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Abstract
Numerical estimators of differential entropy and mutual information can be slow to converge as sample size
increases. The offset Kozachenko–Leonenko (KLo) method described here implements an offset version of
the Kozachenko–Leonenko estimator that can markedly improve convergence. Its use is illustrated in
applications to the comparison of trivariate data from successive scene color images and the comparison
of univariate data from stereophonic music tracks. Publicly available code for KLo estimation of both
differential entropy and mutual information is provided for R, Python, and MATLAB computing environ-
ments at https://github.com/imarinfr/klo.
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Introduction

Shannon’s theory of communication (Shannon, 1948a; 1948b) demonstrated that the information
transmitted between systems is a well-defined measurable quantity with fundamental limits. The two
key elements of what became known as information theory are entropy and mutual information. The
entropy of a system quantifies the uncertainty of the result of making an observation on a signal, and the
mutual information quantifies how much of that uncertainty can be reduced by a related signal. From a
statistical viewpoint, mutual information is ameasure of the probabilistic dependence between univariate
or multivariate random variables that is more general than, for example, Pearson’s correlation, which
measures the linear association between two univariate random variables.

Given the wide applicability of information-theoretic quantities in physics, engineering, and the life
sciences, it is important to have available accurate numerical estimators. Unfortunately, the underlying
distributions are generally unknown, and nonparametric estimators are usually required, although they
may be subject to error, especially with continuous multivariate random variables where the entropy
becomes the differential entropy. For some existing estimators, their slow convergence with increasing
sample size can be a serious challenge. But their accuracy may be improved by exploiting a simple
decomposition of differential entropy. Themethodwas introduced inMarín-Franch and Foster (2013) in
an application to artificial image transformations.

The objective here is to illustrate an extension of themethod to two real-world datasets and to describe
software packages for estimating both differential entropy and mutual information in several computing
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environments. The two datasets consist of trivariate data from successive scene color images and
univariate data from a stereophonic music recording. The first application is more detailed and contains
illustrative code for the R computing environment (R Core Team, 2021).

Methods

The nonparametric estimator described here is an offset version of a nearest-neighbor class of estimators
for differential entropy (Berrett et al., 2019; Charzyńska & Gambin, 2015; Goria et al., 2005; Holmes &
Nemenman, 2019; Kozachenko & Leonenko, 1987; Kraskov et al., 2004), namely the Kozachenko–
Leonenko (KL) estimator (Goria et al., 2005; Kozachenko & Leonenko, 1987). Although the offset
method entails a decomposition into Gaussian and non-Gaussian components, the distribution of X is
not itself assumed to be Gaussian or approximately Gaussian. Estimating the differential entropy h Xð Þ of
a d-dimensional multivariate continuous random variable X proceeds as follows.

1. Estimate the differential entropy ĥG Xð Þ of a Gaussian distribution with the same covariance
matrix, c say, as X.

2. Linearly transform X to form a new variable X∗ whose differential entropy h X∗ð Þ is such that
h Xð Þ¼ h X∗ð Þþ ĥG Xð Þ. From the scaling property of differential entropy, the transformation, A
say, required for the equality to hold is given by A¼ 2πeð Þ�1=2c�1=2, so that X∗ ¼AX.

3. Apply the KL estimator to X∗ and call the result ĥKL X∗ð Þ.
4. Define the offset Kozachenko–Leonenko (KLo) estimator by ĥKLo Xð Þ¼ ĥKL X∗ð Þþ ĥG Xð Þ.

Since the KL estimator is asymptotically unbiased (Goria et al., 2005; Kozachenko & Leonenko, 1987), it
follows that the offset version KLo is also asymptotically unbiased. For a proof, see Appendix A in the
Supplementary Material, available on the Cambridge Core website. For a description of the software
implementation, see Appendix B in the Supplementary Material.

Results

The first example illustrates the sample-size dependence of the KLo and KL estimators for a trivariate
dataset, along with results for the popular Kraskov-Stögbauer-Grassberger (KSG) estimator of mutual
information (Kraskov, Stögbauer, & Grassberger, 2004). Progressively larger samples, ranging from 210

to 219 points, were drawn randomly and identically from two trivariate images of a scene recorded at
successive instants, about 1 min apart, shown in the thumbnail color images in Figure 1. The data were
taken from a larger study (Foster, 2021) where image values were expressed not as conventional RGB
triplets but as LMS triplets, corresponding to activities in the long-, medium-, and short-wavelength-
sensitive cone photoreceptors of the eye. The difference between RGB and LMS representations is
immaterial for this illustration. Each image was stored as a 1,024 � 1,344 � 3 array, where the first two
dimensions index pixel coordinates and the third dimension indexes LMS values, each obtained by
integrating 12-bit spectral radiance data weighted by photoreceptor sensitivities. The frequency distri-
butions of the LMS values were bimodal.

The main panel in Figure 1 shows the KLo, KL, and KSG estimates of the mutual information plotted
against the sample size. Each curve is an average of over 100 repeated random samples. The KLo estimate
rapidly asymptotes with increasing sample size, unlike the KL and KSG estimates, which continue to
increase even as sample size approaches the maximum available determined by image size. The Gaussian
component of the KLo estimator was about 8.0 bits.

The second example is described in Appendix C in the Supplementary Material, available on the
Cambridge Core website. It illustrates the similarity of the KLo and KL estimates and the failure of the
KSG estimate with a univariate dataset.
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Discussion

The slow convergence ofmutual information estimators with increasing sample size is not inevitable. The
offset method can clearly improve the convergence of estimates derived with the Kozachenko–Leonenko
estimator with some real-world datasets. But the extent of the improvement does depend on the size of
the Gaussian component of the underlying differential entropies. For distributions very far from
Gaussian, there is no guarantee that the offsetmethodwill converge faster than applying the KL estimator
directly. The offset method does, though, have the advantage of automatically adjusting itself to the
properties of the distributions. It is, moreover, neutral with respect to the choice of differential entropy
estimator, so that any other estimator can instead be plugged in.

The present approachmay be open to generalization. One possibility is to replace the particular linear
transformation used to decompose differential entropy into Gaussian and non-Gaussian components by
other transformations. Another possibility is to extend the offset method to estimating related
information-theoretic quantities such as Kullback–Liebler divergence and cross-entropy.
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Figure 1. Estimates of mutual information between two color images. The thumbnail images are sRGB renderings (IEC, 1998)
of the source data. The plots show mutual information estimates for the offset Kozachenko–Leonenko (KLo), Kozachenko–
Leonenko (KL), and Kraskov-Stögbauer-Grassberger (KSG) estimators as a function of sample size. Standard deviations for
the KLo and KL estimates ranged from about 0.1 with the smallest sample sizes to 0.006 with the largest sample sizes.
Standard deviations for the KSG estimates were a little smaller.
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