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Stokes waves in water with a non-flat bed
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We investigate the relevance of Stokes waves for the propagation of ocean swell in the
absence of strong currents. By providing estimates for the depth of the near-surface
layer to which the main effects of a Stokes flow are confined, we show that wind-
generated uniform wave trains can be modelled as Stokes waves over a fictitious flat
bed, immersed in the water. Throughout the lower parts of this layer the deviations of
the flow from a pure current are negligible.
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1. Introduction
Meteorological disturbances operating over considerable distances often result in

periodic travelling surface ocean waves that persist after the disturbance has abated,
almost without losing the acquired energy. These wave patterns, termed swell, are
representative of the simplest type of non-trivial surface wave: a periodic profile that
propagates at constant speed in a fixed direction. Swell from large storms occurring
at moderate and high latitudes in the Atlantic Ocean and in the Pacific Ocean often
travels thousands of km over the ocean. It is customary to model swell by means
of a linearization approach but linear deep-water wave theory only accommodates
sinusoidal travelling waves (see § 3). Consequently, the sharp crests and flat troughs
that are characteristic for swell, see e.g. the photographs of swell in Constantin (2011),
are not captured by linear theory. On the other hand, nonlinear Stokes waves – the
exact meaning of the term being defined at the beginning of § 4 – present this type
of feature and the available analytical, numerical, and experimental studies of Stokes
waves are by now quite detailed, see the discussions in Buffoni & Toland (2003),
Clamond (2012) and Umeyama (2012). However, Stokes wave theory is suitable for
waves propagating in water that is either infinitely deep or has a flat bed, see the
discussions in Toland (1996), Henry (2008) and Constantin (2013).

There are extensive ocean regions with a flat bed: abyssal plains are the flattest
areas on Earth, with depth variations commonly in the range of 10–100 cm per km
of horizontal distance. They are found in all major sea and ocean basins, being
vast sediment-covered regions of the sea floor formed by the blanketing of a pre-

† Email address for correspondence: adrian.constantin@kcl.ac.uk

first published online 8 January 2014)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:adrian.constantin@kcl.ac.uk
https://doi.org/10.1017/jfm.2013.635


18 A. Constantin

existent irregular sea bed by accumulated land-derived sediment. For example, the
Sohm Plain in the North Atlantic has an area of ∼900 000 km2. However, deep-sea
regions presenting high variations of the bed topography are also quite common. The
relevance of Stokes waves in such a setting is suggested by field data indicating that
in the absence of strong currents, the main effects of the flow beneath the swell are
confined to a near-surface layer whose depth rarely exceeds 250 m. Thus swell in
deep water without strong underlying currents might be modelled as a Stokes wave
propagating over a fictitious flat bed, beneath which there is practically no motion.
Our aim is to substantiate this observation. We provide some estimates showing that
the flow beneath a Stokes wave has a rapid decay. Our theoretical conclusions are
applicable to the typical setting of swell in the Atlantic Ocean and in the Pacific
Ocean.

2. Preliminaries
In our deep-water setting we allow for strong variations of the bed topography

since our contention is that the flow is practically confined to a near-surface layer
beneath which the water can be regarded as being still. In the near-surface layer the
flow is induced by a two-dimensional water wave, so that it suffices to investigate its
characteristics in a cross-section oriented towards the direction of wave propagation.
We choose Cartesian coordinates (X,Y) with the X-axis pointing in the direction
of wave propagation and the Y-axis pointing vertically upwards. Let Y = 0 be the
mean water level. We denote by (U(X − cT,Y),V(X − cT,Y)) the velocity field of
the two-dimensional flow propagating in the X-direction and let Y = η(X − cT) be the
free surface and Y = −d be the lower boundary of the near-surface layer in which
the main effects of the flow are noticeable. Here c > 0 is the (constant) speed of
wave propagation. A formula for the speed in terms of the wave parameters can be
easily obtained within the setting of linear theory cf. (3.11) in § 3; for its validity
without performing approximations, that is, within the nonlinear setting, we refer to
the discussion in Constantin (2011). Under the physically realistic assumptions of
inviscid flow of water with constant density, the equation of mass conservation and the
condition of irrotational flow are

UX + VY = 0 (2.1)

and

UY = VX, (2.2)

respectively, while the equation of motion is Euler’s equation

(U − c)UX + VUY =−
PX

ρ
,

(U − c)VX + VVY =−
PY

ρ
− g,

 (2.3)

where P(X− cT,Y) is the pressure, ρ is the density and g is the (constant) acceleration
due to gravity. The boundary conditions associated with the above equations are the
kinematic boundary conditions

V = (U − c)ηX on Y = η(X − cT), (2.4)
V = 0 on Y =−d, (2.5)
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Stokes waves in water with a non-flat bed 19

and the dynamic boundary condition

P= Patm on Y = η(X − cT), (2.6)

where Patm is the (constant) atmospheric pressure at the surface. Beneath the near-
surface layer lying above Y = −d, our contention is that the flow effects are
negligible, so that the water is practically still. For the physical relevance of the
governing equations (2.1)–(2.6) in the modelling of swell, we refer to the discussion in
Constantin (2011).

3. Inadequacy of linear theory
The classical approach to gain insight into the dynamics of the governing equations

(2.1)–(2.6) is by means of linearization. If a is the maximal amplitude of the wave and
λ is the wavelength, introducing the perturbation p of the pressure P relative to the
hydrostatic pressure by means of

P(X − cT,Y)= Patm − ρgY + ρgap(X − cT,Y), (3.1)

and performing (see e.g. Clamond 1999 or Constantin & Johnson 2008) the standard
non-dimensionalization and scaling

X = λx, Y = dy, T =
λ
√

gd
t, η = ah, U =

a
√

gd

d
u, V =

a
√

gd

λ
v, (3.2)

the governing equations (2.1)–(2.6) are transformed into the system

ux + vy = 0 for −1< y< εh,
uy = δ

2vx for −1< y< εh,
(εu− c0)ux + εvuy =−px for −1< y< εh,
δ2
{(εu− c0)vx + εvvy} = −py for −1< y< εh,

v = (εu− c0)hx on y= εh,
v = 0 on y=−1,
p= h on y= εh,


(3.3)

where c0 = c/
√

gd is the non-dimensional wave speed, and

ε =
a

d
, δ =

d

λ
, (3.4)

are the amplitude and shallowness parameters, respectively. The shallow-water regime
δ� 1 is too restrictive since we would like to allow wavelengths λ of the same order
as the average depth d of the near-surface layer. Consequently, we keep δ fixed and
consider the linearized problem

ux + vy = 0 for −1< y< 0, (3.5a)

uy = δ
2vx for −1< y< 0, (3.5b)

c0ux = px for −1< y< 0, (3.5c)

c0δ
2vx = py for −1< y< 0, (3.5d)

v =−c0hx on y= 0, (3.5e)
v = 0 on y=−1, (3.5f )

p= h on y= 0, (3.5g)
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20 A. Constantin

obtained from (3.3) by letting ε→ 0. The system (3.5) describes waves of small
amplitude. We seek symmetric waves: h is even in the x-variable, with u and p also
even while v is odd. The first two equations yield δ2vxx + vyy = 0 for −1 < y < 0.
Taking into account the boundary condition on y = −1 in (3.5), one can see that the
Fourier series expansion of the function v has to be of the form

v(x, y)=
∑
n>1

vn sinh[2πnδ(y+ 1)] sin(2πnx), −1 6 y 6 0, (3.6)

for some real coefficients vn. The first two equations in (3.5) yield

u(x, y)= γ + δ
∑
n>1

vn cosh[2πnδ(y+ 1)] cos(2πnx), −1 6 y 6 0, (3.7)

for some constant γ , representing the strength of the uniform wave-induced current
(see § 4). The absence of a current corresponds to γ = 0, which is the appropriate
choice for our setting. Now the third and fourth equations in (3.5) show that
p = p0 + c0u throughout the strip −1 6 y 6 0, for some constant p0. Since zero mean
water level translates into the average of h over one period being zero, the last relation
in (3.5) forces p0 = 0 and yields

h(x)= c0δ
∑
n>1

vn cosh[2πnδ] cos(2πnx). (3.8)

The fifth equation in (3.5) can therefore be expressed as∑
n>1

vn sinh[2πnδ] sin(2πnx)= 2πc2
0δ
∑
n>1

nvn cosh[2πnδ] sin(2πnx). (3.9)

This identity holds only if c2
0 = tanh(2πnδ)/2πnδ whenever vn 6= 0. The function

s 7→ tanh(s)/s being strictly decreasing for s> 0, there is at most one integer n > 1 for
which vn 6= 0. This proves that superpositions of Fourier modes are not possible: with
principal unit period, the surface wave is of the form h(x) = A cos(2πx), obtained by
choosing vn = 0 for n > 2 and A = c0δv1 cosh(2πδ). The corresponding full solution,
written in physical variables, is

η(X − cT)= εdA cos
(

2π(X − cT)

λ

)
,

U(X − cT,Y)=
εgdA

c

cosh
(

2π(Y + d)

λ

)
cosh

(
2πd

λ

) cos
(

2π(X − cT)

λ

)
,

V(X − cT,Y)=
εgdA

c

sinh
(

2π(Y + d)

λ

)
cosh

(
2πd

λ

) sin
(

2π(X − cT)

λ

)
,

P(X − cT,Y)= Patm − ρgY + ερgdA
cosh

(
2π(Y + d)

λ

)
cosh

(
2πd

λ

) cos
(

2π(X − cT)

λ

)
,



(3.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.635


Stokes waves in water with a non-flat bed 21

where

c=

√
gλ

2π
tanh

(
2πd

λ

)
. (3.11)

In (3.10), note the decay rate of the vertical component of the velocity field as one
descends in the fluid beneath the free surface towards the lower boundary of the
near-surface layer.

Due to the fact that only sinusoidal wave profiles are permissible, linear theory fails
to capture the typical swell pattern: almost flat near the troughs and with pronounced
elevations near the crest, see e.g. the photographs in Constantin (2011). Consequently,
linear theory is grossly inaccurate in some respects and nonlinear effects should be
accounted for.

4. The flow beneath a Stokes wave
We call a Stokes wave a smooth travelling wave solution to the governing equations

(2.1)–(2.6), for which η, U, V are all periodic in the x-variable, with the functions η,
U even and V odd in the X-variable. Moreover, the wave profile η should be strictly
monotone between consecutive crests and troughs, and symmetric. The existence
theory of Stokes waves and the study of the wave profile are by now quite advanced.
For example, it is known that |ηX| 6 1, cf. Amick (1987), and the Fourier series
expansion of the free surface presents interesting features, cf. Plotnikov & Toland
(2002). While often the term ‘Stokes wave’ is used for approximations obtained by
means of a perturbative scheme, we refer to an exact solution. We recall that under
the assumption of small wave steepness, ka� 1, Stokes (1847) derived a second-order
expansion for progressive periodic waves of permanent form. For engineering purposes,
a widely used fifth-order expansion is due to Fenton (1985). However, the Stokes
expansion and its extensions are generally not reliable for waves of moderate and large
amplitude, cf. the discussion in Drennan, Hui & Tenti (1992), while in the shallow-
water regime d� λ its predictions are not accurate even for waves of small amplitude.
To prevent such shortcomings, we consider exact solutions without approximations. In
particular, our conclusions are valid for all wavelengths, including periodic travelling
waves in shallow water.

An important aspect of the flow beneath a Stokes wave concerns the underlying
current. We assume that in a frame of reference moving at the constant wave speed
c, the wave crest is located on the line X = 0, called the crest line, so that the
wave troughs lie on the lines X = ±λ/2, called trough lines. Applying the divergence
theorem to the vector field (V,−U) in the rectangular domain delimited laterally
by the trough lines X = ±λ/2, bounded above by the trough level Y = Y0 with
Y0 = η(λ/2) < 0, and below by the lower boundary Y = −d of the near-surface layer,
the identity ∫ λ/2

−λ/2
U(X,Y) dX =

∫ λ/2

−λ/2
U(X,−d) dX, −d 6 Y 6 Y0, (4.1)

emerges. The physical interpretation of this identity is that

κ =
1
λ

∫ λ/2

−λ/2
U(X,−d) dX (4.2)
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22 A. Constantin

represents the uniform underlying current, see the discussions in Constantin & Strauss
(2010) or in Constantin (2013). In our setting, characterized by the absence of a
current, we have κ = 0. In these circumstances, it is known, cf. Constantin (2006) that

V(X,Y) > 0 for 0< X < λ/2, −d < Y 6 η(X), (4.3)

with V(0,Y)= 0 for Y ∈ [−d, η(0)] and V(λ/2,Y)= 0 for Y ∈ [−d, η(λ/2)], while

U(X,Y) < c throughout the fluid domain −d 6 Y 6 η(X), (4.4)

with U attaining its maximum value at the wave crest and its minimum value at the
wave trough. Moreover, U is strictly decreasing/increasing as we descend into the fluid
along the crest/trough line, with the function X 7→ U(X,−d) strictly decreasing on
[0, λ/2]. Since κ = 0, there exists a unique point X0 ∈ (0, λ/2) with U(X0,−d)= 0.

We will now prove some estimates that quantify the decay of the flow as one
descends in the fluid beneath the free surface. In this context, it is useful to note that
(2.4) and (2.5) provide us with the flow-invariant integral

p0 =

∫ η(X)

−d
(U(X,Y)− c) dY, −λ/2 6 X 6 λ/2, (4.5)

representing the relative mass flux. Note that p0 < 0, due to (4.4). The monotonicity
properties of U mentioned above yield

c[η(0)+ d]> [c− U(0,−d)][η(0)+ d]>
∫ η(0)

−d
(c− U(0,Y)) dY = |p0|, (4.6)

and

c[η(λ/2)+ d]< [c− U(λ/2,−d)][η(λ/2)+ d]

<

∫ η(λ/2)

−d
(c− U(λ/2,Y)) dY = |p0|. (4.7)

Consequently

|p0|

η(0)+ d
< c− U(0,−d) < c< c− U(λ/2,−d) <

|p0|

η(λ/2)+ d
, (4.8)

so that

0< [c− U(λ/2,−d)] − [c− U(0,−d)]<
|p0|

η(λ/2)+ d
−
|p0|

η(0)+ d

=
|p0|[η(0)− η(λ/2)]
[η(λ/2)+ d][η(0)+ d]

6
c[η(0)− η(λ/2)]
η(λ/2)+ d

, (4.9)

using (4.6) in the last step. The above monotonicity and periodicity properties of U
ensure that the variation of U along the lower boundary Y = −d of the near-surface
layer is precisely [U(0,−d)− U(λ/2,−d)]> 0. We deduce that

U(0,−d)− U(λ/2,−d)= sup
X∈[−λ/2,λ/2]

{|U(X,−d)− U(X, 0)|}<
c[η(0)− η(λ/2)]
η(λ/2)+ d

.

(4.10)

We now investigate the decay of the flow field throughout the near-surface layer
as the depth increases. Note that V being harmonic and odd in the X-variable in
the domain Ω = {(X,Y) : −λ/2 6 X 6 λ/2,−d 6 Y 6 η(X)}, with V(X,−d) = 0 for
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Stokes waves in water with a non-flat bed 23

all X ∈ [−λ/2, λ/2] in view of (2.5), it will admit a Fourier series representation of the
form

V(X,Y)=
∑
n>1

αn sinh[kn(Y + d)] sin(knX), (X,Y) ∈Ω, (4.11)

where k = 2π/λ is the wavenumber. Moreover, the validity of (4.3) along Y = η(X),
together with the fact that V(0, η(0)) = V(λ/2, η(λ/2)) = 0 while for X ∈ {0, λ/2} we
have that ∂X[V(X, η(X))] = VX(X, η(X)) = UY(X, η(X)) 6= 0 due to (2.2) and the strict
monotonicity of U along the crest and trough lines, ensure the existence of some
m+ > m− > 0 with

0< m− sinh[k(η(0)+ d)] sin(kX) < V(X, η(X)) < m+ sinh[k(Y0 + d)] sin(kX) (4.12)

for X ∈ (0, λ/2). Consider now the harmonic functions

w±(X,Y)= V(X,Y)− m∓ sinh[k(Y + d)] sin(kX) (4.13)

in the domain Ω+ = {(X,Y) : 0 6 X 6 λ/2,−d 6 Y 6 η(X)}. The choice of the
constants m± ensures that w−(X,Y) 6 0 6 w+(X,Y) on the entire boundary of Ω+.
The maximum principle for harmonic functions yields the validity of these inequalities
throughout Ω+. Consequently

0 6 m− sinh[k(Y + d)] sin(kX)6 V(X,Y)6 m+ sinh[k(Y + d)] sin(kX) (4.14)

throughout Ω+. The estimate of the decay rate for the vertical component of the
velocity field provided by (4.14) is precisely that predicted by linear theory, cf. (3.10).

Regarding the horizontal component of the velocity field, due to (2.1), (2.2) and the
fact that κ = 0, it admits the Fourier series representation

U(X,Y)=
∑
n>1

αn cosh[kn(Y + d)] cos(knX), (X,Y) ∈Ω. (4.15)

Let ‖f‖2
L2[0,λ/2]

=
∫ λ/2

0 f 2(X) dX for a square-integrable function f . From (4.15) we
obtain that

‖U(·,Y)‖2
L2[0,λ/2] =

λ

4

∑
n>1

α2
ncosh2

[kn(Y + d)], −d 6 Y 6 Y0. (4.16)

Consequently

‖U(·,Y)‖L2[0,λ/2]

‖U(·,−d)‖L2[0,λ/2]

> cosh[k(Y + d)], −d 6 Y 6 Y0. (4.17)

This estimates the growth of U above the flat bottom of the near-surface layer. On the
other hand, for Y ∈ [−d,Y0] we have

‖U(·,Y)‖2
L2[0,λ/2] =

λ

4

∑
n>1

α2
ncosh2

[kn(Y + d)] =
λ

4

∑
n>1

α2
n +

λ

4

∑
n>1

α2
nsinh2

[kn(Y + d)]

= ‖U(·,−d)‖2
L2[0,λ/2] + ‖V(·,Y)‖2

L2[0,λ/2] (4.18)

so that (4.14) yields

0 6 ‖U(·,Y)‖2
L2[0,λ/2] − ‖U(·,−d)‖2

L2[0,λ/2] 6
λm2
+

4
sinh2
[k(Y + d)], −d 6 Y 6 Y0.

(4.19)
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24 A. Constantin

It is also possible to derive an estimate throughout the near-surface layer for the
variation of U evaluated beneath the crest and beneath the trough. For this, note that

U(0,Y)− U(λ/2,Y)= 2
∑

n=2j+1:j>0

αn cosh[kn(Y + d)], Y ∈ [−d,Y0], (4.20)

while ∫ λ/2

0

V(X,Y)

sin(kX)
dX =

λ

2

∑
n=2j+1:j>0

αn sinh[kn(Y + d)], Y ∈ [−d,Y0]. (4.21)

The first relation follows directly from (4.15), while the second is a consequence of
(4.11) in combination with the identity∫ λ/2

0

sin(knX)

sin(kX)
dX =

{
0 if n > 1 is even,
λ/2 if n > 1 is odd.

(4.22)

The validity of (4.22) is easily checked by an inductive argument: for n= 1 and n= 2
the formula is immediate, while for n > 3 we have∫ λ/2

0

sin(knX)

sin(kX)
dX =

∫ λ/2

0

sin[k(n− 1)X] cos(kX)

sin(kX)
dX +

∫ λ/2

0
cos[k(n− 1)X] dx

=

∫ λ/2

0

sin[k(n− 1)X] cos(kX)

sin(kX)
dX

=

∫ λ/2

0

sin[k(n− 2)X]cos2(kX)

sin(kX)
dX

+

∫ λ/2

0
cos[k(n− 2)X] cos(kX) dX

=

∫ λ/2

0

sin[k(n− 2)X]
sin(kX)

dX +
∫ λ/2

0
cos[k(n− 1)X] dX

=

∫ λ/2

0

sin[k(n− 2)X]
sin(kX)

dX. (4.23)

From (4.20) and (4.21) we infer that∣∣∣∣([U(0,Y)− U(λ/2,Y)] − [U(0,−d)− U(λ/2,−d)])−
4
λ

∫ λ/2

0

V(X,Y)

sin(kX)
dX

∣∣∣∣
= 2

∣∣∣∣∣ ∑
n=2j+1:j>0

αn {cosh[kn(Y + d)] − 1} −
∑

n=2j+1:j>0

αn sinh[kn(Y + d)]

∣∣∣∣∣
= 4

∣∣∣∣∣ ∑
n=2j+1:j>0

αn sinh
(

kn(Y + d)

2

){
cosh

(
kn(Y + d)

2

)
− sinh

(
kn(Y + d)

2

)}∣∣∣∣∣
= 4

∣∣∣∣∣ ∑
n=2j+1:j>0

αn sinh
(

kn(Y + d)

2

)
exp

(
−

kn(Y + d)

2

)∣∣∣∣∣
6 4

√√√√ ∑
n=2j+1:j>0

α2
nsinh2

(
kn(Y + d)

2

)√ ∑
n=2j+1:j>0

e−kn(Y+d). (4.24)
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Stokes waves in water with a non-flat bed 25

Since∑
n=2j+1:j>0

e−kn(Y+d)
= e−k(Y+d)

∑
j>0

e−2kj(Y+d)
=

e−k(Y+d)

1− e−2k(Y+d)
=

1
2 sinh[k(Y + d)]

(4.25)

while (4.11) and (4.14) yield∑
n=2j+1:j>0

α2
nsinh2

(
kn(Y + d)

2

)
6
∑
n>1

α2
nsinh2

(
kn(Y + d)

2

)

=
4
λ

∥∥∥∥V

(
·,

Y + d

2

)∥∥∥∥2

L2[0,λ/2]

6 m2
+

sinh2

(
k(Y + d)

2

)
, (4.26)

we deduce that∣∣∣∣([U(0,Y)− U(λ/2,Y)] − [U(0,−d)− U(λ/2,−d)])−
4
λ

∫ λ/2

0

V(X,Y)

sin(kX)
dX

∣∣∣∣
6 2m+

√
tanh

(
k(Y + d)

2

)
, −d 6 Y 6 Y0. (4.27)

The above inequality estimates the decay rate as Y ↓ −d. For this, using (4.14), we get

0<
4
λ

∫ λ/2

0

V(X,Y)

sin(kX)
dX 6 2m+ sinh[k(Y + d)], −d 6 Y 6 Y0, (4.28)

so that for all Y ∈ [−d,Y0] we have

|[U(0,Y)− U(λ/2,Y)] − [U(0,−d)− U(λ/2,−d)]|

6 2m+

{
sinh[k(Y + d)] +

√
tanh

(
k(Y + d)

2

)}
. (4.29)

Concerning the practical applicability, note that in the shallow-water regime d � λ

we have 0 < k(Y0 + d) 6 kd� 1, so that m+ in (4.12) has to be large if we are to
accommodate waves of moderate and large amplitude. For this reason, in this case
the estimate (4.14) might fail to ensure that the vertical fluid velocity V is small
throughout the lower half of the layer {−d 6 Y 6 η(X)}, and therefore the deviation
of the flow from a pure current might be considerable. This shortcoming is prevented
at depths d exceeding half of the wavelength. Moreover, observations bear out the fact
that at depths in excess of half a wavelength the vertical flow variations are slight,
while for smaller depths this is not to be expected. Consequently, the considerations in
the present paper provide insight into the dynamics of the flow beneath the surface for
wave parameters in the regime

d >
λ

2
, (4.30)

without restriction on the height parameter. While our estimates remain valid in the
shallow-water regime d� λ, their practical usefulness is quite limited in this regime.
In this context, it is of interest to consider the case of a Stokes expansion for a wave
steepness satisfying ka� 1, a setting in which the Stokes expansion provides a good
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approximation. For a Stokes wave of wavelength 306 m, propagating in deep water
with a flat bed located at a depth of 4000 m, the wave speed provided by the Stokes
expansion is 22 m s−1. The choice d = 240 m gives a good approximation for the
variations of the horizontal flow velocity in the near-surface layer while beneath it the
water is practically still. In contrast to this, choosing d = 120 m we observe that the
horizontal velocity profile near the lower boundary of the near-surface layer presents
strong variations.

We conclude our discussion by some quantitative considerations. For ocean swell
one has [η(0) − η(λ/2)] 6 5 m, so that d > 120 m places us within the realm of
ε� 1, in which case the dispersion relation (3.11) provides us with the wave speed.
In the regime (4.30), a good approximation for the wave speed is c ≈

√
gλ/2π,

the approximation error with respect to (3.11) being less than 0.5 %. For wind-
generated swell in the Pacific Ocean one typically has λ ≈ 300 m, cf. the discussion
in Constantin (2011), so that the choice d = 250 m leads to the realistic speed
c ≈ 70 km h−1 since 2πd/λ ≈ 5.23 and for s > 1.75 we have tanh(s) > 0.97. In
view of (4.10), the variation of the horizontal fluid velocity at the depth d is reduced
by a factor of roughly 50. On the other hand, for swell in the Atlantic Ocean one
typically has λ ≈ 120 m, with [η(0) − η(λ/2)] 6 3 m. The choice d = 120 m leads us
to the realistic speed c≈ 50 km h−1, with a forty-fold reduction of the horizontal fluid
velocity variations at depth d.
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