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A streamline coordinate analysis of a turbulent
boundary layer subject to pressure gradients and
curvature on the windward side of a bump
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Direct numerical simulation (DNS) of a turbulent boundary layer over the Gaussian
(Boeing) bump is performed. This boundary layer exhibits a series of adverse and
favourable pressure gradients and convex and concave curvature effects before separating.
These effects on turbulent boundary layers are characterised and compared with a
lower-Reynolds-number flow over the same geometry. The momentum budgets are
analysed in the streamline-aligned coordinate system upstream of the separation region.
These momentum budgets allow the simplification of equations to facilitate an integral
analysis. Integral-analysis-based approximations for Reynolds stresses in the inner and
outer regions of the boundary layer are also formulated. The shear and wall-normal
Reynolds stress profiles normalised by these approximations exhibit a better collapse
compared with friction velocity and Zagarola–Smits normalisations in the strong
favourable pressure gradient region and in the mild adverse pressure region that precedes
it in this flow. Simplification of these Reynolds stress approximations along with results
from the DNS are used to obtain semi-empirical approximations that are able to provide
stress closure in terms of wall solution fields for the turbulent boundary layer under
consideration.
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1. Introduction

Turbulent boundary layers are ubiquitous in engineering applications and geophysical
flows of interest. A better understanding of turbulent boundary layers will allow for the
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design of more efficient airplanes, improved wind turbine performance characterisation,
and a better understanding of the atmospheric weather patterns that could subsequently
inform the prediction and mitigation of wildfire propagation to list only a few examples.
These flows have been studied intensely over the past century by both the engineering and
geophysical communities. These studies have focused on characterising and quantifying
the behaviour of turbulence in the inner and outer regions of the turbulent boundary layers,
which has also led to advancements in turbulence models over the years.

The presence of pressure gradients significantly affects the behaviour of a turbulent
boundary layer. Adverse pressure gradients (APGs) often precede the onset of turbulent
flow separation, which is a major cause of higher aerodynamic drag for wings at high
angles of attack. In the presence of a sufficiently strong APG, a flow exhibits an increase
in Reynolds shear stresses, often observed as a secondary peak of these quantities in the
outer region of the boundary layer. Using the regional similarity hypothesis, Perry, Bell
& Joubert (1966) showed that the logarithmic law of the wall for the velocity distribution,
hereafter referred to as the log-law, exists in the near-wall region and a half-power law is
observed in the transition to the wake region for a boundary layer that is far away from
flow separation. These results are also aligned with the asymptotic analysis in Durbin &
Belcher (1992), where the role of APGs on a larger wake region was discussed. Marušić
& Perry (1995) showed that the turbulence intensity in the outer region increases in
the presence of an APG when normalised by friction velocity, uτ . APGs also result in
higher turbulence production due to high Reynolds shear stress and dissipation in the outer
region of the turbulent boundary layer (Skåre & Krogstad 1994). Conversely, favourable
pressure gradients (FPGs) stabilise a boundary layer and reduce turbulence intensity. In
the presence of an FPG, a departure from the log-law is commonly observed (Tsuji &
Morikawa 1976; Baskaran, Smits & Joubert 1987) which can be attributed to an increase
in the thickness of the viscous wall region (Narayanan & Ramjee 1969; Blackwelder &
Kovasznay 1972). A reduction in Reynolds stresses, turbulent kinetic energy production
and dissipation is commonly observed in the presence of an FPG. A much more significant
decrease in production and dissipation of turbulence is observed in the inner region of
the boundary layer than in the outer region (Bourassa & Thomas 2009). Strong FPGs
can even lead to a reverse transition of a turbulent boundary layer to a laminar state,
a process often referred to as relaminarisation. Patel & Head (1968) showed that in
the presence of a substantial FPG, even a high-Reynolds-number turbulent boundary
layer could relaminarise. This flow behaviour is attributed to a slow response of the
boundary layer to the strong FPG. During flow relaminarisation, turbulence still exists
in the outer region but has a passive influence on the downstream development of the
boundary layer (Launder 1964; Jones & Launder 1972) as the pressure forces dominate
over Reynolds shear stress (Narasimha & Sreenivasan 1973). A sequence of events leading
to relaminarisation is well documented in Piomelli & Yuan (2013). A turbulent boundary
layer in the presence of pressure gradients also exhibits dependence on the flow history
(Bobke et al. 2017). Furthermore, a shift from an APG to an FPG or from an FPG
to an APG could trigger the formation of an internal boundary layer. The growth of
these new boundary layers is dictated by the pressure gradient (Tsuji & Morikawa 1976;
Baskaran et al. 1987). The formation of an internal layer leads to the decoupling of the
external boundary layer that behaves as a free-shear layer influenced by the local pressure
gradients (Baskaran et al. 1987; Balin & Jansen 2021). More details on the behaviour
of turbulent boundary layers can be found in the recent review article (Devenport &
Lowe 2022).
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Streamline coordinate analysis of a turbulent boundary layer

The curvature of streamlines also has a considerable influence on the physics of a
turbulent boundary layer. Curvature effects are often tied to the curvature of the geometry
over which the turbulent boundary develops, leading to the pressure gradient effects.
Therefore, pressure gradient and curvature effects often accompany each other. There
have been efforts where pressure gradients (Spalart & Coleman 1997; Coleman, Rumsey
& Spalart 2018) and curvature effects (So & Mellor 1973, 1975) were isolated. Convex
curvature has a stabilising influence on the turbulent boundary layer, whereas concave
curvature has a destabilising influence on the turbulent boundary layer. Irwin & Smith
(1975) showed that the effect of curvature on the turbulence structure can be greater
than the effect on the mean flow. This is reflected by the observation that the deviation
of the velocity profile for a low curvature value (δ/Rw ≈ 0.01 where δ is the boundary
layer thickness and Rw is the radius of curvature of the wall) occurs after the log-law
region (Hunt & Joubert 1979). Concave curvature results in increased turbulence intensity,
Reynolds shear stresses and turbulent kinetic energy in the outer region of the boundary
layer (So & Mellor 1975). On the other hand, convex curvature reduces these quantities in
the outer region of the boundary. A discontinuity in the surface curvature from concave to
convex or vice versa has been shown to trigger the formation of an internal layer (Baskaran
et al. 1987; Webster, Degraaff & Eaton 1996) which exhibits behaviour similar to the
internal layer formed due to a change in sign of the pressure gradient.

In this article, we assess Reynolds stresses in both inner and outer regions for the
turbulent boundary layer over the Gaussian (Boeing) bump (Slotnick 2019) at a Reynolds
number (ReL) of 2 million in the preseparation region. Several experimental (Williams
et al. 2020; Gray et al. 2022) and direct numerical simulation (DNS) campaigns (Balin
& Jansen 2021; Shur et al. 2021; Uzun & Malik 2022) are underway to characterise
and quantify the behaviour of this turbulent boundary layer. The turbulent boundary
layer over the bump exhibits a series of APGs and FPGs in conjunction with concave
and convex curvature effects. The switch from APG to FPG triggers the formation of
an internal layer (Balin & Jansen 2021; Uzun & Malik 2022). At ReL = 1 million, the
flow also experiences relaminarisation (Balin & Jansen 2021). With this wide range of
flow physics experienced by this turbulent boundary layer, it is a challenging test case
for evaluating existing analysis and normalisation methods. The goals of this article are:
(1) provide new reference DNS data that the community could use to evaluate the
performance of turbulence models, (2) assess the validity of commonly used velocity and
Reynolds stress normalisations and (3) propose new approximations for Reynolds shear
stress and normal-direction normal stress based on integration of the mean momentum
equation and simplifications using results from the DNS. Note that as in Uzun & Malik
(2022), a DNS at ReL = 2 million was performed; we comment on the differences in the
set-up of the two DNSs and extrapolate this to the observed differences in the results.
An outline of the article is as follows. Section 2 describes the flow over the bump and
details the simulation set-up. In § 3.1, we quantify the flow behaviour and compare the
results with those in Uzun & Malik (2022) and the ReL = 1 million case in Balin & Jansen
(2021). In § 3.2, we describe the streamline-aligned coordinate system (SCS) and analyse
the momentum budget statistics in this coordinate system. In § 3.3, we perform an integral
analysis of the momentum equation to propose new approximations for the Reynolds shear
stress and the normal-direction normal stress in the inner and outer regions of the boundary
layer. In § 3.4, we determine semi-empirical approximations for the Reynolds shear stress
and the normal-direction normal stress based on statistics collected from the simulation
data. Finally, in § 4, we provide concluding remarks and avenues for future research.
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Figure 1. Schematic of the set-up of the flow problem and the remainder of the computational domain
following the DNS of Balin & Jansen (2021). The solid black curves outline the full domain of the bump flow,
whereas the green curves show the boundary layer thickness on both no-slip walls predicted by preliminary
RANS. The black dotted lines mark the modified inflow and top boundaries used in the DNS (taken from Balin
& Jansen (2021) which used the same set-up).

2. Simulation set-up

2.1. Flow description
This work considers a prismatic extrusion of the Boeing bump, a Gaussian-shaped bump
defined by

y(x) = h exp
(
− (x/x0)

2
)
. (2.1)

In this equation, the x coordinate is horizontal and aligned with the freestream flow far
upstream of the bump, the y coordinate is normal to the freestream, h is a parameter
controlling the bump height and x0 controls the bump length. The curve in (2.1) is exactly
the centreline of a three-dimensional (3-D) bump developed at The Boeing Company
(Slotnick 2019) and studied experimentally at the University of Washington (Williams
et al. 2020) and the University of Notre Dame (Gray et al. 2022). To maintain similarities
between the 3-D and two-dimensional (2-D) extruded bumps, the height and length
parameters are matched at h/L = 0.085 and x0/L = 0.195, where L = 0.9144 m is the
length of the square cross-section of the wind tunnel used for the 3-D bump experiments.
With these values set, the bump 2-D profile is precisely that employed in DNS in Balin &
Jansen (2021), Shur et al. (2021) and Uzun & Malik (2022), although either the Reynolds
number or the full domain geometry herein is different from these previous studies.

The set-up of the flow problem and the remainder of the computational domain follow
the DNS of Balin & Jansen (2021), although updated for the twice larger Reynolds number,
and are described by the schematic in figure 1. Based on the freestream velocity of
U∞ = 32.80 m s−1, the flow has a Reynolds number of ReL = 2 million, corresponding to
Reh = 170 000 when measured against the bump height. In addition, the flow was treated
as incompressible due to the small Mach number of M∞ = 0.09 (computed using standard
sea level conditions). At the location of the inlet to the DNS, shown by the dotted vertical
line in figure 1, the momentum thickness Reynolds number is approximately Reθ = 1800,
and the boundary layer thickness is roughly 1/9 of the bump height.

Although the solid curves in figure 1 describe the entire flow domain computed with
preliminary RANS, which includes the boundary layer origins on the bottom and top
walls at x/L = −1.0, only a fraction of that domain can be feasibly computed by DNS.
As outlined in detail in Balin & Jansen (2021), the inflow to the DNS domain is moved
downstream to x/L = −0.6, and the top boundary is slanted downwards according to

984 A23-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.199


Streamline coordinate analysis of a turbulent boundary layer

a profile fitted to the displacement thickness of the Reynolds-averaged Navier–Stokes
(RANS) boundary layer on the top wall. The last modification was done to reproduce
the constriction effects of the boundary layer growing on the top wall without resolving
it. Note that the RANS computations of the full domain were carried out using the
Spalart–Allmaras (SA) one-equation model (Spalart & Allmaras 1994) augmented with
the rotation and streamline curvature (SARC) correction (Spalart & Shur 1997; Shur et al.
2000) and the low-Reynolds-number correction (Spalart & Garbaruk 2020).

The following boundary conditions were implemented based on the DNS domain shown
in figure 1. The bump surface was treated as a no-slip wall. It is worth mentioning that
(2.1) defines the entire lower surface of the domain, meaning that there is no flat-plate
region on either side of the bump, and the curvature is continuous everywhere. The top
surface was modelled as an inviscid wall with zero-velocity component normal to the
surface and zero tangential traction. At the outflow, total traction is weakly enforced to
zero. In addition, periodic boundary conditions were applied on a spanwise width of
0.156L. Finally, at the inflow, the synthetic turbulence generator (STG) of Shur et al.
(2014) and Patterson, Balin & Jansen (2021) was utilised to introduce unsteady flow into
the domain and rapidly produce mature and realistic turbulence. This STG method was
successfully used in the ReL = 1 million DNS of Balin & Jansen (2021) and the mean
velocity and stress profiles required for the method were obtained following the description
therein. Prior to conducting a DNS at ReL = 1 million, our STG method was thoroughly
validated on a flat plate in Wright et al. (2020) and Patterson et al. (2021) where it was
determined that the statistics matched those of several published DNS, including ones that
computed transition, for x − xinflow > 5δinflow. This relatively short development region,
combined with an inlet location of x/L = −0.6, where the APG is still very weak and
thus near our validated flat plate conditions, give us high confidence that our flow has
well-developed turbulence for x/L > −0.56 which is still significantly upstream of where
we later document the boundary layer’s physical response first to an APG region that
becomes significant around x/L > −0.5 and the strong FPG region −0.3 < x/L < 0 that
this paper seeks to analyse. In summary, extensive flat plate studies and the previous
ReL = 1 million DNS guided the inflow boundary condition’s location, type and resolution
to ensure that the flow physics produced by this simulation were free of inflow boundary
condition artifacts since it would be impractical to run multiple simulations to study
boundary conditions at this Reynolds number and geometric complexity.

2.2. Flow solver description
The turbulent boundary layer over the Gaussian bump at ReL = 2 million discussed
herein was computed using a stabilised finite-element method (Whiting & Jansen
1999) and second-order accurate, fully implicit generalised-α time integration (Jansen,
Whiting & Hulbert 2000) to perform time-resolved simulations of the incompressible
Navier–Stokes equations. The DNS was carried out using linear mesh elements to reduce
the computational cost while still maintaining a high level of accuracy, as demonstrated for
a channel flow in Trofimova, Tejada-Martinez & Jansen (2009), for a flat plate boundary
layer in Wright et al. (2020), and for the Gaussian Bump flow at ReL = 1 million in Balin
& Jansen (2021). Furthermore, stabilisation and time integration parameters chosen for
this DNS follow the work outlined in Trofimova et al. (2009) and were similar to those
used in Balin & Jansen (2021).

The simulations were started from an initial condition with mean velocity and pressure
from RANS and superposed fluctuations obtained from DNS at ReL = 1 million. The
initial transient part of the simulation was performed for a half-span domain first, and then
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the solution was transferred to the full domain using one instantaneous time step for half
of the domain and another time step for the other half of the domain. The second time
step was chosen such that its reattachment structures were the most out-of-phase from
the first to break any domain-width lock in present in the flow. This full domain width
initial condition necessarily breaks continuity on the centreline and on the periodic planes
but otherwise satisfies the governing equations and the flow solver quickly repaired these
breaks. More significant than the time to repair these continuity breaks, the separation
point and the reattachment point did show an adjustment to the new domain width and
this must be considered part of the transient. Then, after this transient on the full domain,
statistics were collected.

While DNS and LES articles often discuss statistics collected in terms of flow through
times, this is of less relevance to the bump flow considered for two reasons. First, the flow
is not streamwise periodic and also has no global circulation to come to equilibrium and is
thus fully determined by the inflow which, via the STG boundary condition, is statistically
stationary on a time scale minimised through the choice of random numbers (Patterson
et al. 2021). Second, the more relevant time scale to turbulent boundary layers is the eddy
turnover time δ(x)/ue(x)which, in this flow varies by a factor of 10 between the most rapid
turbulence at the bump peak and the slowest time scale in the thick boundary layer within
the recovery region. As this paper is concerned only with the region before separation,
the range of eddy turnover times is less dramatic (a factor of 2 between the peak of the
weak APG and the bump apex). At the peak of the weak APG, the flow requires about
600 time steps per eddy turnover time. For the plots in this article, we have used statistics
windows of at least 32 000 (most used 159 000) time steps which means that this slowest
region averages at least 53.33 eddy turnover times. Note further that, to properly model
the separated flow region, the domain width is set based on the boundary layer thickness
there. In the region of interest to this paper, the boundary layer thickness reaches a local
maximum at the peak of the weak APG at a value of 0.015. Thus our domain width is more
than 10 local boundary layer thicknesses wide within the domain discussed in this paper.
Because we are employing spanwise averaging in our statistics, this means each time step
carries roughly 3 times the statistical power of a typical DNS that has a 3 boundary layer
thickness domain width. Taken together, this gives at least 160 eddy turnover times in the
statistics shown which is well above that of a typical DNS (Spalart 1988). Most of the
results shown used 159 000 time steps and thus at least 795 eddy turnover times. This
assessment of adequate statistics and sufficient passing of all transients was confirmed by
comparing all plots shown on two half-time windows to visually confirm the convergence
of statistics.

2.3. Mesh description
Considering the differences in mesh requirements relative to our simulation at ReL = 1
million (Balin & Jansen 2021), the mesh for the simulation at ReL = 2 million requires
an even higher resolution in the near-wall region and a much larger volume of the domain
with turbulent structures due to a much thicker boundary layer downstream of separation.
These factors raise the number of grid points required, especially if structured grids are
used. To address this challenge, a new unstructured grid mesh generation technique was
developed to locally match the grid size to a fixed multiple of the Kolmogorov length scale
(e.g. Δ = 2η). This approach is regularly carried out for simulations of isotropic
turbulence where the isotropic grid size is selected to match the a priori known
Kolmogorov length scale that a given forcing and Reynolds number will produce.
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However, the situation differs for a complex flow like the bump. Our approach was
to make use of prior flat plate boundary layer DNS (Spalart 1988) which established a
relationship η+ = f (n+)where n is the wall-normal direction making use of predictions of
dissipation (ε) profiles in the wall-normal coordinate. This idea is also not completely new
as it was applied to pipe and channel flows by Pirozzoli & Orlandi (2021) independently
and concurrently with this effort. The application to boundary layers has a greater
opportunity for savings by exploiting the larger growth of η in the outer part of the
boundary layer. Even larger gains come from the large variation in wall shear stress in
this flow, unlike the channels and pipes studied in Pirozzoli & Orlandi (2021). Here,
with this wall-normal variation in dissipation (and thus η) known, we are able to first
set theΔn spacing for any streamwise location, s, so long as an estimate for uτ is available
for each s location. We make use of RANS simulations to obtain this estimate. While
the RANS prediction of uτ is known to have some error, it is usually on the high side,
which leads to a conservative mesh spacing. The streamwise variation of uτ and normal
variation of η motivate setting mesh sizes not in the Cartesian coordinate system x–y–z,
but rather in one that is locally tangent and normal to the bump surface. This wall-aligned
or standard boundary layer coordinate system, hereafter referred to as WCS, has surface
varying coordinates s–n–z, with s being the wall-tangent direction positively aligned with
the freestream flow, n being the wall-normal direction always directed into the flow domain
(in regions of attached flow n is aligned with the velocity gradient vector at the wall) and
z being the spanwise direction obtained by the cross-product of unit vectors along s and n.
Effectively, this leads to mesh growth curves that emanate from points on the surface and
extend in the wall-normal direction n instead of the vertical direction y. Note that we also
make use of the WCS throughout this paper, including in the analysis of results in § 3.

While the n-point distribution optimisation described above yields significant savings,
significantly more savings can be obtained in the streamwise (s) and spanwise (z) spacing.
These savings are only available to unstructured grids since a structured grid must satisfy
the most strict grid resolution in each direction and propagate that spacing through an ijk
grid. Some relief from this constraint is possible for overset grids but this choice faces
challenges presented by large jumps in grid size across overset grid interfaces. For this
simulation, we have developed and applied mesh generation techniques that smoothly
coarsen not only the n direction but also s and z. In practice, we employ a wall grid
that uses a local streamwise spacing of 15 plus units (Δ+

s = uτ (s)Δs(s)/ν = 15 at the
wall) and a local spanwise spacing of 6 plus units (Δ+

z = uτ (s)Δz(s)/ν = 6 at the wall)
which was shown to be adequate in Balin & Jansen (2021). This requires a triangulated
surface mesh to satisfy and realise a growth in spanwise spacing where uτ is lower (fewer
points in the span). As the first point in the normal direction off of the wall is very
small (Δ+

n = uτ (s)Δn(s)/ν = 0.3 at the wall) to resolve the high gradients there, wedge
elements are used to extrude this wall resolution (starting with aspect ratios of 50 : 1 : 20
for (Δs : Δn : Δz)/Δn) normal to the surface. We employ a growth factor of 1.025 until the
wall-normal spacing catches up to the desired multiple of η(s). At that point, the normal
spacing grows with the local Kolmogorov spacing (in this case 2η(s, n)). This is built into
the normal spacing described above. Eventually, the growth of the wall-normal spacing
catches up to the spanwise spacing. At this point, the extrusion of wedge elements from the
surface triangle can be stopped. Subsequent layers then coarsen in the spanwise direction,
matching the spanwise spacing to that of normal spacing. This spanwise coarsening can be
accomplished with an unstructured grid (and most smoothly accomplished with tetrahedral
elements). Therefore, these layers have normal and spanwise spacing matching the desired
multiple of Kolmogorov units. The streamwise spacing in these layers is still fixed to what
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was set by the wall spacing, which continues until the wall-normal (and spanwise) spacing
grows larger than the streamwise wall spacing, after which the streamwise spacing also
grows. When following this approach, the resulting grid has one-third of the nodes that
an equivalent structured grid would have. Reiterating, it accomplishes this by matching a
multiple of the local Kolmogorov spacing in all three directions wherever that spacing is
larger than the wall plus unit spacing dictated by the local wall shear. As the dissipation
and thus Kolmogorov spacing is smooth, so is the gradation of element size in all three
directions which is critical to the success of a DNS. Note that while the dissipation
function of wall normal variation was taken from prior DNS of flat plates, this choice
is conservative for FPGs where the dissipation is reduced and thus η(n) grows faster than
the flat plate profile assumed. Conversely, in an APG, dissipation is enhanced, making η(n)
grows slower than the assumed flat plate profile. However, within the weak APG region
preceding the strong FPG, η(s, n) was confirmed to remain under three which is within
DNS requirements for the preseparation regions considered in this paper.

3. Results and analysis

3.1. Boundary layer characterisation
As the experiment’s three-dimensionality, even on the centreline, is well documented
(Williams et al. 2020; Gray et al. 2022), a limited comparison with the DNS of Uzun
& Malik (2021) is appropriate. However, their DNS had the following differences: (1)
location and type of top boundary condition (Riemann boundary condition at y = 2L),
(2) more narrow domain width (Lz = 0.08L), (3) compressible solver and (4) recycling
inflow boundary condition. To both compare and understand the differences in the two
simulations, we first define the coefficient of pressure (Cp) and skin-friction coefficient
(Cf ) at the bottom surface as follows,

Cp = p̄w − p∞
1
2
ρU2∞

, Cf = τw

1
2
ρU2∞

, (3.1a,b)

where p̄w is the pressure at the surface, p∞ is the freestream pressure, U∞ is the freestream
speed and τw is the wall shear stress. For ReL = 2 million, we take U∞ = 32.8 m s−1

which is twice the value considered in Balin & Jansen (2021). The freestream pressure is
chosen so as to match the experimental data by Williams et al. (2020) at the inflow. We
compare Cp and Cf for the two DNSs in figure 2. The results indicate that our DNS predicts
a slightly lower −Cp than the other DNS in the mild APG region, −0.6 ≤ x/L ≤ −0.29.
In the FPG region, −0.29 ≤ x/L ≤ 0, −Cp is higher for our DNS than the other DNS,
especially at the bump peak. These results indicate that the resulting pressure gradient
experienced by the boundary layer is different between the two DNSs. In Prakash et al.
(2022), we showed that these differences are primarily due to the top boundary condition
difference, which can be expected (ours is more confined leading to strong pressure
gradients) and that these differences in pressure gradients are also the key reason for the
differences in Cf . The Cf artifact very close to the inflow is due to a very short development
period of the STG boundary condition. We obtain a higher Cf than the other DNS until the
point of separation. The boundary layer in our DNS separates slightly later and reattaches
earlier than the other DNS. The different spanwise lengths also likely influence the location
of the boundary layer reattachment point. Similar to the other DNS, a bimodal shape of
Cf and Cp in the separated region is observed in our DNS. These results indicate that even
though the flow is quantitatively different, the resulting separation flow physics appears

984 A23-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.199
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Figure 2. Plots of (a) Cp and (b) Cf for the bump flow at ReL = 2 million. Line types: ◦, DNS in Uzun &
Malik (2022); −, Present DNS.

to be similar. A more detailed analysis of the differences in simulation set-up and the
resulting differences in velocity and stress profiles between the two DNSs are discussed in
Appendix A.

The turbulent boundary layer over the bump experiences varied flow physics. The flow is
influenced by changing pressure gradients, from adverse to favourable and back to adverse
before flow separation, and varying curvature effects, from concave to convex curvature. In
this article, we keep the discussion on pressure gradient and curvature effects limited to the
preseparation region of the flow. The effect of pressure gradient on a turbulent boundary
layer is commonly quantified using Clauser’s pressure gradient parameter (Clauser 1954),

β = δ∗

τw

∂ p̄w

∂s
, (3.2)

where δ∗ is the displacement thickness computed based on the integrated vorticity method
(Lighthill 1963; Spalart & Watmuff 1993) and ∂ p̄w/∂s is the streamwise pressure gradient
at the wall. The wall pressure gradient is chosen over the boundary layer edge pressure
gradient for several reasons: to avoid sensitivity to the method and threshold (e.g. 99 %
or 99.9 %) used to locate the boundary layer edge, to support wall modelling, and to
enable better comparison with experiments that usually locate pressure ports on walls.
To understand the influence of Reynolds number on these and other parameters, we switch
from comparing our results to (Uzun & Malik 2021) and instead compare with the flow
at ReL = 1 million (Balin & Jansen 2021) which, as noted earlier, matches all boundary
conditions except half the inflow speed. The variation of β for DNS at ReL = 1 million
and 2 million are shown in figure 3(a) where it is observed that both flows exhibit a
relatively mild APG (β > 0; maximum β is 0.8 at x/L ≈ −0.35) and a relatively stronger
FPG (β < 0; minimum β is −2 at x/L ≈ −0.17). Very close to the inflow, the sharp
decrease of β is attributed to a rise of Cf because of the short development of the inflow
boundary condition. The difference in β for the ReL = 1 million and 2 million are small,
indicating similar pressure gradient effects for both Reynolds numbers. We compare the
boundary layer thickness, δ, computed using the integrated vorticity method specified
in Lighthill (1963) and Spalart & Watmuff (1993) with a threshold of 99.9 % for the
two ReL in figure 3(b). Recent work by Griffin, Fu & Moin (2021) provides a simpler
and less resolution-sensitive approach to computing the boundary layer thickness which
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Figure 3. Comparison of (a) Clauser’s pressure gradient parameter, (b) boundary layer thickness and
(c) Curvature parameter for the bump flow at ReL = 1 million and 2 million. Line types: dashed/red, ReL = 1
million; full/black, ReL = 2 million.
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Figure 4. Comparison of Reτ for the bump flow at ReL = 1 and 2 million. Line types: dashed/red, ReL = 1
million; full/black, ReL = 2 million.

we tested and found to be virtually identical at both 99 % and 99.9 % to the integrated
vorticity method, likely because our fine mesh and long statistics resolve well the decay of
vorticity. For the two Reynolds number flows, the variation in the boundary layer thickness
is similar: an increase in δ is observed in the mild APG region, and a decrease in δ is
observed in the strong FPG region.

The effect of curvature on a turbulent boundary layer is quantified using the curvature
parameter (δ/Rw), where Rw is the radius of curvature of the surface. The direction and
sign of Rw are defined following the literature on curvature effects. For concave curvature,
Rw is positive, which implies that the radius of curvature vector, Rw = Rwn̂, points from
the wall into the flow domain and is positively aligned with n. For convex curvature, the
opposite is true, thus Rw is negative and the curvature vector points from the wall out of
the flow domain and opposite to n.

As shown in figure 3(c), the flow exhibits an initial concave curvature until x/L ≈ −0.14
and then switches to convex curvature. The negative peak of δ/Rw is twice as high as
the positive peak indicating that the boundary layer experiences more substantial convex
curvature effects than the concave curvature effects. This behaviour is because Rw is
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Figure 5. Relaminarisation parameters (a) Δp and (b) K for turbulent boundary layer over bump flow at
ReL = 1 and 2 million. Line types: dashed/red, ReL = 1 million; full/black, ReL = 2 million.

smaller at x/L = 0 than its value at x/L = −0.25, which offsets the lower value of δ at
x/L = 0 compared with its value at x/L = −0.25. The flow at ReL = 1 million experiences
slightly stronger curvature effects than the flow at ReL = 2 million due to its slightly larger
boundary layer thickness for the same geometric curvature.

Although β and δ/Rw variations are qualitatively similar, the turbulent boundary layer
exhibits different flow physics for the two Reynolds numbers. These differences are
highlighted by comparing friction Reynolds number for the two Reynolds numbers:
Reτ = uτ δ/ν, where uτ = √

τw/ρ is the friction velocity. As shown in figure 4, we observe
a similar trend for both Reynolds numbers with an increase in Reτ until x/L ≈ −0.11.
Downstream of that location, Reτ for ReL = 1 million decreases due to a relaminarising
boundary layer. The monotonic increase in Reτ in the FPG region for ReL = 2 million
qualitatively indicates that the pressure gradient effects are not strong enough to trigger
relaminarisation and decrease Reτ within the FPG region. The onset of relaminarisation
of a turbulent boundary layer is often quantified based on parameters (Launder 1964; Kline
et al. 1967; Patel & Head 1968)

Δp = ν

ρu3
τ

∂ p̄
∂s
, and K = ν

ū2
s,e

∂ ūs,e

∂s
, (3.3a,b)

where ūs,e is the wall-aligned velocity at the edge of the boundary layer. Several threshold
values for these parameters signifying the onset of the relaminarisation process have been
proposed over the years (Launder 1964; Kline et al. 1967; Patel & Head 1968; Sreenivasan
1982). A commonly used value for indicating relaminarisation is Δp = −0.025 (Patel
& Head 1968) or K = 3 × 10−6 (Kline et al. 1967). The variation of Δp and K for the
two Reynolds numbers is shown in figure 5. We observe that the flow for both Reynolds
numbers does not cross the relaminarisation threshold. The results for the flow at ReL = 1
million, presented in Balin & Jansen (2021) and Uzun & Malik (2021), gave evidence of
an incomplete relaminarisation process. For ReL = 2 million, the values of Δp and K are
much lower than the common threshold value, and the results for a similar flow (Uzun
& Malik 2022) indicated that the flow does not undergo relaminarisation. As discussed
in Sreenivasan (1982), an accelerated boundary layer exhibits a region of departure from
equilibrium scaling laws despite the fully turbulent nature of the flow. This flow region
was termed laminarescent (Schraub 1965; Sreenivasan 1982).
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The onset of laminarescent behaviour of turbulent boundary layers was shown to be at
Δp = −0.005 (Patel 1965). This value aligns with the results discussed in Narasimha &
Sreenivasan (1973), where a corrected threshold value of Δp = −0.004 was mentioned.
We observe that for ReL = 2 million, this threshold value is crossed x/L = −0.25.
Evidence of laminarescent behaviour can be observed in the results presented by Uzun &
Malik (2022) as a significant departure of the streamwise velocity above the logarithmic
law and the formation of an inflection point in the Reynolds shear stress in the region
−0.3 ≤ x/L ≤ −0.2. The same observations can be made in figure 30 (velocity) and
figure 31 (stresses) of Appendix A where we compare and show good agreement of our
results with theirs. Therefore, these results indicate that the higher-Reynolds-number flow
avoids relaminarisation, as was also observed for the similar flow in Uzun & Malik (2022),
however the strong FGP effects drive the boundary layer to a laminarescent state. Note that
in this laminarescent state, the flow is still fully turbulent. Moreover, Sreenivasan (1982)
further classified this state into two categories: (1) a local flow equilibrium state and (2) a
non-equilibrium state. In the local flow equilibrium state, a local similarity analysis could
be performed to determine local scaling laws, whereas in the non-local flow equilibrium
state, such a local similarity analysis may not be employed.

3.2. SCS analysis
The two-dimensional statistical nature of the flow allows us to consider a local SCS for
analysing the flow behaviour. Morse & Mahesh (2021) considered this coordinate system
for analysis of the axisymmetric RANS equations to study pressure gradient effects on a
submarine hull. Analysis of the momentum budget in the SCS will enable us to isolate
the effects of momentum budget terms along and perpendicular to streamlines leading to
acceleration along these directions.

We work with a ψ–φ–z SCS, where the ψ direction is locally aligned to be in the
direction of the mean velocity vector, the z direction is same as the z direction in the
Cartesian and the WCS, and the φ direction is orthogonal to the ψ and z directions based
on the right-hand rule (i.e. positively aligned with n for the attached portion of the flow
considered here). Representing relevant statistics in this coordinate system allows us to
understand the flow behaviour in directions parallel and perpendicular to the streamlines.
The attached boundary layers considered herein cause small, locally varying turning of the
streamline towards and away from the wall. This behaviour leads to the evolution of the
SCS locally in space in contrast to the WCS mentioned in Bradshaw (1973), which does
not vary in the wall-normal direction. From here on, the subscript indicates the direction
of the vector component; for example, ūψ is the component of averaged velocity in the
ψ direction. As the word normal refers both to direction and to diagonal components of
stresses, we use the unambiguous math definition of the normal Reynolds stresses instead
of words (e.g.u′

ψu′
ψ instead of the first normal stress in the SCS). If we were to represent

the continuity and momentum equations in the SCS, a simple rotation of terms would
not suffice as the local coordinate system also changes in space. Therefore, the derivation
of continuity and momentum equations in the SCS involves principles from differential
geometry. This problem was chased in Finnigan (1983), and the physical interpretation of
different terms was discussed. As the streamline normal velocity (ūφ) is zero in the SCS,
the mean continuity equation is trivially satisfied in the SCS for incompressible flows
(Finnigan 1983). In the absence of gravity forces, the steady mean momentum equations
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in the streamline coordinate system (Finnigan 1983) are given as follows:

ūψ
∂ ūψ
∂ψ

= − 1
ρ

∂ p̄
∂ψ

−
∂u′
ψu′

ψ

∂ψ
−
∂u′
ψu′

φ

∂φ
+

u′
ψu′

ψ − u′
φu′
φ

La
+ 2

u′
ψu′

φ

Rψ

+ ν

[
∂2ūψ
∂ψ2 + ∂2ūψ

∂φ2 − 2
La

∂ ūψ
∂ψ

− 1
Rψ

∂ ūψ
∂φ

− ūψ
R2
ψ

]
, (3.4)

ū2
ψ

Rψ
= − 1

ρ

∂ p̄
∂φ

−
∂u′
φu′
ψ

∂ψ
− ∂u′

φu′
φ

∂φ
+ 2

u′
ψu′

φ

La
+

u′
ψu′

ψ − u′
φu′
φ

Rψ

+ ν

[
− ∂2ūψ
∂ψ∂φ

+ 1
La

∂ ū
∂φ

+ ∂

∂ψ

(
ūψ
Rψ

)
+ ūψ

RψLa

]
, (3.5)

where La is known as the ‘e-folding’ distance that characterises the length scale for
streamwise acceleration and Rψ is the local radius of curvature of the streamline. These
two quantities can be computed as follows:

ūψ
La

= ∂ ūψ
∂ψ

,
1

Rψ
= 1

ūψ

(
Ω + ∂ ūψ

∂φ

)
, (3.6a,b)

where Ω is the magnitude of mean vorticity based on the right-hand coordinate system.
In our simulation, we collect statistics (average in time and spanwise direction) for the
velocity, velocity products, pressure, and pressure squared in the Cartesian coordinate
system. From the averaged velocity vector, the streamline direction can be determined
at each point and all statistics can be rotated pointwise into the SCS at every x, y point
on the periodic plane of the DNS mesh. As that mesh is fine enough to resolve the
instantaneous turbulence structures, we are able to compute the fields (including Reynolds
stresses) and their gradients very accurately to obtain the quantities shown in (3.4) and
(3.5) and other analyses within this paper. In (3.4), the first term on the right-hand side
can be combined with the term on the left-hand side resulting in a total pressure gradient
term. With this change, the equation indicates that the total pressure is conserved along the
streamlines when the viscous and turbulent momentum fluxes are negligible, which aligns
with Bernoulli’s principle. In the next section, we present non-dimensional budgets of the
momentum equations where inner units, u3

τ /ν, are used to normalise the budget terms on
the ordinate. These are plotted vs non-dimensional wall distances normalised by ν/uτ and
δ for presenting the results in inner and outer regions of the boundary layer, respectively.

3.2.1. Ψ -momentum budget in the SCS
Assessing the momentum equation budget in the SCS allows us to characterise the
dominant forces acting on a fluid packet following the streamlines. In figure 6(a), we
show the Ψ -momentum budget in the near-wall region at x/L = −0.35, the location of
the maximum APG. We observe that the momentum transfer due to the turbulent and
viscous fluxes (defined in the second line of (3.4)) is the most dominant. The small
difference between the two momentum fluxes is balanced by the pressure gradient close to
the wall. The advection term is much smaller than the pressure gradient near the wall.
The Ψ -momentum budget far from the wall is shown in figure 6(b). We observe that
momentum fluxes due to viscous effects are negligible in this region. The momentum flux
due to the Reynolds shear stress term is almost balanced by the total pressure gradient term
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Figure 6. The Ψ -momentum budget stations at x/L = −0.35 in APG region. The x-axis is normalised in
(a) inner units and (b) outer units, whereas the y-axis is normalised in inner units. Line types: blue, ūψ dūψ/dψ ;
black, dp̄/dψ ; green, du′

ψu′
ψ/dψ ; orange, du′

ψu′
φ/dφ; red, −(u′

ψu′
ψ − u′

φu′
φ)/La; cyan, −2u′

ψu′
φ/Rψ ; magenta,

negative of viscous terms; yellow, budget balance. Note that the difference in y-axis limits for (a,b) highlight
the difference in magnitude of these terms in the inner and outer regions of the flow.

(advection + pressure gradient), and the slight differences which are not visible on this
scale are attributed to the momentum flux due to u′

ψu′
ψ . A net negative value of advection

momentum transfer is observed, indicating deceleration of the streamlines in the mild APG
region. The budget behaviour in both the inner and outer regions of the boundary layer is
similar at other locations in the APG region.

In figure 7, we show the Ψ -momentum budget in the near-wall region for three different
x/L locations corresponding to the start of the FPG region, close to the location of the
maximum FPG and near the end of the FPG region. We observe that the momentum fluxes
due to viscous forces, turbulence and pressure gradient balance very close to the wall.
The advection term grows significantly after n+ > 10 and this increase appears to have
a log-linear dependence on n+. The behaviour in the outer region of the boundary layer
is shown in figure 8. The outer region of the boundary layer is dominated by momentum
flux due to the pressure gradient, advection and turbulence terms. In this region, there is
a positive value of the advection momentum flux, which indicates a net acceleration of
the streamlines in the FPG region. Like the APG region, the pressure gradient, advection
and Reynolds shear stress terms are mostly balanced with the next largest term (not
quite visible on this scale) being the u′

ψu′
ψ term. From these results, we observe that the

dominant terms of the momentum equation budget in both the APG and FPG regions are:
viscous flux, turbulence shear flux, pressure gradient and advection flux.

3.2.2. Φ-momentum budget in the SCS
The Φ-momentum budget enables the assessment of forces normal to the streamlines
acting on a fluid packet moving along the streamlines. In figure 9(a), we show the
Φ-momentum budget in the near-wall region for the APG region of the flow. At x/L =
−0.35, we observe fluxes due to u′

φu′
φ term and pressure gradient balance each other until

n+ ≈ 10. The effects of curvature are observed from n+ ≥ 10 onwards in figure 9(a,b).
We observe that the difference between the momentum flux due to the pressure gradient
and u′

φu′
φ term is non-zero. The net difference is equal to the advection normal to the

streamlines.
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Figure 7. The Ψ -momentum budget at several x/L stations in the FPG region: (a) x/L = −0.29; (b) x/L =
−0.15; (c) x/L = −0.05. Both axes are normalised by inner units. Line types: blue, ūψ dūψ/dψ ; black, dp̄/dψ ;
green, du′

ψu′
ψ/dψ ; orange, du′

ψu′
φ/dφ; red, −(u′

ψu′
ψ − u′

φu′
φ)/La; cyan, −2u′

ψu′
φ/Rψ ; magenta, negative of

viscous terms; yellow, budget balance.
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Figure 8. The Ψ -momentum budget at several stations in the FPG region: (a) x/L = −0.29; (b) x/L =
−0.15; (c) x/L = −0.05. The x-axis is normalised in outer units, whereas the y-axis is normalised in inner
units. Line types: blue, ūψ dūψ/dψ ; black, dp̄/dψ ; green, du′

ψu′
ψ/dψ ; orange, du′

ψu′
φ/dφ; red, −(u′

ψu′
ψ −

u′
φu′
φ)/La; cyan, −2u′

ψu′
φ/Rψ ; magenta, negative of viscous terms; yellow, budget balance.

In figures 10 and 11, we show theΦ-momentum budget at three different x/L locations in
the FPG region of the flow. We observe that the FPG region shows similar behaviour as the
APG region until x/L = −0.14. For −0.14 ≤ x/L ≤ 0, the difference between momentum
fluxes due to u′

φu′
φ and pressure gradient results in a net acceleration of streamlines. This

behaviour reduces the momentum in the outer region of the boundary layer and brings it
into the inner region of the boundary layer leading to the decay of turbulence in the outer
region of the boundary layer. From theΦ-momentum budget, we observe that the pressure
gradient normal to the streamlines and the u′

φu′
φ term are the dominant components for the

momentum budget that governs the acceleration of streamlines towards or away from the
wall.

3.3. Integral analysis-based Reynolds stress approximations
Simplified momentum equations were integrated normal to the wall in Knopp et al. (2015)
and Romero et al. (2022) to determine an approximation for a component of the Reynolds
shear stress. They proposed using this approximate stress as a normalisation for turbulent
statistics in the inner region units of turbulent boundary layers. In this section, we extend
this analysis to consider the physics exhibited by the bump flow where the advection and
centrifugal acceleration terms become prominent. Further, this analysis is also extended to
the outer region of the turbulent boundary layer. We acknowledge that, since this approach
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Figure 9. The Φ-momentum budget at x/L = −0.35 in the APG region. The x-axis is normalised in
(a) inner units and (b) outer units, whereas the y-axis is normalised in inner units. Line types: black, ū2

ψ/Rψ ;

blue, dp̄/dφ; green, du′
ψu′

φ/dψ ; orange, du′
φu′
φ/dφ; red, −2u′

ψu′
φ/La; cyan, −(u′

ψu′
ψ − u′

φu′
φ)/Rψ ; magenta,

negative of viscous terms; yellow, budget balance.
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Figure 10. The Φ-momentum budget at several x/L stations in FPG region: (a) x/L = −0.29; (b) x/L =
−0.15; (c) x/L = −0.05. Both axes are normalised by inner units. Line types: black, ū2

ψ/Rψ ; blue, dp̄/dφ;
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Streamline coordinate analysis of a turbulent boundary layer

arrives at this Reynolds stress approximation through an integration of the momentum
equation normal to the wall, some may find referring to it as a scale or scaling misleading.
Here, we do not claim that this term is a scale in the fundamental sense that the word scale
is used in the turbulence literature but we instead refer to these terms as an approximation
used for normalising Reynolds stresses rather than a scale or scaling of Reynolds stress
profiles.

3.3.1. Inner region
We draw insights from the Ψ -momentum budget to obtain a non-local approximation for
the Reynolds shear stress. From the Ψ -momentum budgets shown in § 3.2.1, we observe
that only a few terms contribute to the momentum fluxes: viscous stress, Reynolds shear
stress and pressure gradient, thereby leading to a net acceleration or inertia along the
streamlines. Therefore, the Ψ -momentum budget (3.4) reduces to

ūψ
∂ ūψ
∂ψ

≈ − 1
ρ

∂ p̄
∂ψ

−
∂u′
ψu′

φ

∂φ
+ ν

∂2ūψ
∂φ2 . (3.7)

Rearranging the equation and integrating the equation along φ holding ψ fixed results in

− u′
ψu′

φ + ν
∂ ūψ
∂φ

≈
∫ φ

0

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

)
dφ′ + τw

ρ
. (3.8)

Sufficiently far away from the wall, the viscous term is negligible, and the equation
simplifies to

− u′
ψu′

φ(φ) ≈
∫ φ

0

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

)
dφ′ + τw

ρ
. (3.9)

Integrating along φ is quite challenging and far more complicated than n lines.
To understand the potential error incurred by integrating along n lines, in figure 12,

we plot the angle between the streamlines and the wall, Δθ . In the mild APG region, the
streamlines within the boundary layer deviate away from the wall. The first profile at x/L =
−0.5 shows a boundary layer edge streamline angle of 0.007 rad. As the APG increasesΔθ
grows but then, as the pressure gradient relaxes to zero just past the APG–FPG switch, the
streamlines become nearly parallel to the surface in the boundary layer. In the FPG region,
the streamlines deflect toward the wall. We observe that in both the APG and FPG regions,
the streamlines deviate from the surface by less than 0.005 rad (0.3◦) below y+ = 100 and
less than 0.05 rad (3◦) throughout. Thus, in the integral analysis that follows, the SCS
integrands will be sampled and integrated along n lines to obtain approximations. The
small difference in the n and φ direction means the SCS and the WCS are nearly aligned
which will also allow us to apply the analysis in both the SCS and the WCS which is
important since the WCS is where simulations and modelling are more practical.

In the inner region of the boundary layer the close alignment of the SCS with WCS
allows (3.9) to be approximated by

− u′
ψu′

φ(n) ≈
∫ n

0

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

)
dn′ + τw

ρ
, (3.10)

where in this approximation the integral is taken along a curve where s is fixed (a straight
line ray normal from the wall at a given point on the surface corresponding to s).
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Figure 12. The angle of deflection (in radians) of streamlines from the bump surface in (a) APG region and
(b) FPG region. Here � indicates the edge of the boundary layer. Line types for APG region at x/L: violet,
−0.5; cerulean, −0.45; green, −0.39; orange, −0.35; mahogany, −0.3. Line types for FPG region at x/L:
violet, −0.29; royal blue, −0.25; cyan, −0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red
orange, −0.05; mahogany, −0.006.

The first term on the right-hand side of the above equation accounts for the effect of
streamline acceleration, and the second term on the right-hand side accounts for pressure
gradient effects. We can define an approximation,

u2
∗,i(n)

def=
∫ n

0

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

)
dn′ + τw

ρ
, (3.11)

which could normalise the Reynolds shear stress in the SCS as

−u′
ψu′

φ

u2
∗,i

≈ 1. (3.12)

The above equation indicates that the normalised shear stress in the SCS is independent
of Reynolds number, pressure gradient and acceleration effects. By assuming that the
misalignment of SCS and WCS is sufficiently small, we can extend this analysis to the
Reynolds shear stress in the WCS.

−u′
su′

n

u2
∗,i

≈ 1. (3.13)

If the acceleration and pressure gradient terms are negligible, u2
∗,i ≈ u2

τ , indicating that the
Reynolds shear stress in the WCS normalises independently of the Reynolds number and
follows the classical Reynolds shear stress normalisation used for zero pressure gradient
turbulent boundary layers. When the acceleration term is negligible but pressure gradient
effects are still significant in the inner region of the boundary layer, the approximation
reduces to

u2
∗,i(n) ≈

∫ n

0

1
ρ

∂ p̄
∂ψ

dn′ + τw

ρ
. (3.14)

Assuming that the pressure gradient is constant in the wall-normal direction, we attain the
following:

u2
∗,i(n) ≈ n

ρ

∂ p̄
∂ψ

+ u2
τ , (3.15)
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Streamline coordinate analysis of a turbulent boundary layer
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Figure 13. Reynolds shear stress in WCS in the APG region using (a) u2
τ and (b) u2

∗,i. Vertical lines indicate
that the quantity asymptotically goes to ±∞. Line types for APG region at x/L: violet, −0.5; cerulean, −0.45;
green, −0.39; orange, −0.35; mahogany, −0.3.

which is similar to the hybrid velocity normalisation presented in Sekimoto et al.
(2019) and Romero et al. (2022). This observation indicates that, subject to
appropriate assumptions of negligible advection or pressure gradient effects, the derived
approximation reduces to other commonly used normalisations for the Reynolds shear
stress (e.g. uτ when both absent).

We compare the Reynolds shear stress profiles in the APG region with different
normalisations in figure 13. We observe that the friction velocity normalisation does not
collapse at all x/L stations. At x/L = −0.5 and −0.45, the pressure gradient is slight, and
the Reynolds shear stress profiles collapse and agree well with theoretical estimates of
−u′

su′
n/u

2
τ ≈ 1 sufficiently far away from the wall in the inner region of the boundary

layer. As the APG increases for later downstream locations, and as u2
τ does not fully

account for it, the results deviate from theoretical estimates and the curves do not collapse.
On the other hand, the use of u2

∗,i for normalisation accounts for the effect of pressure
gradients and the resulting acceleration, thereby collapsing the velocity profiles to the
theoretical values −u′

su′
n/u

2
∗,i ≈ 1 in the inner region of the boundary layer. This analysis

indicates that the normalised Reynolds shear stress in the inner region of the boundary
layer depends on streamwise acceleration, streamwise pressure gradient and wall shear
stress. Unfortunately, u2

∗,i decreases faster than the rate for −u′
su′

n in the outer region of the
boundary layer, forming a singularity that makes the normalisation ineffective far away
from the wall. Furthermore, we also tested the approximation in (3.15) and observed that
it gives a good collapse of stress profiles in the inner region in the early parts of the
mild APG region. However, it fails to collapse the stress profile at x/L ≈ −0.3. This
observation indicates that accounting for all significant terms is essential to the success
of the normalisation.

When extracting physical insight from simulations, it is important to be certain that
the results are not significantly influenced by boundary conditions. In particular, the
collapse of the stress profiles when using u2

∗,i throughout the APG region shown in
figure 13, including at x/L = −0.5, greatly bolsters confidence in our assertion that the
STG boundary condition is not introducing artifacts into this simulation since it seems
highly unlikely for those artifacts to also lead to this collapse. Rather, we maintain that the
flow has matured quickly into correct turbulence under the weak APG at the inflow which
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Figure 14. Reynolds shear stress in WCS in the FPG region normalised by (a) u2
τ and (b) u2

∗,i. Vertical lines
indicate that the quantity asymptotically goes to ±∞. Line types for FPG region at x/L: violet, −0.29; royal
blue, −0.25; cyan, −0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red orange, −0.05; mahogany,
−0.006.

then allows the simulation to accurately reflect the physics of the smoothly increasing and
then smoothly decreasing APG. Further, as the FPG region is even further downstream,
we are confident it is also free of STG inflow artifacts.

We compare the Reynolds shear stress profiles in the WCS in the FPG region with
different normalisations in figure 14. We observe that for all x/L stations in the FPG, the
friction velocity normalisation does not collapse the shear stress profiles in the inner region
of the boundary layer. On the other hand, the new Reynolds shear stress approximation
leads to a much better collapse of the Reynolds shear stress profiles in the inner region.
Note that the flow is experiencing pressure gradients leading to acceleration, the presence
of an internal layer, and concave and convex curvature effects in this region. Even
with such complex flow physics, the Reynolds shear stress profiles collapse well. Even
though the collapse is good, we expected it to be better in the buffer region n+ < 30.
While deriving the approximation, we assumed that the viscous effects are negligible
sufficiently far from the wall. This assumption may not hold in the FPG region where
the strong pressure gradient effects lead to the laminarescent stage, where the boundary
layer adjusts towards starting the relaminarisation process. Therefore, we would expect
viscous effects to be important even further away from the wall, and these effects should
also be incorporated into the approximation. From (3.8) and assuming the misalignment
between the SCS and WCS is sufficiently small, we attain

− u′
ψu′

φ(n) ≈
∫ n

0

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

)
dn′ + τw

ρ
− ν

∂ ūψ
∂φ

, (3.16)

leading to a new approximation, u2
∗∗,i,

−u′
su′

n

u2
∗∗,i

≈ 1, where u2
∗∗,i(n)

def=
∫ n

0

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

)
dn′ + τw

ρ
− ν

∂ ūψ
∂φ

. (3.17)

We show the Reynolds shear stress normalised using u2
∗∗,i in figure 15. The u2

∗∗,i
normalisation does not significantly affect the already good collapse of stress profiles
in the APG region compared with u2

∗,i. However, it substantially improves the collapse
of Reynolds shear stress profiles in the FPG region in both the buffer and log regions
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Streamline coordinate analysis of a turbulent boundary layer
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Figure 15. Reynolds shear stress in WCS in the (a) APG region and (b) FPG region normalised by u2
∗∗,i.

Vertical lines indicate that the quantity asymptotically goes to ±∞. Line types for APG region at x/L: violet,
−0.5; cerulean, −0.45; green, −0.39; orange, −0.35; mahogany, −0.3. Line types for FPG region at x/L:
violet, −0.29; royal blue, −0.25; cyan, −0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red
orange, −0.05; mahogany, −0.006.

(10 ≤ n+ ≤ 100) of the boundary layer compared with u2
∗,i normalisation. These results

indicate that for flows where viscous effects become substantial, the normalisation of the
Reynolds shear stress must be adjusted to account for the thick near-wall viscous region.
Furthermore, with a better collapse of Reynolds shear stress profiles with this proposed
approximation, it appears that the upstream history effects and development of internal
layers are also accounted for.

Even though these new approximations show good collapse of the Reynolds shear stress,
they should not be expected to and do not show good collapse for Reynolds normal
stresses. Therefore, we derive the approximation for u′

nu′
n stress by a similar procedure.

In this case, we consider the Φ-momentum budget, (3.5) and remove all the equation
components that had negligible influence as observed in § 3.2.1,

ū2
ψ

Rψ
≈ − 1

ρ

∂ p̄
∂φ

−
∂u′
φu′
φ

∂φ
. (3.18)

Rearranging this equation and integrating it along φ, we obtain

u′
φu′
φ(φ) ≈ −

∫ φ

0

(
ū2
ψ

Rψ
+ 1
ρ

∂ p̄
∂φ

)
dφ′ ≈ −

∫ φ

0

ū2
ψ

Rψ
dφ′ + p̄w − p

ρ
. (3.19)

To simplify the calculation, we again assume near-alignment of the SCS and WCS and
using Rw in place of Rψ , which are both valid as shown in figure 12

u′
φu′
φ(n) ≈ −

∫ n

0

ū2
ψ

Rw
dn′ + p̄w − p

ρ
. (3.20)

Therefore, we can define a new approximation for u′
φu′
φ

u2
γ,i(n)

def= −
∫ n

0

ū2
ψ

Rw
dn′ + p̄w − p

ρ
, (3.21)
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Figure 16. Plots of u′
nu′

n in APG region normalised by (a) u2
τ and (b) u2

γ,i. Vertical lines indicate that the
quantity asymptotically goes to ±∞. Line types for APG region at x/L: violet, −0.5; cerulean, −0.45; green,
−0.39; orange, −0.35; mahogany, −0.3.

which satisfies the following equation in the near-wall region:

u′
φu′
φ

u2
γ,i

≈ u′
nu′

n

u2
γ,i

≈ 1, (3.22)

which gives a normalisation for u′
nu′

n. The expression for u2
γ,i indicates that u′

nu′
n

dynamically depends on the centrifugal force and local pressure. In the absence of the
streamline curvature effects, the centrifugal force term is expected to be negligible,
resulting in a dependence on the difference between the local pressure and the pressure
at the wall.

The normalised u′
nu′

n stress for the APG and FPG regions are shown in figures 16 and 17,
respectively. We observe that the u2

τ normalisation does not lead to a collapse of stress
profiles in both the APG and FPG regions. Using u2

γ,i for normalising the stress profile,
we get a much better collapse and agreement with the theoretical estimates in the inner
boundary layer region for both the APG and FPG regions of the flow. These results indicate
that including the local pressure gradient and centrifugal force terms is important to
account for the dynamics of these quantities in the normalisation. Our analysis leads to the
derivation of approximations for u′

su′
n and u′

nu′
n. However, these derived approximations

are specific to u′
su′

n and u′
nu′

n, and do not extend well to other Reynolds stress components:
u′

su′
s and u′

zu′
z.

3.3.2. Outer region
Before deriving the approximations for the Reynolds stresses in the outer region using
integral analysis, we first define some commonly used normalisations. The normalisation
of the Reynolds stresses in the outer region is often represented using the defect law for
the Reynolds stress tensor (Clauser 1956; Castillo & George 2001):

u′
iu

′
j

Rij,o
= fij

(n
δ

)
, (3.23)
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Streamline coordinate analysis of a turbulent boundary layer
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Figure 17. Plots of u′
nu′

n in FPG region normalised by (a) u2
τ and (b) u2

γ,i. Vertical lines indicate that the
quantity asymptotically goes to ±∞. Line types for FPG region at x/L: violet, −0.29; royal blue, −0.25; cyan,
−0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red orange, −0.05; mahogany, −0.006.

where Rij,o is the normalisation for ijth component of the Reynolds stress tensor in the
outer region of the boundary layer. If the normalisation for Reynolds stresses is based
on the same velocity normalisation in both the inner and outer region of the boundary
layer (Clauser 1954), then the friction velocity is used for normalising the stresses in the
outer region and Rij,o = u2

τ . Similarly, two velocity normalisation approaches can be taken
for the Reynolds stresses, where Rij,i = u2

τ /= Rij,o. Using similarity analysis, Castillo &
George (2001) derived a normalisation for the Reynolds stresses in the outer region of the
turbulent boundary layer in the WCS as

Rsn,o = ū2
s
∂δ

∂s
, Rss,o = ū2

s , Rnn,o = ū2
s . (3.24a–c)

Brzek et al. (2005) showed that this normalisation does not collapse the stress profiles in
the presence of pressure gradients. Another common outer region velocity normalisation
is Zagarola–Smits normalisation,

UZS = ūs,e
δ∗

δ
, (3.25)

where ūs,e is the velocity at the edge of boundary layer and δ∗ is the displacement
thickness. Brzek et al. (2005) showed that Zagarola–Smits normalisation (Rij,o = U2

ZS)
works better for normalising the Reynolds stresses in the presence of pressure gradients.
For the bump flow, two components of the normalised Reynolds stress profiles in the APG
region of the flow are shown in figure 18. The two Reynolds stress profiles collapse well
when normalised by UZS in the mild APG of the boundary layer. As shown in figure 19, this
behaviour is not observed for the strong FPG region of the flow where the stress profiles
do not collapse for either of the two stress components. In the strong FPG region, the
outer region peak of stress components increases until x/L = −0.1, close to the maximum
β location. Downstream of this location, there is a decrease in the outer region peak.
A case could be made for the inclusion of upstream effects. However, several studies
(Wosnik & George 2000; George 2006) have shown that using the ZS normalisation
already incorporates these effects. These results indicate that a local normalisation may
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Figure 18. Reynolds stress tensor components: (a) u′
nu′

n and (b) −u′
su′

n using U2
ZS in the mild APG region of

the boundary layer. Line types for APG region at x/L: violet, −0.5; cerulean, −0.45; green, −0.39; orange,
−0.35; mahogany, −0.3.
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Figure 19. Reynolds stress tensor components: (a) u′
nu′

n and (b) −u′
su′

n normalised using U2
ZS in the strong

FPG region of the boundary layer. Line types for FPG region at x/L: violet, −0.29; royal blue, −0.25; cyan,
−0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red orange, −0.05; mahogany, −0.006.

not work well for the strong FPG regions of the flow, therefore integral-analysis-based
approximations for Reynolds stresses need to be considered.

The momentum budget in the SCS indicates that the viscous terms are negligible in the
outer region of the boundary layer, and the ψ-momentum equation reduces to

ūψ
∂ ūψ
∂ψ

≈ − 1
ρ

∂ p̄
∂ψ

−
∂u′
ψu′

ψ

∂ψ
−
∂u′
ψu′

φ

∂φ
. (3.26)

Rearranging the equation and integrating it from φ to freestream, we get

− u′
ψu′

φ(φ) ≈
∫ ∞

φ

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

+
∂u′
ψu′

ψ

∂ψ

)
dφ′. (3.27)

From the discussion in § 3.3.1, while the SCS and WCS become less well aligned in the
outer layer (as large as 3◦) that misalignment may not be significant enough to spoil
the approximation, and thus the integral in (3.27) may still be approximated using the
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Streamline coordinate analysis of a turbulent boundary layer

wall-normal coordinate as the integrand. This assumption reduces the expression to

− u′
ψu′

φ(n) ≈
∫ ∞

n

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

+
∂u′
ψu′

ψ

∂ψ

)
dn′. (3.28)

Classically, ∂u′
ψu′

ψ/∂ψ is often assumed to be insignificant relative to the other terms of
the equation. The ψ-momentum equation budgets shown in figure 8 indicated that this
term is small compared to the momentum flux due to the pressure gradient, advection
and the Reynolds shear stress. However, as this term is non-zero, it may still affect
the approximation of the Reynolds shear stress terms. Therefore, we compare two
approximations,

−u′
ψu′

φ

u2∗,o
≈ −u′

su′
n

u2∗,o
≈ 1, u2

∗,o(n)
def=
∫ ∞

n

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

+
∂u′
ψu′

ψ

∂ψ

)
dn′, (3.29)

and

−u′
ψu′

φ

u2∗∗,o
≈ −u′

su′
n

u2∗∗,o
≈ 1, u2

∗∗,o(n)
def=
∫ ∞

n

(
ūψ
∂ ūψ
∂ψ

+ 1
ρ

∂ p̄
∂ψ

)
dn′, (3.30)

where u2∗,o includes the influence of ∂u′
ψu′

ψ/∂ψ term, whereas u2∗∗,o neglects this
influence. This approximation varies locally with wall-normal locations due to the
dependence of the lower integral limit on wall-normal distance. The upper limit of the
integral is set as the inviscid core where the magnitude of the integrand is negligible.

The Reynolds shear stresses in the WCS normalised by u2
∗,0 and u2∗∗,o in the APG

region are shown in figure 20. The profiles are plotted until n/δ = 0.9 to avoid
singularities observed at n/δ ≈ 1.0 as the approximation decreases to zero faster than the
decrease in the Reynolds shear stresses. Both approximations result in a good collapse
of stresses at different x/L locations. Normalised Reynolds shear stresses shown in
figure 21 show a better collapse than the Zagarola–Smits normalisation results shown in
figure 19. We observe that u2∗,o collapses the Reynolds shear stress much better than u2∗∗,o
indicating that the influence of ∂u′

ψu′
ψ/∂ψ is non-negligible, unlike many other simpler

boundary layer flows. From a turbulence modelling perspective, the term ∂u′
ψu′

ψ/∂ψ is
generally unknown and often neglected while simplifying boundary layer equations. This
term is included for RANS modelling but is frequently approximated using the linear
eddy-viscosity hypothesis. The non-negligible influence of ∂u′

ψu′
ψ/∂ψ indicates that the

accurate modelling of this term will be required to obtain a better approximation of the
flow solution.

A similar integral analysis conducted with the φ-momentum equation results in the
approximation

u′
φu′
φ

u2
γ,o

≈ u′
nu′

n

u2
γ,o

≈ 1, u2
γ,o(n)

def=
∫ ∞

n

(
ū2
ψ

Rw
+ 1
ρ

∂ p̄
∂φ

)
dn′, (3.31)

where the upper limit of the integral is in the inviscid core. The results obtained using
this approximation are shown in figure 22. We observe a singularity at n/δ ≈ 0 and
n/δ ≈ 1.0 as the approximation reduces to zero faster than the decrease in u′

nu′
n. In
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Figure 20. Reynolds shear stress in WCS in the APG region of the flow normalised by (a) u2∗,o and (b) u2∗∗,o.
Vertical lines indicate that the quantity asymptotically goes to ±∞. Line types for APG region at x/L: violet,
−0.5; cerulean, −0.45; green, −0.39; orange, −0.35; mahogany, −0.3.
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Figure 21. Reynolds shear stress in WCS in the FPG region of the flow normalised by (a) u2∗,o and (b) u2∗∗,o.
Vertical lines indicate that the quantity asymptotically goes to ±∞. Line types for FPG region at x/L: violet,
−0.29; royal blue, −0.25; cyan, −0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red orange,
−0.05; mahogany, −0.006.

addition, we observe that the approximation collapses the profiles well in the APG region.
In the FPG region, the approximation collapses the profiles better than the Zagarola–Smits
normalisation (shown in figure 19). However, this collapse is not as close as in the APG
region, indicating that neglected budget terms in this calculation can combine to have
first-order effects that are not included in the above approximation.

3.4. Development of semi-empirical approximations
The approximations obtained through the integral analysis for the inner and outer region
of the turbulent boundary layer cannot be directly used to model near-wall turbulence
behaviour as it does not solve the closure problem and requires accurate estimates of
momentum budget terms until the point where the approximation is applied. However,
the integral analysis indicates which terms are relevant and essential to be included in
the modelling. For specific scenarios, such as when advection and pressure gradient
terms are small, these terms can be neglected, and the approximation simplifies to the

984 A23-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.199


Streamline coordinate analysis of a turbulent boundary layer

1.2

1.0

0.8

0.6

0.4

0.2

1.2

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6

n/δ
0.8 1.0 1.2 0 0.2 0.4 0.6

n/δ
0.8 1.0 1.2

〈u
′ nu

′ n〉/
u2 γ

,o
(b)(a)

Figure 22. Streamwise normal stress in WCS in the (a) APG region and (b) FPG region of the flow normalised
by u2

γ,o. Vertical lines indicate that the quantity asymptotically goes to ±∞. Line types for APG region at x/L:
violet, −0.5; cerulean, −0.45; green, −0.39; orange, −0.35; mahogany, −0.3. Line types for FPG region at
x/L: violet, −0.29; royal blue, −0.25; cyan, −0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red
orange, −0.05; mahogany, −0.006.

commonly used friction velocity normalisation. On the other hand, for complex problems
such as the bump flow, where these terms cannot be neglected, appropriate semi-empirical
relations are needed to develop a closed-form model. In this section, we use observations
from the DNS of the bump to approximate the advection term for Reynolds shear stress
approximation and centrifugal force term for approximating u′

nu′
n in the inner region of the

boundary layer.

3.4.1. Reynolds shear stress approximations
From the momentum budgets shown in § 3.2.1, we observe that the streamwise
pressure gradient varies slowly in the wall-normal direction. Therefore, the streamwise
pressure gradient contribution to the Reynolds shear stress approximation (3.11) can be
approximated as ∫ n

0

1
ρ

∂ p̄
∂ψ

dn′ ≈ n
ρ

∂ p̄
∂ψ

∣∣∣∣
w

= n
ρ

∂ p̄w

∂s
. (3.32)

On the other hand, the advection term in the Reynolds shear stress approximation varies
significantly in the near-wall region. One approach to model the advection term is to
assume a particular velocity profile for ū+

ψ such as the Reichardt velocity profile (Reichardt
1951)

ū+
ψ ≈ ū+

ψ,Rei = 1
κ

ln(1 + κn+)+ 7.8
[

1 − exp
(−n+

11

)
− n+

11
exp

(−n+

3

)]
. (3.33)

A similar approach was employed to construct empirical wall laws for turbulent flows
subject to APGs in Galbraith, Sjolander & Head (1977) and Knopp (2022). We have found
that assuming the Reichardt velocity profile in the advection term leads to a collapse of
Reynolds shear stresses in the mild APG region, but it fails to lead to a collapse in the
strong FPG region. This is not surprising as the mean velocity profiles strongly depart
from the Reichardt velocity profile in the strong FPG region.

An alternative approach is to construct an empirical model for the advection term using
the DNS data. In the momentum budgets shown in § 3.2.1, the advection term in both
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Figure 23. Advection term in (a) APG and (b) FPG regions of the flow normalised by inner region units
and compared to log-linear approximation as shown in (3.34). Line types for APG region for DNS profiles at
x/L: violet, −0.5; cerulean, −0.45; green, −0.39; orange, −0.35; mahogany, −0.3. Line types for log-linear
advection approximation at x/L: violet, −0.5; cerulean, −0.45; green, −0.39; orange, −0.35; mahogany, −0.3.
Line types for FPG region at x/L: violet, −0.29; royal blue, −0.25; cyan, −0.2; sea green, −0.15; green,
−0.1; yellow orange, −0.079; red orange, −0.05; mahogany, −0.006. Line types for log-linear advection
approximation at x/L: violet, −0.29; royal blue, −0.25; cyan, −0.2; sea green, −0.15; green, −0.1; yellow
orange, −0.079; red orange, −0.05; mahogany, −0.006.

the APG and FPG regions of the flow appears to exhibit a log-linear relationship in the
inner region of the boundary layer. Using this observation, a log-linear profile fit for the
advection term in the inner region of the boundary layer is proposed:

ūψ
∂ ūψ
∂ψ

≈
{
(u3
τC/ν) ln(n+ − 8), n+ > 9

0, otherwise

}
, (3.34)

where the constant C varies with x/L stations and is optimised based on the DNS advection
term. The comparison of the advection term obtained using DNS and the log-linear
advection term approximation is shown in figure 23. As the log-linear fit adequately
represents the variation of the advection term in the inner region of the boundary layer, we
can use it in the approximation.

To arrive at a closed Reynolds shear stress approximation, we also need a model for C.
In this direction, we next examine how C varies with non-dimensional pressure gradient
( p+ = (ν/u3

τ )(∂pw/∂s)) and propose a model for C, referred to as Cmod, of the form

Cmod = Ap+ + B, (3.35)

where B = 0 to satisfy Cmod = 0 for zero-pressure gradient turbulent boundary layers and

A = argmin
Ā

‖C − Āp+‖2. (3.36)

The resulting model was found to be Cmod = −0.195p+. The variation of C obtained from
the DNS and the linear fit approximation is shown in figure 24(a). These results indicate
the linear fit agrees well in the early part of the mild APG region. However, a significant
departure from this fit is observed in the latter part of the APG region and the strong
FPG region as the DNS computed values of C draw a loop, indicating non-local effects.
Although this departure from the linear fit is not correlated with the pressure gradient
directly, it correlates well with the non-dimensionalised second derivative of pressure
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Streamline coordinate analysis of a turbulent boundary layer

(∂p+/∂s+ = (ν2/u4
τ )(∂

2pw/∂s2)) as shown in figure 24(b). The key observation from this
correlation is that non-local pressure gradient effects can be accounted for by considering
the second derivative of the pressure gradient. Therefore, we augment the model for C to
be linearly dependent on both p+ and ∂p+/∂s+. The resulting model form is

Cmod−2 = Ap+ + B
∂p+

∂s+ , (3.37)

where

A,B = argmin
Ā,B̄

∥∥∥∥C − Āp+ − B̄
∂p+

∂s+

∥∥∥∥
2

. (3.38)

The resulting model was found to be

Cmod−2 = −0.195p+ − 530.914
∂p+

∂s+ . (3.39)

We observe that the coefficient of p+ does not change even when we add the dependence
on ∂p+/∂s+. The comparison of Cmod−2 and C obtained from DNS is presented in
figure 25, which show that Cmod−2 adequately represents the variation of C for this flow
by accounting for the non-local effects. Note that the addition of higher-order derivatives
of p+ or the selection of higher degree polynomials (instead of linear) can further improve
the accuracy of the model for C. However, both approaches may lead to overfitting of
the model to the bump data and the latter requires expensive computations of accurate
higher-order derivatives. Using the final attained model Cmod−2, the Reynolds shear stress
is normalised by

u2
aD(n)

def= u2
τ + n

ρ

∂ p̄
∂s

+ u2
τCmod−2I1

(nuτ
ν

)
, (3.40)

where the integral, I1(nuτ /ν) = I1(n+), is given as

I1(n+) =
{∫ n+

9 ln(n+′ − 8) dn+′
, n+ > 9

0, otherwise

}
, (3.41)

which can be computed analytically.
Reynolds shear stresses normalised with u2

aD for several x/L locations are shown in
figure 26. We observe that this proposed normalisation collapses the Reynolds shear
stress profiles well in the inner region of the boundary layer, that is n+ < 100, for both
the APG and FPG regions of the flow. We anticipate the approximation can be used in
wall-modelled LES and RANS as this is the range of wall-normal locations at which
boundary conditions are applied in such approaches.

3.4.2. u′
nu′

n normal stress approximation
We can approximate u′

nu′
n using a similar approach to that we followed for approximating

Reynolds shear stress. In this case, the influence of curvature brought about through
the centrifugal force term needs to be accounted for accurately. Unlike the case of
the advection term in the Reynolds shear stress approximation, assuming the Reichardt
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Figure 24. Variation of the (a) approximation constant C and modelled value Cmod with p+ and (b) error in
the linear approximation and ∂p+/∂s+ at several x/L locations upstream of flow separation. Line types for (a):
black, for C obtained from DNS; and blue, for Cmod . Line types for (b): black, for ∂p+/∂s+ obtained from
DNS; and red, for normalised error in the linear fit (= − 1

500 (C − Cmod)).
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Figure 25. Variation of the approximation constant C and modelled value Cmod−2 with p+. Line types: black,
for C obtained from DNS; and blue, for Cmod−2.

velocity profile (3.33) in the centrifugal force term leads to a suitable approximation

u2
γR(n)

def= −νuτ
Rw

I2

(nuτ
ν

)
+ p̄w − p

ρ
(3.42)

for the u′
nu′

n normal stress for both the APG and FPG regions of the flow, where
I2(nuτ /ν) = I2(n+) is given by

I2(n+) =
∫ n+

0
(ū+
ψ,Rei)

2 dn+′
(3.43)

and can be computed analytically. Note the approximation given by (3.42) is closed and
depends only on local and wall quantities.
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Figure 26. Reynolds shear stress in (a) APG and (b) FPG regions normalised by u2
aD. Vertical lines indicate

that the quantity asymptotically goes to ±∞. Line types for APG region at x/L: violet, −0.5; cerulean, −0.45;
green, −0.39; orange, −0.35; mahogany, −0.3. Line types for FPG region at x/L: violet, −0.29; royal blue,
−0.25; cyan, −0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red orange, −0.05; mahogany,
−0.006.
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Figure 27. Plots of u′
nu′

n stress in (a) APG and (b) FPG regions normalised by u2
γR. Vertical lines indicate that

the quantity asymptotically goes to ±∞. Line types for APG region at x/L: violet, −0.5; cerulean, −0.45;
green, −0.39; orange, −0.35; mahogany, −0.3. Line types for FPG region at x/L: violet, −0.29; royal blue,
−0.25; cyan, −0.2; sea green, −0.15; green, −0.1; yellow orange, −0.079; red orange, −0.05; mahogany,
−0.006.

The u′
nu′

n stress profiles normalised by u2
γR in both the APG and FPG regions of flow

are shown in figure 27. The results indicate that the normalisation collapses the profiles
well in the inner region of the boundary layer for both types of pressure gradient. The
assumption of Reichardt’s velocity profile does not significantly affect the accuracy of the
approximation for n+ < 80. Therefore, this approximation works adequately to account
for the centrifugal force terms in the approximation.

These proposed semi-empirical approximations for the Reynolds shear stress and the
u′

nu′
n stress were found to be adequate for the turbulent boundary layer in the presence

of pressure gradients and curvature effects considered in this article. We believe other
such flows could exhibit similar behaviour and additional studies with different pressure
gradients are warranted to understand the applicability of these approximations for such
flows. At ReL = 1 million, the model based on the ReL = 2 million flow agrees well
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for acceptable wall-normal distance relevant for wall-modelled boundary conditions in
the APG region and also in the FPG region prior to where laminarisation occurs.
Subject to validation on several other flows with pressure gradients and curvature effects,
these approximations offer closed-form expressions for the Reynolds shear stress and
the u′

nu′
n stress in the inner region of the boundary layer at wall-normal distances

where wall-modelled large eddy simulations and RANS simulations apply wall-modelled
boundary conditions. Further, these expressions involve variables that would be available
from the interior solution. The work presented here is meant to be a starting point for
the community to evaluate (3.40) and (3.42) on other available datasets, extend their
generalisability and incorporate them in novel wall-modelling approaches.

4. Conclusions

Characterising turbulent boundary layers is immensely important for understanding and
modelling aerospace and geophysical flows. Turbulent boundary layers with pressure
gradient and curvature effects are particularly interesting to the aerospace industry due
to their relevance for smooth body flow separation, which could result in massive
aerodynamic drag. The Gaussian (Boeing) bump is a recent benchmark problem
specifically defined to replicate this flow behaviour to get fundamental insights on the
behaviour of velocity and Reynolds stresses leading to flow separation.

In this article we have discussed insights on turbulent boundary layers in the presence
of pressure gradient and curvature effects based on DNS of the turbulent boundary layer
over the Gaussian bump at ReL = 2 million. The simulation results are compared with
another DNS (Uzun & Malik 2022) with a different simulation set-up. Both agreements
and differences in the results for these two DNSs are analysed. The characteristics of the
turbulent boundary layer are also compared with another DNS of the flow over the same
geometry but at a lower Reynolds number (ReL = 1 million), and differences between the
flow physics are assessed. Momentum budgets for the flow are analysed in a SCS, and
pressure gradient and curvature effects are isolated. These results simplify the momentum
equations that are used for integral analysis. Integral analysis is used to formulate non-local
Reynolds stress approximations in the inner and outer regions of the turbulent boundary
layer. These normalised stresses showed a great collapse of the stress profiles in the
mild APG region. In contrast, in the strong FPG region, the collapse of profiles is not
perfect but it was observed to be much better than the traditional normalisation based on
friction velocity. The integral analysis-based approximations suggest that relevant fluid
flow dynamics must be accounted for in developing new approximations for modelling
turbulent flow behaviour in the presence of strong pressure gradients and curvature. Using
the DNS data for the flow, we derived semi-empirical approximations for Reynolds shear
stress and normal-direction normal stresses. Compared to friction velocity normalisation,
these normalisations improved the collapse of these stresses in the inner region of the
boundary layer for the APGs and FPGs on the windward side of the bump. Despite the
great success and applicability of this approximation for the flow under consideration, we
believe that the validity of these approximations should be assessed for other boundary
layer flows with similar pressure gradients and curvature effects. A successful validation
would allow for the use of these approximations within a wall model for turbulent flow
simulations.
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Appendix A. Comparison with results in Uzun & Malik (2022)

A.1. Differences in simulation set-up
This section highlights the differences in the simulation set-up compared with the DNS
in Uzun & Malik (2022). Even though the bump flow geometry and Reynolds number
are the same, key differences between these two DNSs arise from the following reasons:
(1) solving either incompressible or compressible Navier–Stokes equations, (2) differences
in the length of the spanwise domain (0.156L vs 0.08L), (3) STG vs recycling inflow and
(4) selection of different boundary condition for the top surface. To understand the effect
of point (1), we conducted compressible RANS simulations at the same Mach number
used in Uzun & Malik (2022). We did not observe significant differences in the mean
flow profiles, coefficients of skin friction and pressure between the incompressible and
compressible RANS simulations. Although these results are not shown in the article for
brevity, these results indicate that the effect of compressibility is small enough, and the
simulation of either incompressible or compressible Navier–Stokes equations should not
affect the solution. With regards to point (2), we note that in this article we only investigate
the flow domain upstream of flow separation. In this region, using a larger domain is only
expected to improve the convergence of statistics but not their fully converged values. For
point (3) above, though different, both inflow turbulence generation techniques have been
demonstrated to rapidly produce mature and realistic turbulence. As discussed in § 2.1, we
demonstrate the effectiveness of STG for flat plate DNS in Patterson et al. (2021), Wright
et al. (2020) and for a bump flow in Balin & Jansen (2021). The most crucial difference
between these two DNSs is point (4): the selection of different boundary conditions at
the top surface. As mentioned in § 2.1, our simulation accounts for the presence of a
wall at the top surface of the domain, whereas the DNS in Uzun & Malik (2022) uses
freestream air as the boundary condition on the top surface placed at y/L = 1.0. As is
computationally infeasible to perform another DNS to understand these differences, we
used a suite of RANS simulations to quantify the effect of the discrepancies in the top
boundary condition.

We conducted RANS simulations with three different domains and boundary
conditions: (1) the domain and boundary conditions are the same as the preliminary RANS
simulation described in § 2.1, (2) the domain and boundary conditions are the same as the
DNS (i.e. with the slanted top surface modelled as a slip wall) and (3) the domain and
boundary conditions are similar to the preliminary RANS simulation, with the location of
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Figure 28. (a) Coefficient of pressure (Cp) and (b) skin-friction coefficient (Cf ) for different RANS
simulations.

the flat top surface at y/L = 1.0, but a freestream air boundary condition is prescribed at
that surface.

The coefficient of pressure and skin-friction coefficient for the three different RANS
simulations are compared in figure 28. We observe a clear difference in the Cp at the
bump peak between these RANS simulations. This indicates the effect of the top wall in
decreasing Cp at the bump peak compared with using freestream air boundary conditions
at the top surface. A wall at the top surface constricts the free stream flow, which leads to a
further reduction in pressure and an increase in the suction peak. Furthermore, differences
in Cf are observed for these two boundary conditions. Using a freestream air boundary
condition appears to reduce skin friction compared with using a wall at the top surface.
This difference in Cf is about 5 % in the mild APG region, and then it quickly rises
close to the bump peak at x/L = 0. Similar differences were observed for k − ω shear
stress transport (SST) RANS simulations as shown in Prakash et al. (2022). Although it
may seem odd to use RANS to confirm differences in the DNS, the pressure distribution
from an attached flow is fully set by the height of the geometry plus the displacement
thickness. Even if RANS has errors, its relative difference due to boundary conditions
closely matches the difference in the two DNSs. Further, while we would not trust the
RANS prediction of the Cf peak, its offset on the very weak pressure gradient Cf also
matches the DNS offset. We regard this difference as a good result: that both DNS are
accurate representations of two flows with slightly different pressure gradients. We have
quantified the pressure gradients in our DNS confined case as 9.3 % more favourable and
about 3.4 % more adverse than the free-air DNS. We expect that there will be a significant
benefit to having two close cases for data-driven models that might be trained on one and
tested on the other to assess the ability to handle this modest difference from a relatively
small change in boundary conditions.

We compare the velocity profiles from different RANS simulations at various x/L
stations in figure 29. We observe that using a freestream air boundary condition at the
top surface reduces the streamwise velocity over the bump. Similar differences were also
observed for Reynolds stress profiles, but the results are not discussed here for brevity.
These results highlight that the selection of the top surface boundary condition has a
significant effect on the flow acceleration due to the bump and therefore the DNS results.
Furthermore, the RANS simulation using the DNS domain and boundary conditions gives
the same coefficient of pressure, skin-friction coefficient and velocity profiles compared
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Figure 29. Comparison of velocity profiles at several x/L stations for different RANS simulations:
(a) x/L = −0.39; (b) x/L = −0.1; (c) x/L = 0.
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Figure 30. Velocity profiles at different x/L stations. The DNS results in Uzun & Malik (2022) are shown in
circles and our DNS results are shown in solid lines. Different colours denote different x/L locations: x/L =
−0.39 is shown in dark blue, x/L = −0.2 is shown in light blue, x/L = −0.1 is shown in green, x/L = −0.03
is shown in orange and x/L = 0.0 is shown in red.

with the preliminary RANS simulation. This gives fidelity to selecting slip boundary
conditions at the top surface instead of attempting to resolve the wall at the top surface.

A.2. Velocity profiles
In the previous section, we observed that the two DNSs exhibit differences in the
coefficient of forces. The differences in simulation set-up also result in variations in
velocity and stress profiles between the two DNSs. As the primary differences lie in the
Cf distribution, we can account for the offset by normalising velocity and stress profiles
accordingly. The velocity profiles normalised by local inner-layer units are shown in
figure 30. This normalisation results in an excellent agreement of the velocity profiles for
these two DNSs. Note that in the FPG region, our DNS shows a slightly larger departure
above the log law, which is consistent with the stronger pressure gradient (ours was 9.3 %
higher) caused by the no-penetration boundary condition on the top wall. As these two
DNSs were conducted independently with different codes and turbulent inflow generation
techniques, these results add to the confidence of the simulations and results presented in
this article and that in Uzun & Malik (2022).

A.3. Reynolds stress profiles
In figure 31, we compare the components of the Reynolds stress tensor normalised by
friction velocity to those shown in Uzun & Malik (2022). We observe that the normalised

984 A23-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.199


A. Prakash, R. Balin, J.A. Evans and K.E. Jansen

9
(a) (b)

(c) (d )

x/L = –0.39
x/L = –0.2
x/L = –0.1
x/L = –0.03
x/L = 0

8

7

6

5

4

3

2

1

0

100 101 102 103

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0
100 101 102 103

3.0

2.5

2.0

1.5

1.0

0.5

0

100 101 102

n+
103

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
100 101 102

n+
103

〈u
′ su

′ s〉+

〈u
′ nu

′ n〉+

〈u
′ su

′ s〉+

–
〈u

′ su
′ n〉+

Figure 31. Comparison of DNS Reynolds stresses profiles at several x/L stations. The DNS results in Uzun &
Malik (2022) are shown in circles and our DNS results are shown in solid lines. The colours denote different
x/L stations: x/L = −0.39 is shown in dark blue, x/L = −0.2 is shown in light blue, x/L = −0.1 is shown in
green, x/L = −0.03 is shown in orange and x/L = 0.0 is shown in red.

Reynolds stresses from both DNS match well for all the stress components. Some
differences in the outer region peak of Reynolds stresses are observed which could be
due to the failure of friction velocity normalisation to collapse the results in that specific
region and completely account for the differences in pressure gradients.
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