Maurer-Cartan Elements in the Lie Models of Finite Simplicial Complexes

Urtzi Buijs, Yves Félix, Aniceto Murillo, and Daniel Tanré

Abstract

In a previous work, we associated a complete differential graded Lie algebra to any finite simplicial complex in a functorial way. Similarly, we also have a realization functor from the category of complete differential graded Lie algebras to the category of simplicial sets. We have already interpreted the homology of a Lie algebra in terms of homotopy groups of its realization. In this paper, we begin a dictionary between models and simplicial complexes by establishing a correspondence between the Deligne groupoid of the model and the connected components of the finite simplicial complex.

Let $\mathrm{MC}(L)$ be the set of Maurer-Cartan elements of a differential graded Lie algebra (L, d) over \mathbb{Q} (henceforth DGL). The group L_{0} of elements of degree 0 , endowed with the Baker-Campbell-Hausdorff product, acts on $\mathrm{MC}(L)$ by

$$
x \mathcal{G} z=e^{\operatorname{ad}_{x}}(z)-\frac{e^{\operatorname{ad}_{x}}-1}{\operatorname{ad}_{x}}(d x),
$$

with $x \in L_{0}$ and $z \in \operatorname{MC}(L)$. We denote by $\widetilde{\mathrm{MC}}(L)$ the orbit space for this action.
In [1], we constructed a functor \mathcal{L} from the category of finite simplicial complexes to the category of complete differential graded Lie algebras (henceforth cDGL), $X \mapsto$ \mathcal{L}_{X}. Rational homotopy has been mainly introduced and used for simply connected spaces [5,10,11]. In [11], there is also an extension to non-simply connected spaces over \mathbb{R} via fiber bundles (see [7] for an adaptation to \mathbb{Q}). Recently, the classical approach has been extended to non-simply connected spaces in [6], and the functor \mathcal{L} gives the corresponding extension for DGL’s.

In this paper we prove the following relation between \mathcal{L}_{X} and the topology of X.

Theorem For any finite simplicial complex X, there is a bijection

$$
\pi_{0}\left(X_{+}\right) \cong \widetilde{M C}\left(\mathcal{L}_{X}\right)
$$

where $X_{+}=X \sqcup\{*\}$.
The case of the interval $X=[0,1]$ was solved in [2]. In Section 1, we make the necessary recalls on Maurer-Cartan elements and the functor \mathcal{L}. Section 2 is devoted

[^0]to a decomposition of \mathcal{L}_{X} when X is connected. Finally, the proof of the theorem is done in Section 3.

1 Functor \mathcal{L} and Maurer-Cartan Elements

Recall that a $\operatorname{DGL}(L, d)$ is complete if $L=\lim _{\varliminf_{n}} L / L^{[n]}$, where $L^{[n]}$ denotes the sequence of ideals defined by

$$
L^{[1]}=L \quad \text { and } \quad L^{[n+1]}=\left[L, L^{[n]}\right], n \geq 2 .
$$

When V is finite dimensional, $\widehat{\mathbb{L}}(V)=\lim _{n} \mathbb{L}(V) / \mathbb{L}(V)^{[n]}$ is the completion of the free graded Lie algebra $\mathbb{L}(V)$.

Let (L, d) be a cDGL. An element $u \in L_{-1}$ is a Maurer-Cartan element if

$$
d u=-\frac{1}{2}[u, u] .
$$

In [8], R. Lawrence and D. Sullivan constructed a $\operatorname{cDGL} \mathcal{L}_{I}$ that is, in a sense that we will make precise later, a model for the interval $I=[0,1]$. More precisely,

$$
\mathcal{L}_{I}=(\widehat{\mathbb{L}}(a, b, x), d),
$$

where a and b are Maurer-Cartan elements and x is an element of degree 0 with

$$
d x=\operatorname{ad}_{x} b+\frac{\operatorname{ad}_{x}}{e^{\mathrm{ad}_{x}-1}}(b-a)=[x, b]+\sum_{n=0}^{\infty} \frac{B_{n}}{n!} \operatorname{ad}_{x}^{n}(b-a) .
$$

Here, the B_{n} are the well known Bernoulli numbers. This model has been described in detail in $[4,9]$.

In a $\operatorname{cDGL}(L, d)$, two Maurer-Cartan elements u_{1} and u_{2} are equivalent if they are in the same orbit for the gauge action. By construction, this is equivalent to the existence of a morphism of DGL's, $f: \mathcal{L}_{I} \rightarrow(L, d)$ with $f(a)=u_{1}$ and $f(b)=u_{2}$. The map f is called a path from u_{1} to u_{2}. The set of equivalence classes of Maurer-Cartan elements is denoted $\widetilde{M C}(L)$.

Our purpose is the determination of $\widetilde{M C}(L)$ for a family of cDGL's directly related to topology. In fact, the $\operatorname{cDGL} \mathcal{L}_{I}$ is the first example of a Lie model for a general simplicial complex. More generally, there is a functor \mathcal{L}, unique up to isomorphism, $X \mapsto \mathcal{L}_{X}$, from the category of finite simplicial complexes to the category of cDGL's. As any finite simplicial complex is a subcomplex of some Δ^{n}, it is sufficient to construct the models, $\mathcal{L}_{\Delta^{n}}$, of the Δ^{n} 's.

Proposition 1.1 ([1, Theorem 2.8]) The $\mathrm{cDGL} \mathcal{L}_{\Delta^{n}}$ is defined, up to isomorphism, by the following properties.
(i) The cDGL's $\mathcal{L}_{\Delta^{n}}$ are natural with respect to the injections of the subcomplexes Δ^{p}, for all $p<n$.
(ii) For $n=0$, we have $\mathcal{L}_{\Delta^{0}}=(\widehat{\mathbb{L}}(a), d)$ where a is a Maurer-Cartan element.
(iii) The linear part d_{1} of the differential of $\mathcal{L}_{\Delta^{n}}$ is the desuspension of the differential δ of the chain complex $C_{*}\left(\Delta^{n}\right)$.

In the case where $\Delta^{1}=[0,1]$, we recover the Lawrence-Sullivan construction. For each finite simplicial complex, X, contained in Δ^{n}, the Lie subalgebra $\widehat{\mathbb{L}}\left(s^{-1} C_{*}(X)\right)$ is preserved by the differential of $\mathcal{L}_{\Delta^{n}}$ and gives a model \mathcal{L}_{X} of X.

When a is a Maurer-Cartan element in \mathcal{L}_{X}, we denote by d_{a} the perturbed differential $d_{a}=d+\operatorname{ad}_{a}$. The first properties of $\mathcal{L}_{X}=(\widehat{\mathbb{L}}(W), d)$ are contained in the following statements extracted from $[1,3]$.
(a) If d_{1} denotes the linear part of the differential d, then $\left(W, d_{1}\right)$ is isomorphic to the desuspension of the simplicial chain complex $C_{*}(X)$ of X.
(b) If $f: X \rightarrow Y$ is the inclusion of a subcomplex, then $\mathcal{L}_{f}: \mathcal{L}_{X} \rightarrow \mathcal{L}_{Y}$ is equal to $\widehat{\mathbb{L}}\left(s^{-1} C_{*}(f)\right)$.
(c) $H\left(\mathcal{L}_{X}\right)=0([3$, Theorem 4.1]).
(d) If X is simply connected, and a is the Maurer-Cartan element associated with a 0 -simplex, then $\left(\widehat{\mathbb{L}}(W), d_{a}\right)$ is quasi-isomorphic to the usual rational Quillen model of X [1, Theorem 7.4(ii)].
(e) If X is connected and a is the Maurer-Cartan element associated with a 0 -simplex, then $H_{0}\left(\widehat{\mathbb{L}}(W), d_{a}\right)$ is isomorphic to the Malcev Completion of $\pi_{1}(X)$ ($[1$, Theorem 9.1]).
Recall that the Lawrence-Sullivan interval \mathcal{L}_{I} is isomorphic to the cylinder construction ([12]) on a Maurer-Cartan element ([3, Theorem 6.3]). More precisely, consider the $\operatorname{cDGL}(\widehat{\mathbb{L}}(a, c, y), d)$ with $|y|=0,|c|=-1, d a=-\frac{1}{2}[a, a], d y=c$ and $d c=0$ that we equip with a derivation s of degree +1 , defined by $s(a)=y, s(c)=s(y)=0$. Then the morphism

$$
\begin{equation*}
\psi:(\widehat{\mathbb{L}}(a, b, x), d) \longrightarrow(\widehat{\mathbb{L}}(a, c, y), d) \tag{1.1}
\end{equation*}
$$

defined by $\psi(a)=a, \psi(b)=e^{s d+d s}(a), \psi(x)=y$ is an isomorphism of DGL's. In particular,

$$
\psi(b)=a+c+\sum_{n \geq 1} \frac{(s d)^{n}}{n!}(a)=e^{\operatorname{ad}_{-y}}(a)+\frac{e^{\mathrm{ad}_{-y}}-1}{\operatorname{ad}_{-y}}(c) .
$$

Definition 1.2 Two Maurer-Cartan elements u, v in a $\operatorname{cDGL}(\widehat{\mathbb{L}}(V), d)$ are called equivalent of order r if there is a morphism

$$
\varphi:(\widehat{\mathbb{L}}(a, b, x), d) \longrightarrow(\widehat{\mathbb{L}}(V), d)
$$

with $\varphi(x) \in \mathbb{L}^{\geq r}(V), \varphi(a)=u$ and $\varphi(b)=v$. We denote this relation by $u \sim_{O(r)} v$.
This relation is a key point in the proof of Proposition 2.1. We end this section with two properties of $\sim_{O(r)}$.

Lemma 1.3 Let u be a Maurer-Cartan element in $(\widehat{\mathbb{L}}(V), d)$. We suppose $u=v+w$ with $w \in \mathbb{L}^{\geq r}(V)$, and the existence of an element $z \in \mathbb{L}^{\geq r}(V)$ with $d z=w+t$ and $t \in \mathbb{L}^{\geq r+1}(V)$. Then, we have $u \sim_{O(r)} v+w^{\prime}$ with $w^{\prime} \in \mathbb{L}^{\geq r+1}(V)$.

Proof Let $f:(\widehat{\mathbb{L}}(a, c, y), d) \rightarrow(\widehat{\mathbb{L}}(V), d)$ be the morphism defined by $f(a)=u$, $f(y)=-z$, and $f(c)=-d z$. Then $f \circ \psi$ is a path in $(\widehat{\mathbb{L}}(V), d)$ with $f \psi(a)=u$,
$f \psi(x)=-z$. To determine $f \psi(b)$, we first observe that

$$
\psi(b)=a+c+\sum_{n \geq 1} \frac{(s d)^{n}}{n!}(a)
$$

Remark also that $f(s d)^{n}(a) \in \mathbb{L}^{\geq r+1}(V)$, for $n \geq 1$. Therefore,

$$
f \circ \psi(b) \in f(a)+f(c)+\mathbb{L}^{\geq r+1}(V)=u-d z+\mathbb{L}^{\geq r+1}(V)=v-t+\mathbb{L}^{\geq r+1}(V)
$$

with $t \in \mathbb{L}^{\geq r+1}(V)$.
Lemma 1.4 Let $\left(u_{r}\right)_{r \geq n_{0}}$ be a sequence of Maurer-Cartan elements in $(\widehat{\mathbb{L}}(V), d)$ such that $u_{r}=z+v_{r}$ with $v_{r} \in \mathbb{L}^{\geq r}(V)$. If $u_{r} \sim_{O(r)} u_{r+1}$ for each $r \geq n_{0}$, then we have $u_{n_{0}} \sim O\left(n_{0}\right) z$.

Proof By hypothesis, for $r \geq n_{0}$, there is a morphism

$$
\varphi_{r}:(\widehat{\mathbb{L}}(a, b, x), d) \longrightarrow(\widehat{\mathbb{L}}(V), d)
$$

with $\varphi_{r}(a)=u_{r}, \varphi_{r}(b)=u_{r+1}$ and $\varphi_{r}(x) \in \mathbb{L}^{\geq r}(V)$. For $r>n_{0}$, we define w_{r} to be the Baker-Campbell-Hausdorff product

$$
w_{r}=\varphi_{n_{0}}(x) * \varphi_{n_{0}+1}(x) * \cdots * \varphi_{r-1}(x)
$$

From the associativity established in [8], the element w_{r} is a path from $u_{n_{0}}$ to u_{r}. We form the infinite product

$$
w=\varphi_{n_{0}}(x) * \varphi_{n_{0}+1}(x) * \cdots
$$

which is well defined in $\widehat{\mathbb{L}}(V)$ as the limit of the w_{r}. Now we claim that the element w is a path of order n_{0} from $u_{n_{0}}$ to z; i.e., we have $u_{n_{0}} \sim_{O\left(n_{0}\right)} z$. Consider the element

$$
y=d w-[w, z]-\sum_{n \geq 0} \frac{B_{n}}{n!} \operatorname{ad}_{w}^{n}\left(z-u_{n_{0}}\right)
$$

where the B_{n} are the Bernoulli numbers. The element y has the same image in $\mathbb{L}(V) / \mathbb{L}^{\geq r}(V)$ as

$$
d w_{r}-\left[w_{r}, u_{r}\right]-\sum_{n \geq 0} \frac{B_{n}}{n!} \operatorname{ad}_{w_{r}}^{n}\left(u_{r}-u_{n_{0}}\right)
$$

This last expression is equal to 0 , because w_{r} is a path from $u_{n_{0}}$ to u_{r}. This implies $y=0$ and proves the result.

2 Model of a Finite Connected Simplicial Complex

Proposition 2.1 Let X be a connected finite simplicial complex of dimension n; then we have an isomorphism of cDGL's

$$
\mathcal{L}_{X} \cong(\widehat{\mathbb{L}}(V), d) \widehat{\amalg}_{i}\left(\widehat{\mathbb{L}}\left(u_{i}, v_{i}\right), d\right),
$$

where $d v_{i}=u_{i}, d u_{i}=0, V=V_{\leq n-1}, V=\mathbb{Q} a \oplus V_{\geq 0}$, a is a Maurer-Cartan element and $\widehat{\amalg}$ denotes the completion of the coproduct. Moreover, the differential of any $x \in V_{\geq 0}$ verifies $d x+[a, x] \in \stackrel{\mathbb{\mathbb { L }}}{ } \geq^{2}\left(V_{\geq 0}\right)$.

Proof By Lemma 2.2, this is true if $\operatorname{dim} X=1$. Proceed by induction on n. We can therefore suppose that

$$
X=Y \cup \cup_{j=1}^{k} \Delta_{j}^{n} \quad \text { and } \quad\left(\mathcal{L}_{Y}, d\right) \cong(\widehat{\mathbb{L}}(V), d) \widehat{\amalg}_{i}\left(\widehat{\mathbb{L}}\left(u_{i}, v_{i}\right), d\right)
$$

with $n \geq 2$, $\operatorname{dim} Y \leq n-1, V=V_{\leq n-2}=\mathbb{Q} a \oplus W, W=W_{\geq 0},\left|v_{i}\right| \leq n-2, d v_{i}=u_{i}$. We set $u_{i}^{\prime}=u_{i}+\left[a, v_{i}\right]$ and we get an isomorphism of DGL's

$$
\left(\widehat{\mathbb{L}}(V), d_{a}\right) \widehat{\mathrm{U}}_{i}\left(\widehat{\mathbb{L}}\left(u_{i}^{\prime}, v_{i}\right), d_{a}\right) \longrightarrow\left(\mathcal{L}_{Y}, d_{a}\right),
$$

with $d_{a} v_{i}=u_{i}^{\prime}, d_{a} u_{i}^{\prime}=0$. Now, by construction of the model \mathcal{L}_{X}, there are cycles $\Omega_{j} \in\left(\mathcal{L}_{Y}\right)_{n-2}$ such that

$$
\left(\mathcal{L}_{X}, d_{a}\right)=\left(\mathcal{L}_{Y} \widetilde{\amalg \mathbb{U}}_{j=1}^{k} \mathbb{L}\left(x_{j}\right), d_{a}\right), \quad\left|x_{j}\right|=n-1, \quad d_{a} x_{j}=\Omega_{j} .
$$

Since the inclusion $\left(\widehat{\mathbb{L}}(V), d_{a}\right) \hookrightarrow\left(\widehat{\mathbb{L}}(V), d_{a}\right) \widehat{\amalg \mathbb{U}}_{i}\left(\widehat{\mathbb{L}}\left(u_{i}^{\prime}, v_{i}\right), d_{a}\right)$ is a quasi-isomorphism, we can choose $\Omega_{j} \in \widehat{\mathbb{L}}(W)$.

Let $\left(x_{j}\right)_{j \in \mathcal{A}}$ be the family of the x_{j} 's such that the differential $d x_{j}=\Omega_{j}$ has a nonzero linear part Ω_{j}^{1}. We set $\mathcal{B}=\{1, \ldots, k\} \backslash \mathcal{A}$ and denote by \mathcal{K} the ideal generated by $\left\{x_{j}, \Omega_{j}^{1} \mid j \in \mathcal{A}\right\}$. If V^{\prime} is a direct summand of $\oplus_{j \in \mathcal{A}} \mathbb{Q} \Omega_{j}^{1}$ in V, we have an isomorphism $\left(\widehat{\mathbb{L}}\left(V^{\prime}\right), d\right) \cong(\widehat{\mathbb{L}}(V), d) / \mathcal{K}$. From [1, Proposition 2.4], we deduce that the canonical surjection $\rho:(\widehat{\mathbb{L}}(V), d) \rightarrow(\widehat{\mathbb{L}}(V), d) / \mathcal{K}$ is a quasi-isomorphism. Since the $\operatorname{DGL}\left(\widehat{\mathbb{L}}\left(V^{\prime}\right), d\right)$ is cofibrant ([3, Proposition 5.5$\left.]\right)$, we can lift ρ in a quasi-isomorphism

$$
\varphi:\left(\widehat{\mathbb{L}}\left(V^{\prime}\right), d\right) \widehat{\amalg \widehat{\amalg}_{j \in \mathcal{A}}} \widehat{\mathbb{L}}\left(x_{j}, \Omega_{j}\right) \longrightarrow(\widehat{\mathbb{L}}(V), d)
$$

and get an isomorphism

$$
\mathcal{L}_{X} \cong \widehat{\mathbb{L}}\left(V^{\prime} \oplus \oplus_{j \in \mathcal{B}} \mathbb{Q} x_{j}\right) \widehat{\amalg}\left(\widehat{\amalg}_{j \in \mathcal{A}} \widehat{\mathbb{L}}\left(x_{j}, \Omega_{j}\right) \widehat{\amalg} \widehat{\mathbb{L}}\left(u_{i}, v_{i}\right)\right) .
$$

Lemma 2.2 Let X be a 1-dimensional connected finite simplicial complex; then we have an isomorphism of cDGL's

$$
\mathcal{L}_{X} \cong(\widehat{\mathbb{L}}(V), d) \widehat{\mathrm{U}}\left(\widehat{\mathbb{L}}\left(u_{i}, v_{i}\right), d v_{i}=u_{i}\right)
$$

with $V=\mathbb{Q} a \oplus V_{0}, d a=-\frac{1}{2}[a, a]$ and $d x=-[a, x]$ for any $x \in V_{0}$.
Proof Let x_{0} be a vertex of X and let a denote the corresponding Maurer-Cartan element in \mathcal{L}_{X}. By hypothesis, X is a connected finite graph, and we denote by \mathcal{T} a maximal tree in X. For each vertex v_{i} different from x_{0}, there is a unique path $\mathcal{P}_{v_{i}} \in \mathcal{T}$ of minimal length from x_{0} to v_{i}. We remark that each edge in \mathcal{T} is the terminal edge of some path $\mathcal{P}_{v_{i}}$ for some vertex v_{i} different from x_{0}. The vertices v_{i} correspond to Maurer-Cartan elements a_{i} in \mathcal{L}_{X}. With each path $\mathcal{P}_{v_{i}}$ we associate the Baker-Campbell-Hausdorff product p_{i} of the edges composing this path.

If b_{k} is an edge that does not belong to \mathcal{T}, we denote by $v_{k_{0}}$ and $v_{k_{1}}$ its endpoints. If each of them is different from x_{0}, we form the loop consisting of the path $\mathcal{P}_{v_{k_{0}}}$ followed by b_{k} and $\left(\mathcal{P}_{v_{k_{1}}}\right)^{-1}$. If $v_{k_{0}}=x_{0}$, we form the loop consisting of b_{k} and $\left(\mathcal{P}_{v_{k_{1}}}\right)^{-1}$ and do similarly if $v_{k_{1}}=x_{0}$. Then we denote by c_{k} the Baker-Campbell-Hausdorff product of the edges composing this loop.

From these two constructions, we get a morphism of DGL's

$$
f:\left(\mathcal{L}^{\prime}, d\right):=\left(\widehat{\mathbb{L}}\left(a, a_{i}, p_{i}, c_{k}\right), d\right) \longrightarrow \mathcal{L}_{X}
$$

The map f induces an isomorphism on the indecomposable elements, and thus it is an isomorphism. In $\left(\mathcal{L}^{\prime}, d\right)$, for each $i,\left(\widehat{\mathbb{L}}\left(a, a_{i}, p_{i}\right), d\right)$ is a Lawrence-Sullivan interval connecting a to a_{i}. On the other hand (see [1, Proposition 2.7]), for each k we have $d c_{k}=-\left[a, c_{k}\right]$.

Recall now from (1.1) that for each i, there is an isomorphism

$$
\psi_{i}:\left(\widehat{\mathbb{L}}\left(a, a_{i}, p_{i}\right), d\right) \longrightarrow\left(\widehat{\mathbb{L}}\left(a, u_{i}, v_{i}\right), d\right)
$$

with $\psi_{i}(a)=a, \psi_{i}\left(p_{i}\right)=v_{i}, d u_{i}=0$ and $d v_{i}=u_{i}$. The morphisms ψ_{i} can be pasted together and give an isomorphism

$$
\psi:\left(\mathcal{L}^{\prime}, d\right) \longrightarrow\left(\widehat{\mathbb{L}}\left(a, u_{i}, v_{i}, c_{k}\right), d\right)
$$

with $d c_{k}=-\left[a, c_{k}\right]$ and $d v_{i}=u_{i}$. Therefore,

$$
\mathcal{L}_{X} \cong(\widehat{\mathbb{L}}(V), d) \widehat{\amalg}\left(\widehat{\mathbb{L}}\left(u_{i}, v_{i}\right), d\right)
$$

with $V=\mathbb{Q} a \oplus V_{0}$ and $d x=-[a, x]$ for any $x \in V_{0}$.
Corollary 2.3 Using the notation of Proposition 2.1, we have

$$
\widetilde{M C}\left(\mathcal{L}_{X}\right)=\widetilde{M C}(\widehat{\mathbb{L}}(V), d)
$$

Proof This follows directly from [3, Proposition 2.4].

3 Maurer-Cartan Elements and Connected Components

Proof of the Theorem Let X be a finite simplicial complex and denote by X_{i} its connected components for $i=1, \ldots, k$. Then $\mathcal{L}_{X}=\widehat{\mathbb{U}}_{i=1}^{k} \mathcal{L}_{X_{i}}$. For each $i=1, \ldots, k$, we have

$$
\mathcal{L}_{X_{i}} \cong\left(\widehat{\mathbb{L}}(V(i), d) \widehat{\mathbb{U}}\left(\widehat{\mathbb{L}}\left(u_{i j}, v_{i j}\right), d\right),\right.
$$

with $d\left(u_{i j}\right)=v_{i j}$, and $V(i)=\mathbb{Q} a_{i} \oplus V(i)_{\geq 0}$ verifies the properties established in Proposition 2.1. Moreover, we deduce from Corollary 2.3 that

$$
\widetilde{M C}\left(\mathcal{L}_{X}\right)=\widetilde{M C}\left(\widehat{\mathbb{U}}_{i=1}^{k}(\widehat{\mathbb{L}}(V(i)), d)\right) .
$$

A Maurer-Cartan element $u \in \mathcal{L}_{X}$ can be written in the form

$$
u=\sum_{i=1}^{k} \lambda_{i} a_{i}+\mu
$$

where μ is a decomposable element and $\lambda_{i} \in \mathbb{Q}$. From a short computation, we observe that all the numbers λ_{i}, except at most one, are equal to zero.

- If $\lambda_{1} \neq 0$, then $\lambda_{1}=1$ and we set $a=a_{1}, V=V(1)$ and $W=\oplus_{i \geq 2} V(i)$. We denote by E_{r} the subvector space of \mathcal{L}_{X} generated by the Lie words containing exactly r elements of $V_{\geq 0}$. The differential d can be written as a series $d=\sum_{i \geq 1} d_{i}$, with $d_{i}(V) \subset E_{i}$. By hypothesis, we have $d_{1}(v)=-[a, v]$ if $v \in V_{\geq 0}$ and $d_{1}(w)=0$ if $w \in W$. Remark now that since a is in degree -1 and $V \oplus W$ is finite dimensional, the ideal $E_{\geq 1}$ generated by $V_{\geq 0}$ is the free complete DGL on the elements $a^{r} \boxtimes v_{k}:=\operatorname{ad}_{a}^{r}\left(v_{k}\right)$
and $a^{r} \boxtimes w_{k}:=\operatorname{ad}_{a}^{r}\left(w_{k}\right)$, where $r \geq 0$, the v_{k} 's run over a graded basis of $V_{\geq 0}$ and the w_{k} over a graded basis of W. Recall that $v \in V_{\geq 0}$ and $w \in W$. A simple computation gives

$$
\begin{aligned}
& d_{1}\left(a^{r} \boxtimes v\right)= \begin{cases}-a^{r+1} \boxtimes v, & \text { if } r \text { is even, }, \\
0, & \text { if } r \text { is odd, }\end{cases} \\
& d_{1}\left(a^{r} \boxtimes w\right)= \begin{cases}0, & \text { if } r \text { is even, } \\
-a^{r+1} \boxtimes w, & \text { if } r \text { is odd. } .\end{cases}
\end{aligned}
$$

The derivation defined by $\theta=-\mathrm{ad}_{a}-d_{1}$ verifies that

$$
\begin{aligned}
& \theta\left(a^{r} \boxtimes v\right)= \begin{cases}0, & \text { if } r \text { is even, } \\
-a^{r+1} \boxtimes v, & \text { if } r \text { is odd, }\end{cases} \\
& \theta\left(a^{r} \boxtimes w\right)= \begin{cases}-a^{r+1} \boxtimes w, & \text { if } r \text { is even, } \\
0, & \text { if } r \text { is odd. }\end{cases}
\end{aligned}
$$

Clearly, we have $\theta^{2}=0$ and $H\left(E_{\geq 1}, \theta\right)=\widehat{\mathbb{L}}(V)$. In particular, $H_{-1}\left(E_{\geq 1}, \theta\right)=0$. We construct a sequence of Maurer-Cartan elements (u_{n}) such that $u_{1}=u, u_{n}-a \in E_{\geq n}$ and $u_{n} \sim_{O(n)} u_{n+1}$. Suppose u_{n} has been constructed; then we can write it as

$$
u_{n}=a+\omega_{n}+\gamma, \quad \text { with } \quad \omega_{n} \in E_{n}, \gamma \in E_{>n} .
$$

Since u_{n} is a Maurer-Cartan element, we have $d_{1}\left(\omega_{n}\right)=-\left[a, \omega_{n}\right]$ and $\theta\left(\omega_{n}\right)=0$. From $H_{-1}\left(E_{\geq 1}, \theta\right)=0$, we deduce the existence of $t \in E_{n}$ such that $\omega_{n}=\theta(t)$. This implies that $\omega_{n}=-[a, t]-d_{1}(t)$. Recall from (1.1) the morphism

$$
\psi:(\widehat{\mathbb{L}}(a, b, x), d) \longrightarrow(\widehat{\mathbb{L}}(a, e, c), d)
$$

and construct a morphism $\mu:(\widehat{\mathbb{L}}(a, e, c), d) \rightarrow(\widehat{\mathbb{L}}(\mathbb{Q} a \oplus V), d)$, by $\mu(a)=u_{n}, \mu(e)=$ t and $\mu(c)=d t$. A short computation gives

$$
\mu \circ \psi(b)=a+\gamma^{\prime}, \quad \gamma^{\prime} \in E_{>n}
$$

The path $\mu \circ \psi$ defines u_{n+1} such that $u_{n} \sim_{O(n)} u_{n+1}$, and the result follows from Lemma 1.4.

- Suppose now $\lambda_{i}=0$ for $i=1, \ldots, k$. We write $u=\sum_{i \geq 1} \omega_{i}$ with $\omega_{i} \in E_{i}$. Since u is a Maurer-Cartan element, we have $d \omega_{1}=0$. From $H\left(\mathcal{L}_{X}, d\right)=0$, we deduce the existence of ω_{1}^{\prime} such that $\omega_{1}=d \omega_{1}^{\prime}$ and Lemma 1.3 implies $u \sim_{O(1)} u_{2}$ with $u_{2} \in E_{\geq 2}$. With the same process, we get a sequence of Maurer-Cartan elements $u_{n} \in E_{\geq n}$ such that $u_{n} \sim_{O(n)} u_{n+1}$. Finally, Lemma 1.4 gives $u \sim 0$.

References

[1] U. Buijs, Y. Félix, A. Murillo, and D. Tanré, Lie models of simplicial sets and representability of the Quillen functor. arxiv:1508.01442
[2] ——, The Deligne groupoid of the Lawrence-Sullivan interval. Topology Appl. 204(2016), 1-7. http://dx.doi.org/10.1016/j.topol.2016.02.004
[3] , Rational Lie models for non-simply connected spaces and Bousfield-Kan completion. arxiv:1601.05331
[4] U. Buijs and A. Murillo, The Lawrence-Sullivan interval is the right model of I^{+}. Algebr. Geom. Topol. 13(2013), no. 1, 577-588. http://dx.doi.org/10.2140/agt.2013.13.577
[5] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory. Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0105-9 [6] , Rational homotopy theory. II. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. http://dx.doi.org/10.1142/9473
[7] A. Gómez-Tato, S. Halperin, and D. Tanré, Rational homotopy theory for non-simply connected spaces. Trans. Amer. Math. Soc. 352(2000), no. 4, 1493-1525. http://dx.doi.org/10.1090/S0002-9947-99-02463-0
[8] R. Lawrence and D. Sullivan, A formula for topology/deformations and its significance. Fund. Math. 225(2014), no. 1, 229-242. http://dx.doi.org/10.4064/fm225-1-10
[9] P.-E. Parent and D. Tanré, Lawrence-Sullivan models for the interval. Topology Appl. 159(2012), no. 1, 371-378. http://dx.doi.org/10.1016/j.topol.2011.10.006
[10] D. Quillen, Rational homotopy theory. Ann. of Math. (2) 90(1969), 205-295. http://dx.doi.org/10.2307/1970725
[11] D. Sullivan, Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47(1977), 269-331.
[12] D. Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan. Lecture Notes in Mathematics, 1025, Springer-Verlag, Berlin, 1983. http://dx.doi.org/10.1007/BFb0071482
(U. Buijs, A. Murillo) Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Ap. 59, 29080-Málaga, España
e-mail: ubuijs@uma.es aniceto@uma.es
(Y. Félix) Institut de Mathématiques et Physique, Université Catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgique
e-mail: Yves.felix@uclouvain.be
(D. Tanré) Département de Mathématiques, UMR 8524, Université de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
e-mail: Daniel.Tanre@univ-lille1.fr

[^0]: Received by the editors May 17, 2016; revised October 24, 2016.
 Published electronically February 21, 2017.
 Author U. B. has been partially supported by the Ramón y Cajal MINECO programme. Authors U. B. and A. M. have been partially supported by the Junta de Andalucía grant FQM-213. Author D. T. has been partially supported by the ANR-11-LABX-0007-01 "CEMPI". The authors are partially supported by the MINECO grant MTM2013-41768-P.

 AMS subject classification: 55P62, 16E45.
 Keywords: complete differential graded Lie algebra, Maurer-Cartan elements, rational homotopy theory.

