i, c_k), d\right) \longrightarrow \mathcal{L}_X$$

The map *f* induces an isomorphism on the indecomposable elements, and thus it is an isomorphism. In (\mathcal{L}', d) , for each *i*, $(\widehat{\mathbb{L}}(a, a_i, p_i), d)$ is a Lawrence-Sullivan interval connecting *a* to a_i . On the other hand (see [1, Proposition 2.7]), for each *k* we have $dc_k = -[a, c_k]$.

Recall now from (1.1) that for each *i*, there is an isomorphism

$$\psi_i: \left(\widehat{\mathbb{L}}(a, a_i, p_i), d\right) \longrightarrow \left(\widehat{\mathbb{L}}(a, u_i, v_i), d\right)$$

with $\psi_i(a) = a$, $\psi_i(p_i) = v_i$, $du_i = 0$ and $dv_i = u_i$. The morphisms ψ_i can be pasted together and give an isomorphism

$$: (\mathcal{L}', d) \longrightarrow (\widehat{\mathbb{L}}(a, u_i, v_i, c_k), d)$$

with $dc_k = -[a, c_k]$ and $dv_i = u_i$. Therefore,

$$\mathbb{L}_X \cong \left(\widehat{\mathbb{L}}(V), d\right) \widehat{\mathrm{II}}\left(\widehat{\mathbb{L}}(u_i, v_i), d\right)$$

with $V = \mathbb{Q}a \oplus V_0$ and dx = -[a, x] for any $x \in V_0$.

Corollary 2.3 Using the notation of Proposition 2.1, we have

$$\widetilde{MC}(\mathcal{L}_X) = \widetilde{MC}(\widehat{\mathbb{L}}(V), d)$$

Proof This follows directly from [3, Proposition 2.4].

3 Maurer–Cartan Elements and Connected Components

Proof of the Theorem Let *X* be a finite simplicial complex and denote by X_i its connected components for i = 1, ..., k. Then $\mathcal{L}_X = \widehat{\amalg}_{i=1}^k \mathcal{L}_{X_i}$. For each i = 1, ..., k, we have

 $\mathcal{L}_{X_i} \cong \left(\widehat{\mathbb{L}}(V(i), d)\widehat{\mathbb{I}}(\widehat{\mathbb{L}}(u_{ij}, v_{ij}), d),\right)$

with $d(u_{ij}) = v_{ij}$, and $V(i) = \mathbb{Q}a_i \oplus V(i)_{\geq 0}$ verifies the properties established in Proposition 2.1. Moreover, we deduce from Corollary 2.3 that

$$\widetilde{MC}(\mathcal{L}_X) = \widetilde{MC}(\widehat{\amalg}_{i=1}^k(\widehat{\mathbb{L}}(V(i)), d))$$

A Maurer–Cartan element $u \in \mathcal{L}_X$ can be written in the form

$$u=\sum_{i=1}^k\lambda_ia_i+\mu,$$

where μ is a decomposable element and $\lambda_i \in \mathbb{Q}$. From a short computation, we observe that all the numbers λ_i , except at most one, are equal to zero.

• If $\lambda_1 \neq 0$, then $\lambda_1 = 1$ and we set $a = a_1$, V = V(1) and $W = \bigoplus_{i\geq 2} V(i)$. We denote by E_r the subvector space of \mathcal{L}_X generated by the Lie words containing exactly r elements of $V_{\geq 0}$. The differential d can be written as a series $d = \sum_{i\geq 1} d_i$, with $d_i(V) \subset E_i$. By hypothesis, we have $d_1(v) = -[a, v]$ if $v \in V_{\geq 0}$ and $d_1(w) = 0$ if $w \in W$. Remark now that since a is in degree -1 and $V \oplus W$ is finite dimensional, the ideal $E_{\geq 1}$ generated by $V_{\geq 0}$ is the free complete DGL on the elements $a^r \boxtimes v_k := ad_a^r(v_k)$

and $a^r \boxtimes w_k := \operatorname{ad}_a^r(w_k)$, where $r \ge 0$, the v_k 's run over a graded basis of $V_{\ge 0}$ and the w_k over a graded basis of W. Recall that $v \in V_{\ge 0}$ and $w \in W$. A simple computation gives

$$d_1(a^r \boxtimes v) = \begin{cases} -a^{r+1} \boxtimes v, & \text{if } r \text{ is even,} \\ 0, & \text{if } r \text{ is odd,} \end{cases}$$
$$d_1(a^r \boxtimes w) = \begin{cases} 0, & \text{if } r \text{ is even,} \\ -a^{r+1} \boxtimes w, & \text{if } r \text{ is odd.} \end{cases}$$

The derivation defined by $\theta = -ad_a - d_1$ verifies that

$$\theta(a^r \boxtimes v) = \begin{cases} 0, & \text{if } r \text{ is even,} \\ -a^{r+1} \boxtimes v, & \text{if } r \text{ is odd,} \end{cases}$$
$$\theta(a^r \boxtimes w) = \begin{cases} -a^{r+1} \boxtimes w, & \text{if } r \text{ is even,} \\ 0, & \text{if } r \text{ is odd.} \end{cases}$$

Clearly, we have $\theta^2 = 0$ and $H(E_{\geq 1}, \theta) = \widehat{\mathbb{L}}(V)$. In particular, $H_{-1}(E_{\geq 1}, \theta) = 0$. We construct a sequence of Maurer–Cartan elements (u_n) such that $u_1 = u$, $u_n - a \in E_{\geq n}$ and $u_n \sim_{O(n)} u_{n+1}$. Suppose u_n has been constructed; then we can write it as

$$u_n = a + \omega_n + \gamma$$
, with $\omega_n \in E_n$, $\gamma \in E_{>n}$.

Since u_n is a Maurer–Cartan element, we have $d_1(\omega_n) = -[a, \omega_n]$ and $\theta(\omega_n) = 0$. From $H_{-1}(E_{\geq 1}, \theta) = 0$, we deduce the existence of $t \in E_n$ such that $\omega_n = \theta(t)$. This implies that $\omega_n = -[a, t] - d_1(t)$. Recall from (1.1) the morphism

$$\psi: \left(\widehat{\mathbb{L}}(a, b, x), d\right) \longrightarrow \left(\widehat{\mathbb{L}}(a, e, c), d\right)$$

and construct a morphism μ : $(\widehat{\mathbb{L}}(a, e, c), d) \rightarrow (\widehat{\mathbb{L}}(\mathbb{Q}a \oplus V), d)$, by $\mu(a) = u_n, \mu(e) = t$ and $\mu(c) = dt$. A short computation gives

$$u \circ \psi(b) = a + \gamma', \quad \gamma' \in E_{>n}.$$

The path $\mu \circ \psi$ defines u_{n+1} such that $u_n \sim_{O(n)} u_{n+1}$, and the result follows from Lemma 1.4.

• Suppose now $\lambda_i = 0$ for i = 1, ..., k. We write $u = \sum_{i \ge 1} \omega_i$ with $\omega_i \in E_i$. Since u is a Maurer-Cartan element, we have $d\omega_1 = 0$. From $H(\mathcal{L}_X, d) = 0$, we deduce the existence of ω'_1 such that $\omega_1 = d\omega'_1$ and Lemma 1.3 implies $u \sim_{O(1)} u_2$ with $u_2 \in E_{\ge 2}$. With the same process, we get a sequence of Maurer-Cartan elements $u_n \in E_{\ge n}$ such that $u_n \sim_{O(n)} u_{n+1}$. Finally, Lemma 1.4 gives $u \sim 0$.

References

- U. Buijs, Y. Félix, A. Murillo, and D. Tanré, *Lie models of simplicial sets and representability of the Quillen functor*. arxiv:1508.01442
- [2] _____, The Deligne groupoid of the Lawrence-Sullivan interval. Topology Appl. 204(2016), 1–7. http://dx.doi.org/10.1016/j.topol.2016.02.004
- [3] _____, Rational Lie models for non-simply connected spaces and Bousfield-Kan completion. arxiv:1601.05331
- [4] U. Buijs and A. Murillo, The Lawrence-Sullivan interval is the right model of I⁺. Algebr. Geom. Topol. 13(2013), no. 1, 577–588. http://dx.doi.org/10.2140/agt.2013.13.577

476

- [5] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory. Graduate Texts in
- Mathematics, 205, Springer-Verlag, New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0105-9
 [6] ______, Rational homotopy theory. II. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. http://dx.doi.org/10.1142/9473
- [7] A. Gómez-Tato, S. Halperin, and D. Tanré, Rational homotopy theory for non-simply connected spaces. Trans. Amer. Math. Soc. 352(2000), no. 4, 1493–1525. http://dx.doi.org/10.1090/S0002-9947-99-02463-0
- [8] R. Lawrence and D. Sullivan, A formula for topology/deformations and its significance. Fund. Math. 225(2014), no. 1, 229–242. http://dx.doi.org/10.4064/im225-1-10
- [9] P.-E. Parent and D. Tanré, Lawrence-Sullivan models for the interval. Topology Appl. 159(2012), no. 1, 371–378. http://dx.doi.org/10.1016/j.topol.2011.10.006
- [10] D. Quillen, Rational homotopy theory. Ann. of Math. (2) 90(1969), 205–295. http://dx.doi.org/10.2307/1970725
- [11] D. Sullivan, Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47(1977), 269–331.
- [12] D. Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan. Lecture Notes in Mathematics, 1025, Springer-Verlag, Berlin, 1983. http://dx.doi.org/10.1007/BFb0071482

(U. Buijs, A. Murillo) Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Ap. 59, 29080-Málaga, España

e-mail: ubuijs@uma.es aniceto@uma.es

(Y. Félix) Institut de Mathématiques et Physique, Université Catholique de Louvain-la-Neuve, Louvainla-Neuve, Belgique

e-mail: Yves.felix@uclouvain.be

(D. Tanré) Département de Mathématiques, UMR 8524, Université de Lille 1, 59655 Villeneuve d'Ascq Cedex, France

e-mail: Daniel.Tanre@univ-lille1.fr