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Abstract. (A) The possibilities and the difficulties of a theoretical study of extended atmospheres 
in binaries are briefly discussed. 

(B) We try to summarize and discuss critically the present status of the theory of three types of 
extended atmospheres (i.e. atmospheres in which the average photon mean-free-path is the same 
order of magnitude or larger than the stellar radius): 

(1) Extended atmospheres in hydrostatic and in grey or non-grey radiative equilibrium. 
(2) Dynamic (expanding) atmospheres which occur if the radiative acceleration is slightly smaller 

than the acceleration of gravity. 
(3) Stellar coronae which are formed in the presence of a mechanical energy flux. 
In (1) we study the importance of the 'forward peaking' of the radiation field in the outer layers 

of the atmosphere. The possibilities for the solution of the non-grey transfer problem in an extended 
atmosphere are discussed. 

In (2) we pay special attention to Marlborough's and Roy's (1970) result that the atmospheric 
gas cannot be accelerated directly to supersonic velocities by the action of the radiation force. 

In (3) the large differences in the coronal properties of stars of different chemical composition 
are emphasized. We draw attention to the partially unexplored but probably very interesting properties 
of coronae of helium-rich stars. 

1. Introduction 

There seems to be no general agreement among theoreticians what they call an 'ex­
tended atmosphere'. The definition of this topic becomes even more arbitrary if we 
exclude problems of'Outflow of Matter ' and 'Expanding Envelopes' which have been 
treated already in other papers of this symposium. So, I have to beg your pardon for 
starting out by giving a somewhat subjective definition of my topic. 

As I understand it, we want to have a survey of the theory of stellar atmospheres 
for cases in which the atmosphere can no longer be considered as thin in comparison 
to the stellar radius. In such a case obviously we have to take into account the change 
of gravity with radius (which is rather trivial) and we have to solve the problem of 
radiative transfer for (at least) the case of spherical symmetry and possibly (in the 
binary case) for more complicated geometries. This increases the difficulty of the 
problem very considerably. Moreover, during the last few years (Bisnovatyi-Kogan 
and Zel'dovich, 1968; Kutter et ai, 1969; Schmid-Burgk, 1969; Finzi and Wolf, 1971; 
Cassinelli and Castor, 1972) it has become increasingly clear that once an atmosphere 
is extended in the above sense we can rather easily have a situation in which hydro­
static equilibrium no longer holds and we get a stationary expansion of the atmosphere. 
This statement seems to agree rather well with many observational facts. Consequently, 
we are forced to study not only static spherically symmetric atmospheres but also 
dynamic ones. 

Let us look (from a naive theoretical point of view) at the possible causes for the 
formation of extended atmosphere. Let us first consider the case in which radiative 
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acceleration is not important. Then the local pressure scale height H must be of the 
same order of magnitude or larger than the radius: 

RT T 
£ r 0 ; 8 . 3 x 10 7 5 r 0 , ( la) 

M 9 
or 

1 (RT q2} 
9 I V 2 J 

at least somewhere in the atmosphere (/? = gas constant, ^ = mean molecular weight, 
g = local acceleration of gravity, £ = turbulent velocity). As is well known there are 
very few normal atmospheres of nonrotating single stars in which condition (1) is 
fulfilled. Only if the effective value of g is strongly reduced by the presence of a strong 
centrifugal force in a fast rotating star or by the presence of a neighboring star in a 
close binary can the condition (1) be fulfilled easily for an atmosphere with radiative 
energy transport. However, (1) can be relatively easily fulfilled for chromospheres and 
coronae which have a high temperature due to the heating by a mechanical energy 
flux. (Cf. Kuperus, 1965, 1966; Ulmschneider, 1967; Nariai, 1969; de Loore, 1970; 
Bohm and Cassinelli, 1971; for a summary of the semiempirical aspects see Praderie, 
1970.) 

As pointed out by Underhill (1949, 1966) and Mihalas (1969) for normal early type 
stars and discussed by Bohm (1969) and Cassinelli (1970) for central stars of planetary 
nebulae, the theory predicts extended atmospheres for hot stars in which the radiative 
acceleration 

l f lU = Ĵfo + * e i ) M v (2) 
0 

becomes comparable to the local gravity. (/cv = monochromatic absorption coefficient, 
<j e l = Thomson scattering coefficient, Fv = monochromatic radiative flux). 

It turns out that typically the atmospheres become extended if 

k . d l * - - ~ * > 0.8 0 . (3) 
c 

in the case of central stars of planetaries. 
Moreover, if gTad approaches g too closely hydrostatic equilibrium is not even ap­

proximately possible (Cassinelli and Castor, 1972). It is believed that a considerable 
number of stars exist which fall into the range defined by (3). 

According to this discussion it seems reasonable to review the theory of the follow­
ing atmospheres: 

(1) Hydrostatic atmospheres in radiative equilibrium which are extended because 
of the validity of condition (1) or (3); 

(2) Dynamic atmospheres (i.e. atmospheres with continuous mass loss in which 
# r a d is important); 
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(3) Hydrostatic and hydrodynamic chromospheres and coronae which are due to 
the dissipation of a mechanical energy flux. 

As far as I can see this covers the types of extended atmospheres which are at least 
partially understood from a theoretical point of view. Unfortunately it probably does 
not include the interpretation of those extended atmospheres in binaries for which we 
have the most detailed observational material like £ Aur, 31 Cyg and 32 Cyg (Cf. 
Groth, 1957, 1970). This is, of course, sad. On the other hand, I think we will not be 
able to develop convincing theories of these rather complicated cases unless we under­
stand first the theory of certain basic effects which occur in extended atmospheres. 

Before we discuss points (1) to (3) in detail we have to ask the following question: 
To which extent do we have to change our discussion if we talk about extended at­
mospheres in reasonable close binaries. 

In this case obviously the following effects are important (cf. the interesting and 
detailed discussion by Kopal, 1959): 

(1) Gravity darkening as a consequence of stellar rotation as well as the deforma­
tion of the star by the gravitational field of the other component. 

(2) The generalized 'reflection effect', i.e. the effect of the radiation of the other 
component on the atmosphere. 

It is well known that these two effects do not introduce new basic difficulties if the 
atmosphere can be considered as 'thin', i.e. plane-parallel. (However, the required 
amount of computational work is increased very considerably.) 

The influence of gravity darkening on the predicted spectra of single rotating stars 
has been studied successfully in recent years by many authors, e.g. Collins (1963), 
Roxburgh and Strittmatter (1965), Collins and Harrington (1966), Hardop and Stritt-
matter (1968a, b), Collins (1968a, b), Collins (1970), and others. These calculations 
are based on the (well-justified) assumption that the atmospheric structure can be 
calculated everywhere using the local value of g and the local value of T e f f as it follows 
from the gravity darkening law. Since data on gravity darkening in close binaries 
(at least for some cases of the Roche model) and on the reflection effect are available 
(Cf. Kopal, 1959; Minin, 1965; Peraiah, 1969; Rucinski, 1969, 1971) analogous cal­
culations have been carried out recently for binaries by Buerger (1969). He has used 
grey, plane-parallel atmospheres defined by local values of g and Teff. Gravity dark­
ening as well as the reflection effect have been taken into account. 

However, in this symposium we are concerned with extended atmospheres. A quan­
titative treatment of gravity darkening and of the reflection effect in these atmospheres 
would be much more difficult for these atmospheres and has - to the best of my 
knowledge - not yet been tried. Obviously the lateral radiative exchange must become 
very important in this case and a description using local values of g and Tcff becomes 
impossible. Since even the simple problems of extended atmospheres in single stars 
or in wide binaries (as formulated above) are far from being solved completely, we 
may doubt whether it will be possible to solve the problem of an extended atmosphere 
in close binaries in the near future. 
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2. Extended Atmospheres in Hydrostatic and Radiative Equilibrium 

In this chapter we shall assume that (at least some) extended stellar atmospheres can 
exist in hydrostatic and radiative equilibrium. The interesting question concerning the 
validity of this assumption will be discussed briefly in the next chapter. 

The hydrostatic equation can be written (neglecting turbulence) 

dp GM 7i o 

or 
dT 0 r K0 c K0 

dp GM KFQL GMQ {4 L ) 

d r ~ " r2 Q + Anr2c r2 [ K p AncGfvl]' 

( l a ) 

( lb) 

with /? = gas pressure, Q = density, M= total mass of the star, KV = monochromatic 
absorption coefficient, a e I = electron scattering coefficient, Fv = monochromatic radia­
tive flux, L = total luminosity, r = radial coordinate (distance from the center of the 
star, fc0 and T 0 are the absorption coefficient and the optical depth for some standard 
frequency. The flux mean KF of the absorption coefficient is defined as 

00 00 

= J K + ffei) Fvdv/ j Fvdv. (2) 
0 0 

Obviously the first term in ( lb) is the usual gravitational force (per c m 3 of matter), 
whereas the second term is the radiative force on the same amount of material. The 
ratio of these two forces is independent of r if KF = const. Equation ( lb ) also shows that 
a hydrostatic solution is impossible if 

AncGM 
L> . (3) 

KF 

Radiative equibilbrium is described by equations of transfer for every frequency of 
the form 

d (1 -u2) d) 
^ + — jr \ h (>*> = ~ " J Uv (r, ii) ~ Sv ( r ) } , (4) 

or r oil) { 
and the radiative equilibrium condition which may be written 

oo oo 

Lr = ̂  j Lvd}j = 4nr2 J Fvdv = const . (5) 

o o 

The atmosphere will be really extended if 

l>r, (6) 
KQ 
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whereas the problem reduces to the plane-parallel case if 

1 <r, (7) 
KQ 

(see Chapman, 1964; Cassinelli, 1970). It is important to note that in contradistinction 
to the plane case neither the hydrostatic Equation ( lb) nor the transfer Equa­
tion (6) can be transformed into an equation for the independent variable T v only. 
In other words, though we can e.g. determine the temperature stratification (apart 
from a scaling factor) of a grey atmosphere once and for all in the plane-parallel 
case by computing r ( f ) (Hopf , 1934; Mark, 1947) this is not true for an extended 
atmosphere. In this case the temperature stratification also depends on the relation 
between f and r: 

f = f ( r ) . (8) 

(Another formulation of the same statement says that the T-stratification depends on 
the ratio between the radius of curvature and the photon mean path.) 

Additional insight into the problem may be gained by writing down the moment 
equations of the equation of transfer (4). They are found in the usual way by applying 
the operators: 

+1 

± J (9a) 
- 1 

and 
+1 

i J \ . . M < (9b) 

to Equation (4). We find 

1 d 
(r2Hv) = -KvQ(Jv-Sv), (10) 

r dr 

by applying (9a) and 

dK 
A

 v + ( 3 X V - J v ) = - K V Q H v . (11) 
dr r 

Obviously (10) and (11) can be specialized to the grey case by leaving out the sub­
script v and by setting J=S. It follows immediately that 

r2H = 4r2F = const , (12) 

(12) is of course intuitively obvious. Many astronomers tend to consider (12) as the 
important condition which distinguishes an extended from a plane-parallel atmo-
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sphere. This approach has led to the use of the Milne-Eddington approximation 

• Kv = y v , ( 1 3 ) 

in many of the earlier papers in this field (Cf. Kosirev, 1934; Chandresekhar, 1934, 
1945,1960; see also Pearce, 1967). When (13) is used, (11) reduces to the same equation 
as in the plane-parallel case. However, in the more modern literature (cf. Chapman, 
1964, 1966; Schmid-Burgk, 1970; Cassinelli, 1970, 1971; Hummer and Rybicki, 1971) 
it has been shown that (at least in very extended atmospheres) (13) is not an acceptable 
approximation. As is well known the validity of (13) implies that the radiation field 
is isotropic. On the other hand the 'real star' (defined e.g. by the surface f = 1) covers 
only a very small fraction of the total solid angle as viewed from the outer parts of a 
very extended atmosphere. In fact in the limiting case that the solid angle covered by 
the 'star' becomes very small we have to replace (13) by the relation 

KY = HV = JV. (14) 

So, from our present point of view spherical symmetry in an extended atmosphere 
leads to two important effects: 

(1) the decrease of F(ov H) like 1/r2 and 2) the increasing 'outward peaking' 
(Hummer and Rybicki, 1971) of the radiation field in the outer layers of the atmo­
sphere. 

Most authors, with the exception of Cassinelli (1970, 1971), have restricted their 
actual calculations to strongly simplified models in which grey absorption (or pure 
coherent scattering) has been assumed and in which also the radiative transfer problem 
(4), (5) is decoupled from the hydrostatic Equation ( lb) . Most of these calculations 
are based on the assumption 

KQ = r~n (15) 

(Cf. Chapman, 1964, 1966; Schmid-Burgk, 1970; Hummer and Rybicki, 1971; Cas­
sinelli and Hummer, 1972). The most accurate numerical calculation of the radiative 
transfer in extended atmospheres is due to Schmid-Burgk (1970) and to Hummer and 
Rybicki (1971), Schmid-Burgk (1970) solves the problem in the following way: From 
(4) he derives integral equations for the mean intensity J{r). He solves one of these 
equations by expanding it into a series of known coefficients. The functions are se­
lected in such a way that the integration over r can be carried out analytically. After 
numerical integration over ft a system of linear equations for the unknown coefficients 
can be derived from the integral equation. 

Hummer and Rybicki (1971) rewrite the momentum Equation (11) by defining the 
'Eddington factor' / 

f=K/J, (15) 

so that # in (11) can be replaced by / / . Starting out with a guess o f / (r) they integrate 
(11) numerically and so get a first approximation of J{r). Since in the grey case 
J=S, this approximation of J(r) can be used to find a first approximation of / ( r , n) 
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from Equation (4). From I(r, n) we can recalculate the moments and find an improved 
value of the Eddington factor. The procedure is iterated. Schmid-Burgk's (1970) and 
Hummer 's and Rybicki's (1971) results for assumption (15) are useful from two dif­
ferent points of view: 

(1) The newly developed methods may be applied to more realistic cases of ex­
tended atmospheres (though the generalization may not always be trivial). 

(2) The numerical results give us considerable insight into the mechanism of the 
radiative transfer in an extended atmosphere. 

As an illustration of point 2 we reproduce in Figure 1 Schmid-Burgk's (1970) results 
for the angular dependence / + (T , J I ) / / + ( t , 1) of the 'outward' intensity in the case 
n = 3. The diagram shows very clearly the very strong 'forward peaking' of the radi­
ation field in high layers of the extended atmosphere. It also shows to which extent 

i .o-

iV,/i) 
I * (T , I ) 

o.sH 

T«0 . I 2 T « 0 . 2 0 

0 ^ -

r « 10.00 

1.0 
r I i I i 
0.5 

Fig. 1. The outward intensity /+ as a function of n for different optical depths r. The solid curve 
refers to the spherically symmetric grey atmosphere for the case n = 2. (See formula 15.) The broken 
line corresponds to the plane parallel case. The diagram has been taken from Schmid-Burgk's (1969) 

work (with minor modifications). 
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Eddington's approximation leads to incorrect results. It is also interesting to note 
(Schmid-Burgk, 1970) that the spectral energy distribution of the emergent flux from 
an extended grey atmosphere is much 'flatter' (not so much peaked around one fre­
quency) than the energy distribution from the corresponding plane parallel atmo­
sphere. 

Let us now look at the determination of more realistic models of extended atmo­
spheres. Obviously the following points will be important: 

(1) Assumption (15) has to be replaced by a realistic opacity law K(Q, T). This 
leads immediately to a coupling between the hydrostatic and the transfer equation. 
This in turn requires a critical consideration of the boundary conditions at the 'surface' 
of the atmosphere. 

(2) We would like to include the effects of 'nongreyness' in the radiative equilibrium 
calculation. 

(3) As soon as possible deviations from local thermodynamic equilibrium (which 
are of course usually more important in extended than in plane-parallel atmospheres) 
should be included (Thomas, 1970). 

Cassinelli (1970, 1971) had tried to solve the difficult problem in which points (1) 
and (2) have been taken into account. 

T 1 1 1 1 r 

.2 .4 
I I I L_= I I I I 1 

i 2 3 4 5 6 7 
r 

Fig. 2. B(t) in an extended atmosphere of a star of M = 0.6 AfQ and L ~ 2.05 x 10 4 L Q , corres­
ponding to T(f = i) ~ 37600 K. The geometrical radius at f = 1 0 - 3 is about 4.3 times as large as 
at f = 10. The two inner curves give the grey and the non-grey models taking into account effects 
of spherical symmetry. The outer curves are plane-parallel stratifications drawn for comparison 

purposes. After Cassinelli (1970). 
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In the formulation of the outer boundary conditions he makes the useful assump­
tion that the hydrostatic atmosphere has to be cut off at the point where the thermal 
velocity becomes equal to the velocity of escape. Such a precaution is necessary because 
a spherically symmetric atmosphere with a sufficiently small temperature gradient in 
its outer layers has a finite density at r = oo. For the solution of the transfer problem 
Cassinelli uses the so-called .SN-method, a discrete ordinate method developed by 
Carlson and Lathrop (1968) for the treatment of neutron transport problems. In order 
to fulfill the condition of radiative equilibrium 

Fvdv = const . (16) 

Cassinelli developed a temperature correction procedure which is a generalization of 
the well-known Unsold-Lucy method (Unsold, 1951; Lucy, 1964) to the spherically 
symmetric case. A temperature correction procedure permits us to calculate a correc­
tion to a given approximate temperature stratification if we know the derivation of the 

Fig. 3. 
shown 

The energy distribution of the emergent flux Fv(0) for the non-grey extended atmosphere 
in Figure 2. After Cassinelli (1970, 1971). (By permission of the Astrophysical Journal', 

copyright 1971; The University of Chicago.) 
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\ 
\ 

Fig. 4. The emergent flux />(0) in a plane-parallel non-grey atmosphere of similar temperature 
(Ten = 4.3 x 104 K, g = 6 x 1 0 4 c m s 2 ) for comparison with Figure 3. (After Bohm (1969); 

by permission of the Springer-Verlag.) 

total flux for this stratification from the correct value as required by condition (16). 
Unfortunately Cassinelli (1970) succeeds only in deriving temperature correction 
formulae in a simple form for the two limiting cases given by the conditions (13) and 
(14). Suprisingly, the two expressions turn out to be very similar. Moreover, as is well 
known temperature correction formulae do not have to be very accurate. After every 
iteration step one checks how well condition (16) is fulfilled and so one can judge the 
quality of the solution independently. Cassinelli was able to achieve a flux constancy 
of 1.5% or less in his models. 

His calculation shows that an extended atmosphere covers a much larger tempera­
ture interval in a given optical depth range than a plane-parellel atmosphere as one 
would expect. This is illustrated in Figure 2 which shows the grey and the nongrey 
temperature stratifications for an extended atmosphere with a luminosity L « 2 . 0 5 x 
x 10 4 LQ and a mass of M « 0 . 6 Af 0: (Note that the concepts of the effective temper­

ature and surface gravity are of course no longer useful in an extended atmosphere.) 
The grey and nongrey stratifications have temperatures of 34710 K and 37500 K at 
f = | . Their 'surface temperatures' are 21890 K and 27140 K (with the grey surface 
temperature lower). The atmosphere is about four times as thick as the 'radius of the 
star' provided we set the boundary between atmosphere and star at f ^ 10. 
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The critical luminosity 

AncGM 

</c + (Tcly 0 7 ) 

is about 2.3 x 10 4 L Q . The energy distribution of the emergent flux is given in Figure 3. 
In comparison to the situation for a plane-parallel model (cf. Figure 4) for a similar 
7 ( f ) the extended atmosphere shows a somewhat 'flatter' energy distribution and 
leads to an emission edge at X = 912 A in contradistinction to the absorption edge 
found in the plane-parallel case. 

Finally we might ask how these more realistic models compare to the schematic 
ones described by condition (15). We find that usually the inner parts can be de­
scribed by condition (15). We find that typically the inner parts can be described by 
n&2.5 whereas the outer parts (f < f) require a much larger value of n (n « 14 according 
to Cassinelli, 1971). 

So far we have discussed the determination of the model atmosphere and of the 
continuous spectrum only. The calculation of the line spectrum could in principle be 
based on the same transfer Equation (4) or the corresponding momentum equations. 
(This was done rather early, cf. McCrea, 1928.) However, today many people feel 
that such a procedure would not be applicable in many cases. From an observational 
point of view practically all extended atmospheres do show some motion and even 
if a considerable part of the atmosphere can be considered to be approximately in 
hydrostatic equilibrium many lines will probably be influenced by the differential 
Doppler effect of different layers. After a study of line profiles from moving plane-
parallel atmospheres (cf. Abhyankar, 1965), of thin spherical shells (Beals, 1931; 
Rottenberg, 1952) and certain simplified models (Sobolev, 1960) the complete transfer 
problem in an expanding and extended atmosphere has recently been considered by 
several authors (Cf. Rybicki, 1970; Lucy, 1971). Lucy has pointed out that the transfer 
equation for an expanding extended atmosphere can be brought into a relatively 
simple form provided 

(1) only terms of the first order in (v/c) are retained, 
(2) one uses the 'narrow line limit', i.e. one assumes that the thermal velocities are 

much smaller than the hydrodynamic velocities. 
In this case one gets 

where / ' and v' refer to the comoving frame. Lucy discusses a very effective method 
for the solution of transfer problems described by Equation (18) or by (4). It is anal­
ogous to the classical Schwarzschild method of describing the angular dependence of 
the intensity by setting the outward intensity I+ (n) equal to a constant and inward 
intensity / " (— fi) equal to another constant. However, the switchover from 7 + to / " 
does not occur at JU = 0 as in the plane-parallel case but at \i= n* where n* is defined 
by the angle under which the 'stellar limb' is seen from a point in the extended atmo-

c 
= KVQ—(/;, - j ;o 0 

(18) 
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sphere. This method seems to be very promising since it takes into account the 'forward 
concentration' of the radiation in the high layers in the simplest possible way. The 
result of such calculations depends of course on the assumed velocity law which can 
be determined (at least in principal) from hydrodynamical calculations. (See next 
chapter.) 

The numerical calculations lead to P Cygni-type profiles in most cases. 
When talking about extended atmospheres we have so far mostly emphasized effects 

which can be attributed directly or indirectly to the changing geometry from plane-
parallel to spherically symmetric. However, there are also effects of simply having 
large regions with relatively low density instead of small regions with relatively high 
density. The importance of these effects close to the instability limit is illustrated in 
Figure 5 which shows the change of the continuous energy distribution of a very hot 
star as we approach the limit gr3ld = g. 

The interesting problem of the curve of growth in an expanding atmosphere (with 
constant velocity of expansion) has been investigated by Arakelian (1969). 

I should also like to draw attention to the interesting studies of extended atmospheres 
by the Tartu astronomers (cf. Sapar and Viik, 1968) who have studied the generaliza­
tion of the Avrett-Krook procedure to the spherically symmetric case. 

vis'1) 

Fig. 5. Comparison of the emergent fluxes Fv(0) for two atmospheric models with Teit = 63000 K. 
The solid curve corresponds to a value g corresponding to r=(gr/g) of 0.725. The broken curve 

refers to a model with r = 0 . 9 5 . 
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3. Dynamic Atmospheres 

Our understanding of extended atmospheres not in hydrostatic equilibrium is still very 
limited. Only two cases have been studied to some extent: 

(1) stellar coronae which (in analogy to the solar case) may lead to a stellar wind and 
(2) expanding atmospheres which occur in stars with sufficiently low g (or suffi­

ciently high temperature) so that the instability limit g= \grad\ is approached but not 
reached. 

In a certain sense case (2) is simpler than (1) because it occurs in simple radiative 
transfer atmospheres and does not require a mechanical energy flux to build up a 
stellar corona. In the present chapter we shall restrict ourselves to case (2). 

Practically all theoretical studies in this field have been done with relatively hot 
stars, like early B-stars, O and Of stars, WR st^rs and central stars of planetary 
nebulae in mind. As is well known the interest in this field has increased very consid­
erably because of the interesting observations of very large outward velocities in the 
uv lines of early-type stars by Morton and his collaborators. (Cf. Morton et al., 1968.) 
However, as we shall see below, attempts to explain these high velocities in one simple 
step can be misleading. 

Attempts to solve the theoretical problem have (so far) been based on the following 
assumptions and requirements: 

(1) Look for a stationary (steady state) hydrodynamic solution. 
(2) Take into account the (r-dependent) acceleration of gravity as well as the radi­

ative acceleration in the equation of motion. 
(3) Take into account radiative exchange as fully as possible in the energy equation. 
(4) Treat the radiative transfer as a spherically symmetric problem and take into 

account terms proportional to (v/c) (due to the motion of the gas) in the transfer 
equation. 

Because of the complexity of the problem all authors had to restrict themselves to 
the grey approximation in the treatment of the radiative transfer problem. 

It seems to us that so far the relatively most complete treatment of the problem is 
due to Schmid-Burgk (1969) and to Cassinelli and Castor (1972). 

Using the above assumptions the problem can be formulated as follows: 

- (<u>r 2 ) = 0 ; 
dr 

(equation of continuity), (19) 

v + - = -
dr g d r 

dv 1 dp GM < K + o-el> L 
r 2 Ancr2 

(equation of motion) (20) 

oc 

0 

(energy equation, including radiative exchange) (21) 
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(cf. Cassinelli and Castor, 1972), where v is the gas velocity, E is the internal energy 
per .gram (of the gas only). It is important to note that the radiative quantities, /cv, 
Sv, Jv, refer to the comoving frame of reference. The momentum equations for radia­
tive transfer [corresponding to Equation (10) and (11)] become somewhat complex if 
(v/c) terms are included. They have been given by Cassinelli and Castor (1972). 

The radiative acceleration term in (20) can of course also be written as 

Before saying something about the solutions of the system (19), (20), (21) we should 
try to be aware of one possible misunderstanding to which one is easily lead if the 
problem is approached in a naive way. Since these expanding atmospheres occur as we 
get close to the situation where the absolute value of (22) becomes comparable to the 
local gravity one might think that the gas is directly accelerated by the 'radiation 
force' (which is proportional to (22)). It was recognized by Schmid-Burgk (1969) and 
clearly analyzed and discussed by Marlborough and Roy (1970) and Cassinelli and 
Castor (1972) that this is impossible (for some early remarks on this problem see 
Paczyhski, 1968). 

The essential point is the following: as is well known from the theory of the solar 
wind (cf. Parker, 1963; Holzer and Axford, 1970; Brandt, 1970) the interior bound­
ary conditions for the flow can be fulfilled only by solutions which are subsonic 
throughout or by the so-called critical solution which makes a smooth transition from 
subsonic to supersonic flow at the sonic point. Moreover the outer boundary condition 
(p 0 at sufficiently large r) can be fulfilled only if the solution is supersonic for large 
r (see Figure 6). Consequently the critical solution is the only one which fulfills both 
boundary conditions. In other words the correct solution always has to pass through 

X 

7T 
(22) KvFvdv. 

c 
o 

V 

Fig. 6. v(r) for the typical stellar wind solutions, neglecting radiative acceleration. After 
Schmid-Burgk (1969). 
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a point v = cs (cs = local velocity of sound) continuously. Let us now look at a case in 
which the radiative acceleration term is important but in which the radiative exchange 
term in (21) can be neglected (adiabatic case). Then Equations (19), (20), (21) can be 
reduced to the following relation, provided the perfect gas law holds. (Marlborough 
and Roy, 1970; Cassinelli and Castor, 1972.) 

rdv 2c2

s - {GM(\ - T ) / r } 
A = —- 2 2 — , (23) v dr v — cs 

when the T is the ratio of the radiative acceleration to the local gravity: 

^ </c + <reI> L 

4ncGM 
(24) 

Obviously r = 1 corresponds to the instability limit | 0 r a d | = g. In order to get a smooth 
transition from subsonic to supersonic velocities the numerator in Equation (23) must 
go from negative to positive values exactly at the point v2 = c*. (dv/dr is positive every­
where). This condition can be fulfilled only if r < 1 in the subsonic region (See 
Equation 23). In other words, the radiative acceleration cannot be used to accelerate 
the gas in the subsonic region. However, as pointed out by Marlborough and Roy 
(1970) the flow can be occeterated in the supersonic region by radiative acceleration 
(as described e.g. by Lucy and Solomon, 1970). Cassinelli and Castor (1972) call 
this the 'afterburner' mechanism. 

How can we then accelerate the gas up to the sonic point? 
As we saw in the preceding chapter a hydrostatic atmosphere becomes more and 

more extended (it is less and less bound) as we approach the limit r = 1. Consequently 
less and less energy is needed to drive an outflow of the gas. It is implicit in part of 
the earlier work (Bisnovatyi-Kogan and Zel'dovich, 1968; Schmid-Burgk, 1969) and 
it was very clearly discussed and emphasized by Cassinelli and Castor (1972) that the 
acceleration is possible only because energy is transported by radiation to the outer 
layers and deposited there. This energy is used to heat up these layers sufficiently so 
that they can escape eventually. 

This shows that: 
(1) this type of expanding atmosphere can be understood only if the absorption and 

emission of radiation in the relevant (usually the outer) layers is treated in sufficient 
detail, 

(2) 'true9 absorption of radiation must occur in the relevant layers, because a pure 
scattering process (specifically Thomson scattering) would not lead to a deposition of 
energy. (Strictly speaking this applies to coherent scattering only.) 

Cassinelli's and Castor 's (1972) calculations show that (at least in the optically thin 
case which can be treated easily) the transition from negative to positive total energy 
of the gas (i.e. kinetic energy plus gravitational energy plus enthalpy) occurs just some­
what below the critical (sonic) point in all interesting cases. 
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Cassinelli and Castor (1972) find that strictly speaking all spherically symmetric 
stellar atmospheres show an outflow of matter. However, if r is not sufficiently close 
to 1 the sonic point will occur at such a large distance from the star that the total 
outflow is completely negligible. Only as we approach r = 1 does the outflow become 
considerable and the atmospheric structure becomes very different from the hydro­
static case. Atmospheres which are not in hydrostatic equilibrium show in general a 
flatter temperature stratification especially in their upper layers, than hydrostatic at­
mospheres. (Cf. Bisnovatyi-Kogan and Zel'dovich, 1968; Schmidt-Burgk, 1969; Cas­
sinelli and Castor, 1972; see also Bohm, 1968.) 

As especially Schmid-Burgk (1969) has pointed out the topology of the stellar wind 
solutions v(r) can be much more complicated than in the simple cases which are 
usually discussed provided r is not too much smaller than 1 and ic(r) is not a mono-
tonic function of r. The topology of the flow solutions for the case in which R(r) has 
a maximum somewhat above the critical point is illustrated in Figure 7 (taken from 
Schmid-Burgk's thesis). 

Finally I should like to emphasize again that all the models discussed here refer 
to situations in which T < 1 everywhere. In other words, we get dynamic atmospheres 
(with outflow) though the effective gravity 

0eff = 9 ~ 0rad , (25) 

is directed inward everywhere. 

4. Stellar Coronae 

Instead of the above chapter title the observer would rather see one indicating a 
chapter on chromospheres and coronae. However, it seems that we really understand 
too little about the formation of chromospheres to include it in our discussion unless 

Fig. 7. Typical stellar wind solution v(r) for an atmosphere in which the radiative acceleration 
has its maximum somewhat above the sonic point. After Schmid-Burgk (1969). 

https://doi.org/10.1017/S0074180900099678 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900099678


164 K A R L - H E I N Z BOHM 

you would just call the transition region from the photosphere to the corona a chro­
mosphere. On the other hand, it seems rather obvious that the extended chromospheres 
observed in stars like ( Aurigae are something very different from such a transition 
region. 

The prediction and computation of stellar coronae is based on ideas developed for 
the calculation of the transition region and the corona in the solar case which seems 
to work surprisingly well there (at least according to the opinion of many astronomers). 
However, recently some astronomers (cf. Ulrich, 1972) have expressed some doubts 
concerning the validity of the 's tandard' theory of coronal heating. It is not yet quite 
clear how serious these objections are (see below). Moreover, the standard (shock-
wave heating) approach is the only one which has been worked out at least in some 
detail and which consequently can be applied to stars other than the sun. Therefore, 
we shall restrict ourselves to the discussion of coronae (and transition regions) which 
are due to the heating by shock waves. The shock waves are thought to come from 
the continuous steepening of acoustic waves which are generated in the stars outer 
convection zone. Obviously, a necessary condition for the existence of a corona is 
the presence of an outer convection zone and the generation of a sufficiently strong 
acoustic noise flux in this zone. The calculation of the acoustic noise flux has usually 
been based on the Lighthill-Proudman theory (cf. Lighthill, 1954, 1955; Proudman, 
1952). Though Lighthill (1967) himself has raised some objections against the astro-
physical application of his theory and has strongly urged us to consider the generation 
of gravity waves by the convection zone, it is true that only acoustic waves have been 
seen in the solar atmosphere. As pointed out by Souffrin (1966) this must be due to 
the short radiative relaxation time of the gravity waves. With these facts in mind we 
can easily calculate the acoustic ('mechanical') flux 

Fm is the acoustic energy flux, v is the local convective velocity, the corresponding 
Mach number, / is the characteristic length of the flow generating the acoustic noise, 
z is the geometrical depth, z 0 and zx are the coordinates of the upper and lower 
boundaries of the convection zone. Equation (26) can be evaluated easily for any star 
for which a model of the outer convection zone is available. (See e.g. Biermann and 
Lust, 1960). Calculations of acoustic fluxes in stars of different type have been carried 
out e.g. by Kuperus (1965), (stars of solar composition with 4400 K ^ r e f f ^ 7 0 0 0 K) , 
Nariai (1969) (He-rich stars), de Loore (1970) (stars of solar composition, 2500 K ̂  T e f f 

< 16630 K), Bohm and Cassinelli (1971) (He-rich white dwarfs, 5790 K ^ T e f f < 
< 30000 K). As is well known, main sequence stars with solar chemical composition 
show a considerable acoustic energy output only in very narrow temperature range. 
It is worth noting that the situation is very different in stars whose outer layers consist 
mostly of helium (Nariai, 1969). Probably the most extreme objects in this respect 
are the white dwarfs with helium-rich outer layers (Bohm and Cassinelli, 1971) in 

(26) 
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which acoustic fluxes can be reached which are considerably larger than the radiative 
flux of the Sun. The situation is illustrated in Figure 8, which shows the completely 
different behavior of the mechanical flux as a function of the effective temperature 
for main sequence stars on the one hand side and for helium-rich white dwarfs on 
the other side. It is to be expected that these helium stars should have considerably 
denser and hotter coronae than main sequence stars. 

Let us now look at the problem of the computation of coronal densities and tem­
peratures for stars of different effective temperature and surface gravity. 

T x l O " 4 ( K) 

Fig. 8. Comparison of the acoustic flux Fm in main sequence stars (broken line) and in helium-
rich white dwarfs (solid curve). 

The basic theory has been outlined very clearly in the Ph.D. thesis of Kuperus 
(1965; see also de Jager and Kuperus, 1961). Very considerable improvements in the 
details of the physical theory have been made later (cf. Ulmschneider, 1967, 1971a, 
1971b; Stein, 1968). However, we feel that the basic ideas can be most easily under­
stood if we restrict ourselves mostly to the simple approach described in Kuperus 
(1965, 1966) work. 

We have to start from the assumption that the mechanical flux, F m , above the 
convection zone has already been calculated [Equation (26)]. One now makes the 
very plausible assumption that the (spatial) decrease of Fm due to Shockwave dissi-
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pation can be described by a local 'absorption coefficient' ic(z). One finds 

z 

Fm (2) = Fm (0) x cj> (z) x exp ( - j K ( Z ) ) d z , (27) 
0 

z is the geometrical height counted from the point where the shock wave dissipation 
starts, (j) (z) is a correction factor which takes into account the losses in the radial 
mechanical energy flux due to the refraction and reflection of shock waves. After 
logarithmic differentiation (27) can be written as a differential equation for Fm: 

— =-K(Z) Fm(z) - — — — — . (28) 
dz <p(z) dz 

The local energy dissipation Ed, (available for the heating of the gas) is related to K 
and Fm according to the simple relation: 

Ed(z) = K(z)x Fm(z). (29) 

Let us now call the radiative energy loss (per c m 2 and second) Er. The increment 
dFc in the conductive energy flux (going back towards the photosphere) will be equal 
to the difference between the radiative energy loss and the input of heat due to shock 
wave dissipation: 

d F c ( z ) = { £ r ( z ) - £ d ( z ) } d z . (30) 

Taking into account the well-known dependence of the heat conductivity of a fully 
ionized gas on the temperature we have the following relation between conductive 
flux and temperature 

d T 
— ~ 6 x 10 5 x T~5/2 x Fc. (31) 
dz 

The Equations (28), (30) and (31) have to be supplemented by the hydrostatic equation 
which Kuperus (1965) writes as 

dn 

dz 

f l 1 d T ) 

— { S + j . d j J - ( 3 2 ) 

with n = total particle density. 
In the simplest type of problem one assumes that </>(z)«l (i.e. refraction effects 

are unimportant). It turns out that in many cases Fm and K can be expressed in terms 
of the local Mach number, the local velocity of sound, the 'period' P of the shock 
waves and the density. For instance, if the Mach number does not get too large 
Kuperus finds (this is based in part on the work of Landau and Lifschitz, 1959): 

, (M* — l ) 2 

Fm = $Qc>; * ; , (33) 
(y + l ) 2 M* 
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with Af* = Mach number and y = ratio of specific heats. He also finds 

. 4 ( M 2 - 1 ) 
* = — - r • ( 3 4 ) 

Mlcf 
The whole problem is defined by the four coupled ordinary differential Equations 

(28), (30), (31), and (32) and three algebraic Equations: (29), (33), and (34). Cor­
respondingly, we have seven unknown functions, namely Fm, K , Ed, Fc9 M, T, and 
n. Note that Er and cs should not be counted because they can directly be calculated 
from T and n. 

Obviously the system (28), (30), (31), (32) can be integrated (at least in principle) 
as an initial value problem if A7, T, Fm and e.g. A/* at the bottom of the chromosphere 
were known (Ulmschneider, 1967). One can also start the trial integrations from the 
corona (de Jager and Kuperus, 1961; Kuperus, 1965) assuming that (dF c /dz) in the 
corona is known. 

In the actual calculations one encounters a number of difficulties of which we shall 
mention only two: 

Fig. 9. Coronal temperatures (solid curves) and coronal electron densities (broken line) as a 
function of reff. The curves on the left side refer to g = 10 5 cm s - 2 the lines in the middle of the 

diagram to g = 10 4 cm s - 2 . After de Loore (1970). (By permission of Reidel Publ. Co.) 
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(1) It is difficult to describe the radiative losses Er in the low temperature region 
(near the photosphere) correctly. 

(2) It is important but very difficult to know what the energy distribution in the 
acoustic noise spectrum emerging from the convection zone will be like. [In the simple 
approach above this enters in the form of the factor P in the denominator of Equation 
(34)] Our knowledge of stellar convection as well as our understanding of noise gen­
eration by convection is still far from permitting reliable predictions in this respect. 
However, some very interesting studies of this problem have been made recently for 
the solar case. (Stein, 1968; Ulmschneider, 1971.) 

The complexity of the problem is of course increased if the stellar wind influences 
the energy balance. (Kuperus, 1965; Shklovskii, 1965). 

As an example of the type of information which one gets we reproduce some of 
the results by de Loore (1970) in Figure 9. The drawing shows the dependence of the 
coronal temperature and density on the effective temperature of the star in a range 
of surface gravities which are not too different from those for main sequence stars. 
One essentially finds that both the coronal temperature and density seem to be mono-
tonic functions of the acoustic flux (at least in the range covered by these calculations). 

It seems to me that in the field of stellar coronae a number of interesting develop­
ments are to be expected in the near future. Even a basically simple theory like that 
of Kuperus (1965) has not yet been applied to the objects with very high acoustic 
fluxes like helium stars and especially helium-rich white dwarfs. How high a coronal 
temperature would we expect in these objects ? What kind of X-ray spectrum would 
we predict for these coronae ? (Predictions of the X-ray emission of coronae of normal 
stars have been made by de Loore and de Jager 1970.) Even more drastic effects may 
be expected if one includes more exotic ways of coronal heating in such objects. 
(Strittmatter et al., 1972). 
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