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Maurer–Cartan Elements in the Lie Models
of Finite Simplicial Complexes

Urtzi Buijs, Yves Félix, Aniceto Murillo, and Daniel Tanré

Abstract. In a previous work, we associated a complete diòerential graded Lie algebra to any ûnite
simplicial complex in a functorialway. Similarly,we also have a realization functor from the category
of complete diòerential graded Lie algebras to the category of simplicial sets. We have already inter-
preted the homology of a Lie algebra in terms of homotopy groups of its realization. In this paper,
we begin a dictionary between models and simplicial complexes by establishing a correspondence
between the Deligne groupoid of the model and the connected components of the ûnite simplicial
complex.

Let MC(L) be the set ofMaurer–Cartan elements of a diòerential graded Lie alge-
bra (L, d) overQ (henceforthDGL). _e group L0 of elements of degree 0, endowed
with the Baker–Campbell–Hausdorò product, acts on MC(L) by

xGz = eadx (z) − e
adx − 1
adx

(dx),

with x ∈ L0 and z ∈ MC(L). We denote by M̃C(L) the orbit space for this action.
In [1], we constructed a functorL from the category of ûnite simplicial complexes

to the category of complete diòerential graded Lie algebras (henceforth cDGL), X ↦
LX . Rational homotopy has been mainly introduced and used for simply connected
spaces [5,10,11]. In [11], there is also an extension to non-simply connected spaces over
R via ûber bundles (see [7] for an adaptation to Q). Recently, the classical approach
has been extended to non-simply connected spaces in [6], and the functorL gives the
corresponding extension for DGL’s.

In this paper we prove the following relation between LX and the topology of X.

_eorem For any ûnite simplicial complex X, there is a bijection

π0(X+) ≅ M̃C(LX),
where X+ = X ⊔ {∗}.

_e case of the interval X = [0, 1] was solved in [2]. In Section 1, we make the
necessary recalls onMaurer–Cartan elements and the functorL. Section 2 is devoted
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to a decomposition of LX when X is connected. Finally, the proof of the theorem is
done in Section 3.

1 Functor L and Maurer–Cartan Elements

Recall that a DGL(L, d) is complete if L = lim←Ðn
L/L[n], where L[n] denotes the se-

quence of ideals deûned by

L[1] = L and L[n+1] = [L, L[n]], n ≥ 2.

When V is ûnite dimensional, L̂(V) = limn L(V)/L(V)[n] is the completion of the
free graded Lie algebra L(V).

Let (L, d) be a cDGL. An element u ∈ L−1 is aMaurer–Cartan element if

du = − 1
2
[u, u].

In [8], R. Lawrence and D. Sullivan constructed a cDGLLI that is, in a sense that we
will make precise later, amodel for the interval I = [0, 1]. More precisely,

LI = ( L̂(a, b, x), d) ,

where a and b areMaurer–Cartan elements and x is an element of degree 0 with

dx = adx b +
adx

eadx − 1
(b − a) = [x , b] +

∞

∑
n=0

Bn

n!
adn

x(b − a).

Here, the Bn are the well known Bernoulli numbers. _is model has been described
in detail in [4,9].

In a cDGL(L, d), two Maurer–Cartan elements u1 and u2 are equivalent if they
are in the same orbit for the gauge action. By construction, this is equivalent to the
existence of amorphism of DGL’s, f ∶LI → (L, d)with f (a) = u1 and f (b) = u2. _e
map f is called a path from u1 to u2. _e set of equivalence classes ofMaurer–Cartan
elements is denoted M̃C(L).

Our purpose is the determination of M̃C(L) for a family of cDGL’s directly re-
lated to topology. In fact, the cDGLLI is the ûrst example of a Liemodel for a general
simplicial complex. More generally, there is a functor L, unique up to isomorphism,
X ↦ LX , from the category of ûnite simplicial complexes to the category of cDGL’s.
As any ûnite simplicial complex is a subcomplex of some ∆n , it is suõcient to con-
struct themodels, L∆n , of the ∆n ’s.

Proposition 1.1 ([1,_eorem 2.8]) _e cDGLL∆n is deûned, up to isomorphism, by
the following properties.
(i) _e cDGL’sL∆n are natural with respect to the injections of the subcomplexes ∆p ,

for all p < n.
(ii) For n = 0, we have L∆0 = (L̂(a), d) where a is aMaurer–Cartan element.
(iii) _e linear part d1 of the diòerential of L∆n is the desuspension of the diòerential

δ of the chain complex C∗(∆n).
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In the case where ∆1 = [0, 1], we recover the Lawrence–Sullivan construction. For
each ûnite simplicial complex, X, contained in ∆n , the Lie subalgebra L̂(s−1C∗(X))
is preserved by the diòerential of L∆n and gives amodel LX of X.

When a is a Maurer–Cartan element in LX , we denote by da the perturbed dif-
ferential da = d + ada . _e ûrst properties of LX = (L̂(W), d) are contained in the
following statements extracted from [1,3].
(a) If d1 denotes the linear part of the diòerential d, then (W , d1) is isomorphic to

the desuspension of the simplicial chain complex C∗(X) of X.
(b) If f ∶X → Y is the inclusion of a subcomplex, then L f ∶LX → LY is equal to

L̂(s−1C∗( f )).
(c) H(LX) = 0 ([3,_eorem 4.1]).
(d) If X is simply connected, and a is the Maurer–Cartan element associated with

a 0-simplex, then (L̂(W), da) is quasi-isomorphic to the usual rational Quillen
model of X [1,_eorem 7.4(ii)].

(e) If X is connected and a is theMaurer–Cartan element associatedwith a 0-simplex,
then H0(L̂(W), da) is isomorphic to theMalcev Completion of π1(X) ([1,_e-
orem 9.1]).

Recall that the Lawrence–Sullivan interval LI is isomorphic to the cylinder con-
struction ([12]) on aMaurer–Cartan element ([3,_eorem 6.3]). More precisely, con-
sider the cDGL(L̂(a, c, y), d) with ∣y∣ = 0, ∣c∣ = −1, da = − 1

2 [a, a], dy = c and dc = 0
that we equip with a derivation s of degree +1, deûned by s(a) = y, s(c) = s(y) = 0.
_en themorphism

(1.1) ψ∶ ( L̂(a, b, x), d) Ð→ ( L̂(a, c, y), d)

deûned by ψ(a) = a, ψ(b) = esd+d s(a), ψ(x) = y is an isomorphism of DGL’s. In
particular,

ψ(b) = a + c +∑
n≥1

(sd)n

n!
(a) = ead−y(a) + e

ad−y − 1
ad−y

(c).

Deûnition 1.2 Two Maurer–Cartan elements u, v in a cDGL(L̂(V), d) are called
equivalent of order r if there is amorphism

φ∶ ( L̂(a, b, x), d) Ð→ ( L̂(V), d)

with φ(x) ∈ L≥r(V), φ(a) = u and φ(b) = v. We denote this relation by u ∼O(r) v.

_is relation is a key point in the proof of Proposition 2.1. We end this sectionwith
two properties of ∼O(r).

Lemma 1.3 Let u be aMaurer–Cartan element in (L̂(V), d). We suppose u = v +w
with w ∈ L≥r(V), and the existence of an element z ∈ L≥r(V) with dz = w + t and
t ∈ L≥r+1(V). _en, we have u ∼O(r) v +w′ with w′ ∈ L≥r+1(V).

Proof Let f ∶ (L̂(a, c, y), d) → (L̂(V), d) be the morphism deûned by f (a) = u,
f (y) = −z, and f (c) = −dz. _en f ○ ψ is a path in (L̂(V), d) with fψ(a) = u,
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fψ(x) = −z. To determine fψ(b), we ûrst observe that

ψ(b) = a + c +∑
n≥1

(sd)n

n!
(a).

Remark also that f (sd)n(a) ∈ L≥r+1(V), for n ≥ 1. _erefore,

f ○ ψ(b) ∈ f (a) + f (c) +L≥r+1(V) = u − dz +L≥r+1(V) = v − t +L≥r+1(V),
with t ∈ L≥r+1(V).

Lemma 1.4 Let (ur)r≥n0 be a sequence of Maurer–Cartan elements in (L̂(V), d)
such that ur = z + vr with vr ∈ L≥r(V). If ur ∼O(r) ur+1 for each r ≥ n0, then we have
un0 ∼O(n0) z.

Proof By hypothesis, for r ≥ n0, there is amorphism

φr ∶ (L̂(a, b, x), d)Ð→ (L̂(V), d)
with φr(a) = ur , φr(b) = ur+1 and φr(x) ∈ L≥r(V). For r > n0, we deûne wr to be
the Baker–Campbell–Hausdorò product

wr = φn0(x) ∗ φn0+1(x) ∗ ⋅ ⋅ ⋅ ∗ φr−1(x).
From the associativity established in [8], the element wr is a path from un0 to ur . We
form the inûnite product

w = φn0(x) ∗ φn0+1(x) ∗ ⋅ ⋅ ⋅ ,

which is well deûned in L̂(V) as the limit of the wr . Now we claim that the element
w is a path of order n0 from un0 to z; i.e., we have un0 ∼O(n0) z. Consider the element

y = dw − [w , z] −∑
n≥0

Bn

n!
adn

w(z − un0),

where the Bn are the Bernoulli numbers. _e element y has the same image in
L(V)/L≥r(V) as

dwr − [wr , ur] −∑
n≥0

Bn

n!
adn

wr(ur − un0).

_is last expression is equal to 0, because wr is a path from un0 to ur . _is implies
y = 0 and proves the result.

2 Model of a Finite Connected Simplicial Complex

Proposition 2.1 Let X be a connected ûnite simplicial complex of dimension n; then
we have an isomorphism of cDGL’s

LX ≅ ( L̂(V), d) ∐̂i( L̂(u i , v i), d) ,
where dv i = u i , du i = 0, V = V≤n−1, V = Qa ⊕ V≥0, a is a Maurer–Cartan element
and ∐̂ denotes the completion of the coproduct. Moreover, the diòerential of any x ∈ V≥0
veriûes dx + [a, x] ∈ L̂≥2(V≥0).
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Proof By Lemma 2.2, this is true if dimX = 1. Proceed by induction on n. We can
therefore suppose that

X = Y ∪ ∪k
j=1∆

n
j and (LY , d) ≅ ( L̂(V), d) ∐̂i( L̂(u i , v i), d)

with n ≥ 2, dimY ≤ n − 1, V = V≤n−2 = Qa ⊕W ,W =W≥0, ∣v i ∣ ≤ n − 2, dv i = u i . We
set u′i = u i + [a, v i] and we get an isomorphism of DGL’s

( L̂(V), da) ∐̂∐̂i( L̂(u′i , v i), da) Ð→ (LY , da),

with dav i = u′i , dau′i = 0. Now, by construction of the model LX , there are cycles
Ω j ∈ (LY)n−2 such that

(LX , da) = (LY ∐̂∐̂k
j=1L(x j), da) , ∣x j ∣ = n − 1, dax j = Ω j .

Since the inclusion (L̂(V), da) ↪ (L̂(V), da)∐̂∐̂i(L̂(u′i , v i), da) is a quasi-isomor-
phism, we can choose Ω j ∈ L̂(W).

Let (x j) j∈A be the family of the x j ’s such that the diòerential dx j = Ω j has a non-
zero linear part Ω1

j . We set B = {1, . . . , k}/A and denote by K the ideal generated
by {x j ,Ω1

j ∣ j ∈ A}. If V ′ is a direct summand of ⊕ j∈AQΩ1
j in V , we have an iso-

morphism (L̂(V ′), d) ≅ (L̂(V), d)/K. From [1, Proposition 2.4],we deduce that the
canonical surjection ρ∶ (L̂(V), d) → (L̂(V), d)/K is a quasi-isomorphism. Since
the DGL(L̂(V ′), d) is coûbrant ([3, Proposition 5.5]), we can li� ρ in a quasi-iso-
morphism

φ∶ ( L̂(V ′), d) ∐̂∐̂ j∈AL̂(x j ,Ω j)Ð→ ( L̂(V), d)
and get an isomorphism

LX ≅ L̂(V ′ ⊕⊕ j∈BQx j) ∐̂( ∐̂ j∈AL̂(x j ,Ω j)∐̂iL̂(u i , v i)) .

Lemma 2.2 Let X be a 1-dimensional connected ûnite simplicial complex; then we
have an isomorphism of cDGL’s

LX ≅ ( L̂(V), d) ∐̂( L̂(u i , v i), dv i = u i) ,

with V = Qa ⊕ V0, da = − 1
2 [a, a] and dx = −[a, x] for any x ∈ V0.

Proof Let x0 be a vertex of X and let a denote the corresponding Maurer–Cartan
element in LX . By hypothesis, X is a connected ûnite graph, and we denote by T a
maximal tree in X. For each vertex v i diòerent from x0, there is a unique pathPv i ∈ T
ofminimal length from x0 to v i . We remark that each edge in T is the terminal edge
of some path Pv i for some vertex v i diòerent from x0. _e vertices v i correspond
to Maurer–Cartan elements a i in LX . With each path Pv i we associate the Baker–
Campbell–Hausdorò product p i of the edges composing this path.

If bk is an edge that does not belong to T,we denote by vk0 and vk1 its endpoints. If
eachof themisdiòerent from x0,we form the loop consisting of thepathPvk0 followed
by bk and (Pvk1 )

−1. If vk0 = x0,we form the loop consisting of bk and (Pvk1 )
−1 and do

similarly if vk1 = x0. _en we denote by ck the Baker–Campbell–Hausdorò product
of the edges composing this loop.

https://doi.org/10.4153/CMB-2017-003-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-003-7


Maurer–Cartan Elements in LieModels 475

From these two constructions, we get amorphism of DGL’s

f ∶ (L′ , d) ∶= ( L̂(a, a i , p i , ck), d) Ð→ LX .
_emap f induces an isomorphismon the indecomposable elements, and thus it is an
isomorphism. In (L′ , d), for each i, (L̂(a, a i , p i), d) is a Lawrence-Sullivan interval
connecting a to a i . On the other hand (see [1, Proposition 2.7]), for each k we have
dck = −[a, ck].

Recall now from (1.1) that for each i, there is an isomorphism

ψ i ∶ ( L̂(a, a i , p i), d) Ð→ ( L̂(a, u i , v i), d)
with ψ i(a) = a, ψ i(p i) = v i , du i = 0 and dv i = u i . _emorphisms ψ i can be pasted
together and give an isomorphism

ψ∶ (L′ , d)Ð→ ( L̂(a, u i , v i , ck), d)
with dck = −[a, ck] and dv i = u i . _erefore,

LX ≅ ( L̂(V), d) ∐̂( L̂(u i , v i), d)
with V = Qa ⊕ V0 and dx = −[a, x] for any x ∈ V0.

Corollary 2.3 Using the notation of Proposition 2.1, we have

M̃C(LX) = M̃C( L̂(V), d) .

Proof _is follows directly from [3, Proposition 2.4].

3 Maurer–Cartan Elements and Connected Components

Proof of the_eorem Let X be a ûnite simplicial complex and denote by X i its con-
nected components for i = 1, . . . , k. _en LX = ∐̂k

i=1LX i . For each i = 1, . . . , k, we
have

LX i ≅ ( L̂(V(i), d) ∐̂( L̂(u i j , v i j), d) ,
with d(u i j) = v i j , and V(i) = Qa i ⊕ V(i)≥0 veriûes the properties established in
Proposition 2.1. Moreover, we deduce from Corollary 2.3 that

M̃C(LX) = M̃C( ∐̂k
i=1(L̂(V(i)), d)) .

AMaurer–Cartan element u ∈ LX can be written in the form

u =
k

∑
i=1

λ ia i + µ,

where µ is a decomposable element and λ i ∈ Q. From a short computation, we ob-
serve that all the numbers λ i , except at most one, are equal to zero.
● If λ1 /= 0, then λ1 = 1 and we set a = a1, V = V(1) and W = ⊕i≥2V(i). We
denote by Er the subvector space ofLX generated by the Liewords containing exactly
r elements of V≥0. _e diòerential d can be written as a series d = ∑i≥1 d i , with
d i(V) ⊂ E i . By hypothesis, we have d1(v) = −[a, v] if v ∈ V≥0 and d1(w) = 0 if
w ∈W . Remark now that since a is in degree −1 and V ⊕W is ûnite dimensional, the
ideal E≥1 generated byV≥0 is the free completeDGLon the elements ar⊠vk ∶= adr

a(vk)
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and ar ⊠wk ∶= adr
a(wk), where r ≥ 0, the vk ’s run over a graded basis of V≥0 and the

wk over a graded basis ofW . Recall that v ∈ V≥0 and w ∈ W . A simple computation
gives

d1(ar ⊠ v) =
⎧⎪⎪⎨⎪⎪⎩

−ar+1 ⊠ v , if r is even,
0, if r is odd,

d1(ar ⊠w) =
⎧⎪⎪⎨⎪⎪⎩

0, if r is even,
−ar+1 ⊠w , if r is odd.

_e derivation deûned by θ = − ada −d1 veriûes that

θ(ar ⊠ v) =
⎧⎪⎪⎨⎪⎪⎩

0, if r is even,
−ar+1 ⊠ v , if r is odd,

θ(ar ⊠w) =
⎧⎪⎪⎨⎪⎪⎩

−ar+1 ⊠w , if r is even,
0, if r is odd.

Clearly, we have θ2 = 0 and H(E≥1 , θ) = L̂(V). In particular, H−1(E≥1 , θ) = 0. We
construct a sequence ofMaurer–Cartan elements (un) such that u1 = u, un − a ∈ E≥n
and un ∼O(n) un+1. Suppose un has been constructed; then we can write it as

un = a + ωn + γ, with ωn ∈ En , γ ∈ E>n .
Since un is a Maurer–Cartan element, we have d1(ωn) = −[a,ωn] and θ(ωn) = 0.
From H−1(E≥1 , θ) = 0, we deduce the existence of t ∈ En such that ωn = θ(t). _is
implies that ωn = −[a, t] − d1(t). Recall from (1.1) themorphism

ψ∶ ( L̂(a, b, x), d) Ð→ ( L̂(a, e , c), d)

and construct amorphism µ∶ (L̂(a, e , c), d)→ (L̂(Qa⊕V), d), by µ(a) = un , µ(e) =
t and µ(c) = dt. A short computation gives

µ ○ ψ(b) = a + γ′ , γ′ ∈ E>n .
_e path µ ○ ψ deûnes un+1 such that un ∼O(n) un+1, and the result follows from
Lemma 1.4.
● Suppose now λ i = 0 for i = 1, . . . , k. We write u = ∑i≥1 ω i with ω i ∈ E i . Since u
is a Maurer–Cartan element, we have dω1 = 0. From H(LX , d) = 0, we deduce the
existence of ω′1 such that ω1 = dω′1 and Lemma 1.3 implies u ∼O(1) u2 with u2 ∈ E≥2.
With the same process, we get a sequence ofMaurer–Cartan elements un ∈ E≥n such
that un ∼O(n) un+1. Finally, Lemma 1.4 gives u ∼ 0.
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