P. Bouchet,

European Southern Observatory,
J.P. Swings

European Southern Observatory and
Institut d'Astrophysique, Université de Liège

Thirty-five peculiar emission line objects
(essentially $B[e]$ stars) were observed at $J(1.2 \mu)$, H(1.6 μ), $K(2.2 \mu), L(3.5 \mu)$, and $M(4.8 \mu)$ at the E.S.O. 1 m telescope where the photometer is equipped with an InSb detector. The results of the observations performed during several nights and days in Feb. 1979 and March 1980 are listed in Table 1 .

Our K magnitudes and $H-K$ color indices are compared in Table 2 with those obtained in the early 1970 's and given e.g. in Allen and Swings (1976, Astron. Astrophys. 47, 293). Only one case (M1-11) is definitely variable at K, as already reported by Allen (1973, M.N.R.A.S. 161, 145); six other objects are marginally variable in $H-K$.

It therefore appears that the dust surrounding these peculiar emission-line objects, although patchy, does exist in sufficient quantities and at relatively constant temperature(s) so that repeated observations in the near infrared do not reveal any really meaningful (> . 1 or . 2 m) variation.

[^0]M. Jaschek and H.-G. Groth (eds.), Be Stars, 241-245.

Copyright © 1982 by the IAU .

TABLE 1
NEAR INFRARED MAGNITUDES OF b[0] OBJECTS

Object		$\begin{aligned} & \text { Dat } \\ & (\mathrm{Yr} \\ & \mathrm{Da} \end{aligned}$	$t e$ r, ay)	v	J		H		K		L		M	
HD 45677	79:02:17			8.5	$7.79 \pm$. 10	$6.49 \pm$6.44	. 08	$4.83 \pm$. 10	$2.13 \pm$. 15	$1.07 \pm$. 16
	79	02	220		7.70	. 03		. 05	4.63	. 10	1.94	. 06	1.00	. 11
	80	03	308		7.93	. 05	6.44 6.76	. 04	4.81	. 03	2.11	. 05	1.30	. 07
	80	03	309		7.91	. 04	6.79	. 04	4.86	. 03	2.22	. 05	$1.35 \quad .07$	
MWC 819	80	003	309	14.9	12.55	. 79	10.76	. 13	8.88	. 08	6.17	. 06	5.23	. 54
HD 50138	80	03	310	6.7	5.86	. 02	5.10	. 02	4.18	. 03	2.77	. 04	2.16	. 08
HD 51585	80	03	309	11.2	-		-		-		6.41	. 09	5.83	. 40
M 1-11	80	03	10	13.5	11.04	. 40	10.09	. 14	8.98	. 09	7.11	. 18	6.18	. 56
CD-240 5721	80	003	309	11.4	9.28	. 07	8.53	. 08	7.33	. 03	5.62	. 06	4.88	. 20
(RX Puppis	80	0310		48.5	5.14	. 02	4.00	. 02	2.79	. 02	1.08	. 04	0.48	.06)
Ve 27	80	03	09	13.8	11.30	. 40	10.28	. 17	8.54	. 05	5.66	. 06	4.34	. 13
Hen 230	80	03	09	12.4	9.11	. 09	7.79	. 04	6.51	. 03	4.91	. 05	4.26	. 10
He 2-34	80	003	10	15.6	8.19	. 05	6.58	. 02	5.14	. 02	3.48	. 03	2.94	. 07
HD 87643	80	308		8.7	6.20	. 04	5.04	. 04		. 03			1.46	. 08
Hen 373	80	03	310	13.5	9.33	. 10	8.19	. 03	6.92	. 03	5.41	. 10	4.69	. 20
$n \mathrm{Car}$	80	03	310	6.2	3.61	. 02	2.63	.03	1.12	. 01	-1.77	. 06	-3.13	. 05
Hen 485	80	03	310	11.7	8.40	. 05	7.24	. 02	6.02	. 02	4.52	. 04	4.07	. 17
Gg Car			3:08	8.7	$6.84 \pm$. 04	$6.09 \pm$. 05	$5.00 \pm$. 03	$3.69 \pm$. 05	$3.09 \pm$. 08
	80	03	309		6.87	. 04	6.01	. 05	4.98	. 03	3.56	. 05	2.99	. 08
	80	03	310		6.86	. 03	6.03	. 03	4.99	. 01	3.58	. 04	3.03	. 05
He 2-79	80	03	308	14.1	11.76	. 86	10.06	. 10	7.89	. 04	5.42	. 05	4.81	. 16
He 2-80	80	03	308	13	10.00	. 14	8.81	. 07	7.44	. 03	5.67	. 06	4.92	. 15
Hen 782	80	03	310	Var.	8.17	. 04	6.44	. 03	4.90	. 01	3.17	. 04	2.58	. 06
He 2-90	80	03	308	13.3	11.08	. 38	10.24	. 14	7.89	. 04	4.86	. 06	3.61	. 13
He 2-91	79	02	20	14.4	9.18	. 06	7.70	. 05	6.36	. 09	4.34	. 06	3.44	.11
	80	03	308		9.72	. 10	8.00	. 05	6.44	.03	4.53	. 06	3.87	. 10
Hen 938	80	03	310	13.3	9.08	. 08	7.82	. 03	6.23	. 02	4.33	. 04	3.67	. 11
He 2-101	79	02	21	16.9	11.57	. 59	9.72	. 14	8.33	. 05	6.49	.03	5.57	. 35
	80	03	309		12.9	. 80	10.00	. 09	8.46	. 05	6.46	. 10	5.80	. 07
He 2-139	80	03	10	16.8	8.76	. 05	7.49	. 04	6.38	. 02	5.00	. 03	4.73	. 11
CPD-5209243	79		18	10.3	6.03	. 07	5.14	. 07	4.06	. 25	2.53	. 11	1.79	. 01
	80		08		6.45	. 05	5.35	. 04	4.08	. 03	2.66	. 05	2.07	. 07
He 2-147	80	03	08	15	6.23	. 07	6.13	. 04	5.21	.03	4.23	. 05	4.15	. 12
Mz 3	79	02	18	14	9.30	. 07	7.35	. 07	5.58	. 25	3.04	. 11	2.02	. 01
	80	03	08		9.32	. 07	7.54	. 04	5.62	. 03	3.19	. 05	2.33	. 08
Pe 2-9	80	03	10	17.0	11.43	1.00	9.43	. 08	7.17	. 02	4.67	. 04	3.85	. 05
Hen 1191	79	02	19	13.8	9.88	. 15	8.15	. 05	6.25	. 03	3.80	. 04	2.84	. 08
	80	03	38		10.35	. 20	8.44	. 05	6.43	. 03	3.90	. 05	3.05	. 08
M2-9(core)	79	02	18	14.7	10.91	. 15	9.28	. 08	7.08	. 25	3.95	. 11	2.64	. 02
	80	03	38		11.32	.44	9.41	. 07	7.03	. 03	3.90	. 05	2.71	. 07
AS 222	79:		: 20	12.5	$7.83 \pm$. 02	$6.79 \pm$. 05	$5.68 \pm$. 09	$4.01 \pm$. 06	$3.23 \pm$. 11
H1-25	80	03	09	16.5	10.55	. 18	8.70	. 05	6.86	. 03	4.61	. 05	3.78	. 09
HD 316248	80	03	09	12.1	9.93	. 40	9.30	. 16	8.52	. 13	7.32	. 52	7.14	1.00
HD 163296	80	03	09	6.8	6.34	. 04	5.54	. 03	4.72	. 02	3.55	. 04	3.14	. 08
MWC 922	79	02	18	13.9	8.86	. 07	7.38	. 07	5.66	. 25	2.78	. 11	1. 38	
	80	03	09		8.99	. 18	7.49	. 04	5.59	. 08	2.75	. 04	1.51	. 08
MWC 300	79		18	11.6	9.08	. 11	8.14	. 08	6.19	. 25	3.06			
	80		09		9.16	.22	8.11	. 06	6.12	. 02	3.02	. 04	1.83	. 07
MWC 939	79		18	12.4	10.45	. 27	8.98	. 08	7.23					
	80	03	09		10.07	. 39	8.72	.13	7.01	. 03	4.86	. 06	4.03	. 15
HD 190073	79	02	17	7.9	8.20	.15	7.16	. 15	6.18	. 03	4.80	. 05	4.59	.19

TABLE 2 : SEARCH FOR INFRARED VARIABILITY

(1) possiply variable (Allen, 1973)
(2) has mags. and colors varying as for LPV

DISCUSSION

Selvelli: 1. I think you cannot rule out the possible presence of a cool companion in a star with IR excess by saying that no radial velocity variation has been observed. A not neglegible percentage of objects might be viewed pole-on.
2. Is it straightforward to distinguish between an IR excess produced by a possible cool companion from that produced by a dust envelope?

Swings: I agree; however, the only case I was talking about concerned HD45677 which, as you know, is most probably seen equator-on. 2. I think so because the colours will be very different, especially in the I, J,H band areas.

Coyne: What size temperature change in the dust would give changes in $\mathrm{J}, \mathrm{H}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ of the order of .5 mag ?

Swings: It is of course the colours that are important; if one looks for example, at an $\mathrm{H}-\mathrm{K} / \mathrm{K}-\mathrm{L}$ diagram, the decrease of $\mathrm{K}-\mathrm{L}$ of $\approx .5 \mathrm{mag}$. would change the dust temperature by $+200-300 \mathrm{~K}$.

Chkhikvadze: It is well known that IR excess is correlated with the presence of some forbidden lines ([FeII] and others). On the other hand there are many such peculiar Be stars (MWC 374, XX Oph, α Sco (B), HR3164 etc.), but they have no IR (dust) excess. What do you think about it?

Swings: What I said is that for $B\left[\begin{array}{l}\text { e] } \\ \text { stars }\end{array}\right.$ there exists a strong correlation between the existence of an infrared excess and the presence of e.g. [OI], [FeII], [SII] in their spectra. The cases you mention are different: for XX Oph, see Swings and Allen (PASP 84, 523, 1972); I do not think α Sco B has been measured alone, i.e. without the "contamination" of the M supergiant. I am talking here about VV Cephei stars or symbitics.

Sterken: 1. How did you calculate the reddening correction? 2. How sensitive are the temperatures in the dust shells on the accuracy of the method of the dereddening?

Swings: 1. The reduction was performed by one of us (P.B.) on La Silla, using Wamsteker's calibration (ESO preprint No 132, in press in A\&A). The contribution of reddening for dust shells is very small, and if it affects very slightly the magnitudes, I do not think, it will change the IR colours by values greater than the observational errors. 2. See e.g. Allen's graph (fig. 2., MNRAS 161, p 157, 1973): a few tens of degree, may be, which is probably again below the accuracy of the measurements.

Andrillat: In order to decide whether a cool companion is present, perhaps it is possible to study the behaviour of the IR triplet of

CaII, because in the Be stars the intensities of these three lines are different.

Swings: I agree; one could actually get one's inspiration from a recent paper by G. Herbig on T Tauri stars where that specific problem is examined.

Persi: What is the typical Signal/Noise ratio of your IR observations at 5μ ? To be sure of the presence of dust surrounding your observed Be star it is necessary to have a small statistical error at 5μ and to extend the observations at larger wavelengths.

Swings: I don't have the count rates with me here, but most of the objects observed were much brighter at 5μ than the limit of the system ($m=6$) .
Having the H, K, L map is enough to be sure about the presence of dust; having data at longer wavelengths allows one to have an idea about the temperature distribution of the dust graines.

[^0]: *Based on data collected at the European Southern Observatory (La Silla, Chile).

