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Let us denote by E(x) the pure risk premium of an unlimited
excess cover with the retention x and by H(x) and m(x) the cor-
responding expected frequency and severity.

We thus have E(x) = H(x) • m(x).

H(x) is a non-increasing function of x and for practical purposes
we can assume that it is decreasing; H'(x) < o. The equation
H(x) — n has then only one solution xn, where n is a fixed integer.

Let En denote the risk premium for a reinsurance covering the
n largest claims from the bottom.

Let us define E'n = nxn + E(xn) — n(xn + m{xn)). Intuitively
we feel that E'n is a good approximation for En.

We shall first show that when the claims size distribution is
Pareto and the number of claims is Poisson distributed, E'n is a
good approximation for En, being slightly on the safe side. We
further include a proof given by G. Ottaviani that the inequality
En < E'n always holds.

In the Pareto case we have

H(x) = t(i—F{x)) = t • x•*

where the Poisson parameter t stands for the expected number of
claims in excess of i (equal to a suitably chosen monetary unit) and

m(x) = ^ .

The retention xn over which we expect n claims should satisfy

n = H{xn) = t • xn~'

which gives

or
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According to B. Berliner [2] we have, when the number of claims
is Poisson distributed

77 ^1/a

where

rt(n) = \e~u • un~l du.
0

Replacing the incomplete Gamma function Tt by I \ = V we
arrive at

., a 1 / 1
E» = t11* • • =7-r • T I n + 1 — -

a — 1 r(n) \ a

which formula was given by H. Ammeter already in 1964 [1].
Obviously En < En.

In all cases when t is large compared to n, we have

En

-*- (n, a; t) very close to 1.

If in a practical situation t is too small we can always increase t
by decreasing the monetary unit, in other words by enlarging to
the left the range of the Pareto distribution.

Inserting t = nx*, as deduced above, in En, we obtain

However

a a I > + 1)

n=n(xn + *n(xn))=n.xn- ^^ = xn • ^ ^ " T ^ T "

Thus we have

(/a • r ( n +
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3 BENKTANDER

Tabulation of

n <x = 2 a = 2.5 a = 3
1 0.886 0.894 0.903
2 0.940 0.943 0.948
3 0.959 0.961 0.964
4 0.969 0.971 0.973
5 0.975 0.976 0.978

10 0.988 0.988 0.989

The figures illustrate

that the approximation is good,
that the approximation is on the safe side,
and that the approximation is rather invariant to variations of the

parameter alpha within the given interval.

The safety margin in the approximation—E'n replacing En—is
roughly of the form constant/w.

This is illustrated below for alpha = 2.5

n

I

2

3
4
5

0.894
0-943
0.961
0.971
0.976

O.II
O.II
0.12
0.12
0.12

10 O.988 0.12

We have thus shown that in the Pareto case

h ~i

and
xnEn < En < En = nxn + E(xn) = nxn + n =

a
= nxn • z—; = a • E{xn).
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Thus

This means that the LCR risk premium is approximately equal
to alpha times the risk premium of an XL cover with a retention
chosen in such a way that the expected number of claims is equal
to the number of LCR-claims protected.

In the Poisson-Pareto case E'n gives a handy and fairly good
approximation of En. The reader is invited to examine other claims
size distributions F(x) which are of importance in the practice.

Most such distributions will for all x > xo have m"(x) < o. We
believe that m"(x) < o will guarantee that E'n will be a good ap-
proximation of En with E'n > En.

We now give a proof by G. Ottaviani that the inequality En <
En is valid for any n and for arbitrary distribution functions of the
number of claims and of the claim size.

We do not even need the condition of section 2 that the equation
H[x) = n has only one solution since the proof will be valid for
any Xn, such that H(xn) = n.

Let s denote the total number of claims which occur and N =
min (s, n). We thus allow for the possibility that less than n claims
occur.

Let Xn be the set consisting of the N largest claims.

Let
v(Xn) = E(N)

v(X«) < n (1)

Let [J.(Xn) = En/v(Xn) be the expected value of a claim in the
set Xn.

Analoguesly we denote by X'n the set consisting of all claims
exceeding xn, the expected number of claims exceeding xn by
v(X'n) and the expected value of a claim in the set X'n by \>*{X'n).

We thus have
v(A"B) = n (2)

and

Let Yn = Xn - X'n
ZH = (Xn ^ Xn) — Xn
Zn = (Xn ^ Xn) — X
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AYn)> AYn)' Azn)> V-(Zn)' v(z«)> l42'n) are defined analoguesly to
v(Xn) and y.(Xn). From the above definition it follows directly
that

\L{Zi) < xn and (3)

> xn. (4)

Thus

En = v(X() • (if*,) = v(Y,) ix(Yf) + v(Z,) pi(^) (5)

and

En = v(z:) • (x(z;) = V(Y<) ^ (Y, ) + v(z;) ^(z;). (6)

From (i) and (2) it follows that

v(Y,) + v(Zt) = v(Xt) < n = y{X\) =

Thus

From (3) and (4) it follows that

n(z,) < |i(z;) (8)

and from (7) and (8)

Adding v(Yj) . (i(Yj) to both sides of (9) and using (5) and (6)
leads to

En < E'n (i-cA-
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