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We upgrade the three-dimensional linear stability CASTOR3D code by taking into
account gyro-viscosity in the momentum equation, as well as pressure and Hall terms
in Ohm’s law. Making use of the drift approximation, the resulting simplified version
of Ohm’s law is implemented. The ion and electron diamagnetic drift effects described
by these newly implemented terms are investigated for ideal and resistive, low- and
medium-n internal modes depending on the ratio of ion and electron pressures, and plasma
resistivity. Stability studies are performed for two- and three-dimensional test equilibria.
The results confirm previous findings, and provide new insights especially in the case of
the three-dimensional equilibrium (e.g. reduction of the coupling of toroidal harmonics).
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1. Introduction

The stability properties of ideal and resistive modes are strongly influenced by kinetic
effects (diamagnetic effects, viscosity, etc.). However, these effects are not included in
the widely used simplified ideal or resistive fluid moment equations. Expressing the
kinetic effects in terms of low-order fluid moments and including them in the fluid
moment equations, the resulting extended equations describe both fluid and kinetic
features (Chang & Callen 1992). Depending on the plasma properties, various sets of fluid
equations (Mikhailovskii 1998; Huysmans et al. 2001; Schnack et al. 2006; Aiba 2016)
and approximations of viscous stress tensor ∇ · Π and heat flux q (Chang & Callen 1992)
have been established within the framework of magnetohydrodynamics (MHD). Drift
MHD equations are used in linear (e.g. MISHKA-D (Huysmans et al. 2001), MISHKA-F
(Chapman et al. 2006), MINERVA-DI (Aiba 2016)) and nonlinear (e.g. JOREK (Hoelzl
et al. 2021), XTOR-2F (Lütjens & Luciani 2010)) codes to investigate diamagnetic drift
effects. These codes differ in the applied numerical methods and in the detailed form of
the extended MHD equations.

We upgrade the three-dimensional (3-D) linear resistive stability CASTOR3D code
(Strumberger & Günter 2017, 2019) by taking into account gyro-viscosity in the
momentum equation, as well as pressure and Hall terms in Ohm’s law. Including additional
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physical effects in linear MHD equations may lead to so-called ‘parasitic’ solutions which
make it difficult to find and identify physically meaningful solutions. Besides a high
numerical accuracy (high-quality equilibrium input, radial resolution, etc.) the analytical
reduction of the model offers a possibility to reduce the occurrence of ‘parasitic’ modes
(Schnack et al. 2006). We therefore make use of the drift approximation and implement
the resulting simplified version of Ohm’s law. This reduces the numerical problems and
eliminates the Whistler waves.

The ion and electron diamagnetic drift effects caused by the newly implemented
terms are investigated for ideal and resistive, low- and medium-n internal modes of
two-dimensional (2-D) and 3-D high-β and 2-D low-β test equilibria. The types of these
modes are specified more precisely by analysing the corresponding ideal or resistive
energy functional that is determined from the solution of the eigenvalue problem without
diamagnetic drift effects (Puchmayr, Dunne & Strumberger 2022). The diamagnetic drift
effects are studied for ideal modes of the axisymmetric high-β equilibrium and resistive
modes of the corresponding low-β equilibrium. The obtained results confirm the previous
finding that diamagnetic drift effects may damp or even stabilise the modes (e.g. Aiba
2016). Moreover, we investigate the diamagnetic drift effects depending on various ratios
of ion and electron pressures. The results indicate that the often used assumptions pi = pe
(equal pressures) or p = pe, pi = 0 (cold ions) (e.g. Lütjens & Luciani 2010; Aiba 2016;
Pamela et al. 2020) may not always be a good approximation.

Usually, 3-D linear stability codes (e.g. CAS3D (Nührenberg 1996), TERPSICHORE
(Anderson et al. 1990), etc.) are restricted to purely ideal stability studies. The
CASTOR3D code, however, is a 3-D linear stability code which takes into account
important physical effects just as 2-D linear stability codes (e.g. MARS (Chu et al. 1995),
MISHKA-D (Huysmans et al. 2001), MISHKA-F (Chapman et al. 2006), MINERVA-DI
(Aiba 2016), etc.). Considering a 3-D high-β test equilibrium with helical core, we
investigate the ion diamagnetic drift effect on low-n∗ internal modes, with n∗ indicating
the global mode structure. In many cases n∗ corresponds to the dominant toroidal
Fourier harmonic contributing to the mode (Strumberger & Günter 2019). The results are
compared with those obtained for the corresponding axisymmetric equilibrium.

In § 2 we present the extended MHD equations (§ 2.1) and their linearised forms which
have been implemented in the CASTOR3D code (§ 2.2). The diamagnetic drift effects of
these additional terms are investigated for ideal internal modes (§ 3.1) and resistive internal
modes (§ 3.2) of the corresponding axisymmetric equilibria. Stability studies for the ideal
internal modes of the 3-D equilibrium are the subject of § 3.3. In § 4 a summary of the
results and an outlook on further studies are given. Finally, a simplified computation of
the drift frequencyand a discussion of the numerical accuracy of the CASTOR3D results
are presented in Appendices A and B, respectively.

2. Theory
2.1. Extended MHD equations

The upgraded version of the linear stability CASTOR3D code, which is used for the
presented computations, is based on the extended MHD equations (Schnack et al. 2006):

∂ρ

∂t
+ V · ∇ρ + ρ∇ · V = 0, (2.1)

ρ
∂V
∂t

+ ρ(V · ∇)V = −∇p − ∇ · Π + j × B, (2.2)
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∂T
∂t

+ V · ∇T + (Γ − 1)T∇ · V = 0, (2.3)

E + V × B + mi

eρ
∇pe = mi

eρ
j × B + η j. (2.4)

They correspond to the generally used single-fluid equations (e.g. Huysmans, Goedbloed
& Kerner 1993) plus additional two-fluid terms. These equations are derived from
the two-fluid MHD equations (Braginskii 1965) making several assumptions and
approximations, e.g. assuming quasi-neutrality n = ni = ne (ni is ion density, ne is
electron density), neglecting the electron mass (mi >> me, mass density ρ = min +
men ≈ min), using pressure p = pi + pe = n(Ti + Te) = nT (Ti is ion temperature, Te
is electron temperature, T = Ti + Te) and making the velocity approximation V =
miV i + meV e/mi + me ≈ V i, with V i being the ion velocity. The set of equations is closed
with the Maxwell equations

∇ · E = 0, ∇ × E = −∂B
∂t

, ∇ × B = μ0 j, ∇ · B = 0 (2.5a-d)

(E is electric field, B is magnetic field, j is current density), where μ0ε0(∂E/∂t) is
neglected. The ion velocity V i is given by

V i = E × B
B2︸ ︷︷ ︸
=V E

+ V · B
B︸ ︷︷ ︸

=V ||

+α
1
ρ

B × ∇pi

B2︸ ︷︷ ︸
=V ∗

i

· · · . (2.6)

There, V MHD = V E + V || is the so-called MHD velocity, V ∗
i is the ion diamagnetic drift

velocity and α = mi/e, with e being the elementary charge. Additionally to the ideal
MHD equations, the extended MHD equations take into account the viscous force density
−∇ · Π in the momentum equation (2.2), as well as the electron pressure-gradient term
(mi/eρ)∇pe, the Hall term (mi/eρ)j × B and the plasma resistivity term ηj in the extended
Ohm’s law (2.4). The viscous stress tensor Π splits into Π = Π|| + Π∧ + Π⊥, with
parallel Π||, cross (gyro-viscous) Π∧, and perpendicular Π⊥ parts. We already introduced
the approximation

−∇ · Π|| = μ||Δ||V (2.7)

in the previous CASTOR3D version (Strumberger & Günter 2019), while the
perpendicular viscosity is not implemented in the code. The parallel viscosity coefficient
μ|| is an input parameter. However, in this work we neglect the parallel viscosity (μ|| = 0),
and concentrate our studies on the diamagnetic drift effects. The gyro-viscous force is
approximated by (Chang & Callen 1992)

−∇ · Π∧ ≈ ρ(V ∗
i · ∇)V . (2.8)

This expression is generally known as gyro-viscous cancellation. Using (2.7) and (2.8),
the momentum equation (2.2) reduces to

ρ
∂V
∂t

+ ρ((V − V ∗
i ) · ∇)V = −∇p + μ||∇||V + j × B. (2.9)

The extended Ohm’s law (2.4) is simplified by using the drift approximation of the Hall
term (Schnack et al. 2006):

∇⊥p ≈ j × B, (2.10)
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which leads to

E + V × B + α

ρ
∇||pe − α

ρ
∇⊥pi = ηj (2.11)

and eliminates the Whistler waves.
As already mentioned, single-fluid codes that include two-fluid effects often use

the assumption pi = pe = 0.5p, that is, Ti = Te. However, measured ion and electron
temperatures may be different. Therefore, we use the ansatz

pi = αTp, pe = (1 − αT)p, (2.12a,b)

with 0 ≤ αT ≤ 1. The parameter αT provides an additional degree of freedom that allows
one to choose a more realistic ratio of ion and electron pressures with respect to the
measured temperatures, that is, a more realistic treatment of ion and electron diamagnetic
drift effects. Application of (2.12a,b) to the ion drift velocity (2.6) and the pressure terms
of (2.11) yields

V ∗
i = ααT

1
ρ

B × ∇p
B2

(2.13)

and the simplified Ohm’s law

E + V × B + α

ρ
∇||p − ααT

ρ
∇p = η j, (2.14)

with ∇||p = (1/B2)B(B · ∇p).
Equations (2.1), (2.9), (2.3) and (2.14) of the standard drift model are only valid in the

drift ordering, that is, ε ∼ δ2 and ξ ∼ δ with ε = ω/Ωi (ω is characteristic frequency, Ωi
is ion gyro-frequency), ξ = V0/Vthi (V0 is characteristic flow velocity, Vthi is ion thermal
speed) and δ = ρi/L (ρi is ion Larmor radius, L is macroscopic scale length) (Schnack
et al. 2006).

2.2. Linearisation of the extended MHD equations
In order to fulfil ∇ · B = 0, we use B = ∇ × A (A is magnetic vector potential), while the
Weyl gauge (electric scalar potential ΦE = 0) yields E = −(∂A/∂t). The time dependence
of the perturbed quantities is assumed to be ∼eλt with λ = γ + iω (γ is growth rate, ω is
oscillation frequency of the mode). Using the ansatz f (r, t) = f0(r) + eλtf1(r) for ρ, T, V
and A, the linearised forms of the extended fluid equations (2.1), (2.9), (2.3) and (2.14)
read

λρ1 = −V 0 · ∇ρ1 − V 1 · ∇ρ0 − ρ1∇ · V 0 − ρ0∇ · V 1, (2.15)

ρ0λV 1 = −ρ1(V 0 · ∇)V 0 − ρ0(V 1 · ∇)V 0 − ρ0(V 0 · ∇)V 1

+ρ1(V ∗
i0 · ∇)V 0 + ρ0(V ∗

i1 · ∇)V 0 + ρ0(V ∗
i0 · ∇)V 1

− 1
mi

∇(ρ0T1) − 1
mi

∇(T0ρ1) + μ||Δ||V 1

+ 1
μ0

(∇ × (∇ × A1)) × (∇ × A0)

+ 1
μ0

(∇ × (∇ × A0)) × (∇ × A1), (2.16)

λT1 = −V 1 · ∇T0 − V 0 · ∇T1 − (Γ − 1)T1∇ · V 0 − (Γ − 1)T0∇ · V 1, (2.17)
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∂A1

∂t
= V 1 × B0 + V 0 × (∇ × A1) + α

ρ0

1
B2

0
B0

(
(∇ × A1) · 1

mi
∇(ρ0T0)

)

+ α

ρ0

1
B2

0
B0

(
B0 · 1

mi
∇(ρ1T0 + ρ0T1)

)
− ααT

1
ρ0

1
mi

∇(ρ1T0 + ρ0T1)

+ααT
ρ1

ρ2
0

1
mi

∇(ρ0T0) − η

μ0
(∇ × (∇ × A1)). (2.18)

Here ρ0, V 0, T0 and A0 are the equilibrium quantities of density, ion velocity (2.6),
temperature (T0 = T0e + T0i) and magnetic vector potential, while ρ1, V 1, T1 and A1 are
their perturbations. The perturbation of the ion diamagnetic drift velocity reads

V ∗
i1 = −ααT

ρ1

ρ2
0

B0 × ∇p0

B2
0

+ ααT
1
ρ0

B0 × (T0∇ρ1 + T1∇ρ0 + ρ0∇T1 + ρ1∇T0)

B2
0

+ ααT
1
ρ0

(∇ × A1) × ∇p0

B2
0

− 2ααT
1
ρ0

B0 · (∇ × A1)

B4
0

(B0 × ∇p0). (2.19)

The corresponding boundary conditions and boundary terms of the linearised MHD
equations are not affected by the newly implemented terms. They are described in detail
in previous works (e.g. Huysmans et al. 1993; Strumberger & Günter 2017, 2019).

3. Stability studies

The linearised, extended MHD equations (2.15)–(2.18) are implemented in the
CASTOR3D code in general 3-D formulation. This general formulation allows one to use
various flux coordinate types (Strumberger & Günter 2017) (see also Appendix B). The
parameter α = mi/e is implemented in the form α = αs(mi/e), with 0 ≤ αs ≤ 1 being a
scaling parameter. The latter allows the modification of the strength of the diamagnetic
drift effects. This parameter is mainly necessary for computational reasons. Increasing αs
step by step may lead from a growth rate without diamagnetic drift effects to a growth rate
that is strongly reduced by these effects, or even to a stable solution. Certainly, only αs = 0
and αs = 1 yield physically relevant solutions.

Stability studies are performed for test equilibria assuming the following conditions:
circular cross-section, minor radius a = 1 m, aspect ratio A = 1.6, flat rotational transform
profile (axis value ιa = 1.01, boundary value ιb = 0.63) and pressure profile defined by
an analytical function p(s) = pa(1 − 2s2 + s4), with radial coordinate s being the square
root of the normalised toroidal flux. In figure 1(a) we show the rotational transform
profile ι, the normalised pressure profile pN and the chosen normalised profiles of ion
density nN (deuterons) and temperature TN . We study the diamagnetic drift effects for
an axisymmetric high-β (volume-averaged plasma β: 〈β〉 = 2.97 %) equilibrium and a
low-β (〈β〉 = 0.97 %) equilibrium, and a 3-D high-β (〈β〉 = 2.97 %) equilibrium with
an n = 1 helical core (see figure 1b). The latter is the result of a 3-D fixed-boundary
equilibrium calculation with axisymmetric plasma boundary (Strumberger & Günter
2017). All equilibria are computed with the 3-D NEMEC code (Hirshman & Whitson
1983; Hirshman, van Rij & Merkel 1986). Ion and electron diamagnetic drift effects are
investigated for various ratios of ion and electron pressures. We choose these simple test
equilibria, because they are ideal and resistive unstable with respect to low- and medium-n
internal modes, and they are numerically easy to handle. Due to their simple geometry and
very flat q-profile (q = 1/ι) only few poloidal and toroidal (3-D case) harmonics couple
together. The resulting eigenvalue problems are, therefore, fast to solve, and allow detailed
physical and numerical parameter studies.
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(a) (b)

FIGURE 1. (a) Rotational transform profile ι and normalised profiles of pressure pN , ion density
nN and temperature TN as functions of the square root of the normalised toroidal flux s. The
dotted vertical line marks the position of the ι = 1 rational flux surface. (b) Helical core of the
3-D equilibrium: ι = 1 flux surface and position of the magnetic axis (crosses) at the toroidal
cross-sections ϕ = 0◦, 90◦, 180◦ and 270◦.

(a) (b)

FIGURE 2. Fourier spectra of the real part of the radial velocity perturbation for (a) an
n = 1 and (b) an n = 10 mode. The dotted vertical line indicates the position of the ι = 1
flux surface.

3.1. Ideal stability studies (2-D equilibrium)
We study the stability of an axisymmetric high-β equilibrium (pressure pa = 33.75 kPa,
deuteron ion density na = 0.7 × 1020 m−3 and temperature Ta = 3009 eV at the magnetic
axis) with equilibrium ion velocity V i0 = 0, that is, we assume that the contributions
to the ion velocity (2.6) are either zero or cancel. This equilibrium is unstable with
respect to ideal modes localised at the ι = 1 rational flux surface. Using 2-D straight field
line coordinates, the characteristic Fourier spectra of the real part of the radial velocity
perturbation are shown for the n = 1 and n = 10 modes in figures 2(a) and 2(b).

Recently, the diagnostic part of the CASTOR3D code has been extended by
implementing the calculation of the resistive energy functional from the solution of the
eigenvalue problem (Puchmayr et al. 2022). This energy functional provides information
on the different energetic drives of ideal and resistive modes. The energy of the
perturbations is decomposed into stabilising contributions δWSTA, the pressure-gradient
drive δWDP and the parallel current-density drive δWCUR. For easy comparison of the
energy across different perturbations, the energy values are normalised as described
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(a) (b)

FIGURE 3. Energetic decomposition of the ideal internal perturbations of the considered high-β
equilibrium. (a) Relative current-density drive as a function of the toroidal mode number and (b)
normalised energy density corresponding to the current-density drive as a function of the square
root of the normalised toroidal flux.

in Puchmayr et al. (2022), and we define the relative current-density drive as
δWCUR/(δWCUR + δWDP). The analysis of the ideal internal modes of the considered
high-β equilibrium shows that these modes are mainly pressure-gradient-driven. With
increasing toroidal mode number, the perturbations get increasingly localised at the
q = 1 surface, where the equilibrium pressure gradient is high compared with that of
the near-axis region, and become more pressure-gradient-driven. The n = 1 mode is the
only mode that has a destabilising current density contribution at the magnetic axis,
while the n = 2 mode has a stabilising one (see figure 3b). There, the finite contributions
result from the m = 1 components of these two modes, while for the higher-n modes the
m = 1 components are negligibly small at the magnetic axis. Furthermore, the integrated
pressure-gradient drive δWDP strongly increases with increasing toroidal mode number
similarly to the resistive case shown in figure 7(c), while the integrated current-density
drive δWCUR remains small due to the cancellation of stabilising and destabilising radial
regions. So, these modes are most probably ideal internal kink and interchange modes.

We now investigate the effects of ion and electron magnetic drift on those ideal modes
depending on the toroidal mode number n. We determine the dominant effect by executing
these computations for various ratios of the ion and electron pressures: (i) pi = pe, (ii) pi =
αTp, pe = (1 − αT)p with αT = 0.4 and (iii) pi = 0, pe = p (cold ions). A large stabilising
effect is observed for pi = pe and pi = 0.4p. The growth rates are reducedand the modes
oscillate with negative frequencies. The modes are stabilised when the absolute value
of the oscillation frequency |ω| of the mode exceeds the ideal growth rate, |ω| � γideal.
Therefore, the considered modes are stable for pi = 0.5p, n > 6 and pi = 0.4p, n > 8, as
shown in figures 4(a) and 4(b) and verified in figures 4(c) and 4(d). Growth rates and
oscillation frequencies are plotted as functions of the scaling parameter αs in the latter
two figures. There, the n = 7 and n = 9 modes stabilise for pi = 0.5p, αs ≥ 0.9705 and
pi = 0.4p, αs ≥ 0.9574, respectively. The oscillation frequencies scale in good agreement
with the toroidal mode number n (figure 4a,b) and the scaling parameter αs (figure 4c,d).
A small deviation from the linear increase of ω as function of αs only appears close to
stabilising αs value when |ω| exceeds γideal. Although the two considered pressure ratios
do not differ much, there are significant differences in growth rates, oscillation frequencies
and the lowest n values of the stable modes.

https://doi.org/10.1017/S0022377823000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000508


8 E. Strumberger, S. Günter, K. Lackner and J. Puchmayr

(a) (b)

(c) (d)

FIGURE 4. Assuming (a,c) pi = pe = 0.5p and (b,d) pi = 0.4p, pe = 0.6p, growth rate γ and
absolute value of the oscillation frequency |ω| are plotted (a,b) as functions of the toroidal mode
number n and (c,d) as functions of the scaling parameter αs for (c) the n=7 and (d) the n=9
modes. (a,b) The blue stars represent the absolute value of half of the ion diamagnetic drift
frequency |ω∗

i |/2 (A2). The black dashed lines mark the growth rates γideal obtained without
taking diamagnetic drift effects into account.

The obtained results are in good agreement with the results and the dispersion relation

γ + iω = i
ω∗

i

2
±

√
γ 2

ideal −
(

ω∗
i

2

)2

(3.1)

presented in Aiba (2016), that is, the modes are marginally stable for γideal = ω∗
i /2. A

simplified analytical expression of ω∗
i is presented in Appendix A. The resulting ion

drift frequencies are |ω∗
i | = 5841 rad s−1 (pi = 0.5p) and 4673 rad s−1 (pi = 0.4p) for a

1/1 mode at the ι = 1 flux surface. The calculated drift frequencies |ω∗
i |/2 are compared

with the oscillation frequencies of the modes in figures 4(a) and 4(b). They agree very
well as stated by (3.1). Comparing the numerical results shown in figures 4(c) and 4(d)
with the calculated drift frequencies, we obtain γideal(n = 7) = 19 556 rad s−1 ≈ |ω| =
19 805 rad s−1 ≈ αs|ω∗

i |/2 = 19 840 rad s−1 and γideal(n = 9) = 19 804 rad s−1 ≈ |ω| =
20 082 rad s−1 ≈ αs|ω∗

i |/2 = 20 132 rad s−1, respectively. Here the used expression (A2)
is a good approximation for ω∗

i , because the Fourier spectra of the considered modes are
dominated by only one poloidal harmonic (see figure 2). Besides, the ion diamagnetic
drift is the dominant effect for these ideal modes, while the electron diamagnetic drift
effect is negligible, as shown in figure 5. There, growth rate and oscillation frequency
(marked by red crosses) are presented as functions of the toroidal mode number n for a
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(a) (b)

FIGURE 5. (a) Growth rate and (b) absolute value of the oscillation frequency (ω < 0) as
functions of the toroidal mode number n assuming cold ions (αT = 0) (red crosses). In (a) the
black solid line marks the growth rate γideal obtained without taking diamagnetic drift effects
into account.

plasma with cold ions (pi = 0). That is, there is no ion, but only an electron diamagnetic
drift represented by the parallel electron pressure-gradient term in (2.11) (Yu, Günter
& Scott 2003). Here, however, the latter has no stabilising effect, but an insignificant
destabilising effect. It causes mode oscillations with frequencies increasing linearly with
n, but which are negligibly small in comparison with the mode frequencies induced by the
ion diamagnetic drift effect.

3.2. Resistive stability studies (2-D equilibrium)
We consider the same plasma configuration as for the ideal modes, but with a much
lower plasma β of 〈β〉 = 0.97 % (pressure pa = 11.25 kPa, deuteron ion density na =
0.7 × 1020 m−3 and temperature Ta = 1004 eV at the magnetic axis). Again, we assume
that all contributions to the equilibrium ion velocity are either zero or cancel (V i0 = 0).
This low-β equilibrium is also unstable with respect to internal modes located at the
ι = 1 flux surface. These modes show an analogous mode structure as the ideal modes
considered in the previous section (compare figures 2a,b and 6c,d). However, they are
only unstable for finite plasma resistivity η, and their slow growth rates approximately
scale with η1/3 as shown in figure 6(b) (we assume η = constant). This scaling is typical
for resistive kink and interchange modes.

Analysing the resistive energy functional of these modes highlights their
pressure-gradient-driven character. Compared with the ideal modes of the high-β
equilibrium, the resistive modes of the low-β equilibrium are overall more pressure-
gradient-driven (compare figures 3a and 7a). Similarly to the ideal modes, the relative
current-density drive strongly decreases with increasing toroidal mode number. Although
the relative current-density drive is nearly independent of the resistivity, one can see that
the perturbation and the corresponding energy densities are broadened with increasing
resistivity (see figure 7b,d). We remark that the precise calculation of the energetic
decomposition for the n = 1 mode is numerically challenging as the perturbation is finite
at the magnetic axis, where the coordinate system is singular. For larger toroidal mode
numbers, the resistive modes become increasingly localised at the ι = 1 flux surface (see
figure 7d). The pressure-gradient drive δWDP strongly increases with increasing toroidal
mode number, whereas the integrated current-density drive δWCUR remains small because
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(a) (b)

(c) (d)

FIGURE 6. (a) Growth rates as functions of the toroidal mode number n for η = 10−6 and η =
10−7 � m. (b) Growth rates as functions of η for n = 1, 4 and 20. The red dashed line indicates
the η1/3 scaling. Fourier spectra of the real part of the radial velocity perturbation are shown for
(c) an n = 1 and (d) an n = 10 mode. The blue dotted vertical lines indicate the position of the
ι = 1 rational flux surface.

of the cancellation of stabilising and destabilising contributions in different radial regions
of the plasma (see figure 7c,d).

Figures 8 and 9 show growth rates and oscillation frequencies as functions of the
parameter αT and the toroidal mode number n, respectively. They include the limiting
cases of cold ions (αT = 0) and cold electrons (αT = 1). In the case of cold ions,
only the electron diamagnetic drift remains that is described by the parallel electron
pressure-gradient term in the extended Ohm’s law (2.11). In the case of cold electrons,
only the ion diamagnetic drift influences the stability via the gyro-viscosity term in the
momentum equation (2.9) and the perpendicular ion pressure-gradient term in (2.11). The
comparison of the growth rates without (figure 6a) and with (figure 8a,c) diamagnetic
drift effects shows a large stabilising effect for all combinations of ion and electron
pressures. However, resistivity and electron temperature are coupled by the Spitzer
resistivity in a real plasma. Using a rough estimate of the Spitzer resistivity, namely
η = 2.8 × 10−8/T3/2

e � m (Te in keV, Coulomb logarithm ln Λ = 17) (Wesson 1997), we
obtain Te = 0.09 and Te = 0.43 keV for η = 10−6 and η = 10−7 � m, respectively. The
corresponding αT parameters are marked by the dotted vertical lines in figure 8. Cold
ions (αT = 0) would correspond to an electron temperature of Te = 1 keV and a small
resistivity of η = 2.8 × 10−8 � m. Extrapolating the results presented in figures 8(a,c)
and 9(a,c), we expect that, at least, all modes with n > 1 are stabilised by the electron
diamagnetic drift effect. However, CASTOR3D computations show that also the n = 1
mode is stabilised for η = 2.8 × 10−8 � m and αT = 0.
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(a) (b)

(c) (d)

FIGURE 7. Energetic decomposition of the resistive internal perturbations of the considered
low-beta equilibrium: (a) Relative current-density drive as a function of the toroidal mode
number for resistivities of η = 10−7 � m (blue) and η = 10−6 � m (orange). Normalised energy
densities corresponding to (b,d) the current-density and (c) the pressure-gradient drives as a
function of the square root of the normalised toroidal flux for resistivities of (b) η = 10−7 � m
and (c,d) η = 10−6 � m.

The oscillation frequencies of the modes scale linearly with αT (figure 8b,d) and n
(figure 9b,d), at least for αT > 0.2. The deviation from the linear scaling is negligibly
small and, therefore, would only be visible in an enlargement of the figures. The stars
mark the ion diamagnetic drift frequencies for the corresponding toroidal mode numbers.
These frequencies agree very well with the oscillation frequencies of the modes, that
is, ω ≈ ω∗

i , while ω ≈ ω∗
i /2 holds for the ideal modes (see § 3.1). Diamagnetic drift

effects not only cause modes to oscillate in time, reduce growth rates or even stabilise
modes, but may also make a less unstable mode to the most unstable one. The considered
low-β equilibrium is unstable with respect to resistive kink and interchange modes
(figures 8c,d and 10a,c), whose radial velocity perturbation (which is equivalent to the
radial displacement) does not change its sign (no zero crossing). However, the equilibrium
is also unstable to resistive modes whose radial velocity perturbation changes once its sign
changes (one zero crossing) (figure 10b,d). The resistive energy functionals of the latter
show a pressure-gradient drive of almost 100 %, that is, the considered equilibrium is
unstable with respect to a so-called Sturmian sequence of modes (Goedbloed & Sakanaka
1974). The considered modes with one zero crossing are mostly less unstable than the
modes without zero crossing. However, in the case of cold electrons the resistive n = 2
mode with one zero crossing remains unstable, while the corresponding mode without
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(a) (b)

(c) (d)

FIGURE 8. (a,c) Growth rates and (b,d) oscillation frequencies as functions of parameter αT for
various n. The dotted vertical lines mark the αT values for which the considered resistivity value
corresponds to the approximated Spitzer resistivity. The stars denote ω∗

i .

zero crossing is stabilised by the ion diamagnetic drift effect as shown in figure 9(a,c).
There, the growth rates of both mode types are presented for αT = 1. In figure 10 the
Fourier spectra of the real part of the radial velocity perturbation are presented for both
n = 3 mode types without and with diamagnetic drift effects taken into account. Since the
n = 2 mode without zero crossing is stable for αT = 1, the Fourier spectra are presented
for the n = 3 modes which have analogous structures.

3.3. Ideal stability studies (3-D equilibrium)
The 3-D, stellarator-symmetric, high-β equilibrium differs from the previous considered
up–down symmetric, axisymmetric equilibrium by an n = 1 helical core. Analogous to
the axisymmetric one, this 3-D equilibrium is unstable with respect to ideal kink and
interchange modes. Again, the ion diamagnetic drift effect taken into account by the
gyro-viscosity term in the momentum equation (2.9) is the dominant effect, while the
contributions of the pressure terms in Ohm’s law (2.14) are negligibly small (see also
Appendix B). However, particularly in 3-D geometry these drift terms cause additional
numerical problems. That is, they increase the occurrence of non-physical ‘parasitic’
solutions, and lead to non-physical oscillations of the eigenfunctions. We therefore have
neglected these terms in the following computations. Certainly, the pressure terms can
only be neglected in Ohm’s law in the case of highly unstable ideal modes (see § 3.1), but
they play an essential role in the case of resistive modes as shown in § 3.2. The eigenvalue
problem in general 3-D formulation yields two orthogonal solutions for an instability. The
corresponding growth rates (real parts of the eigenvalues) are always equal (degenerate) for
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(a) (b)

(c) (d)

FIGURE 9. (a,c) Growth rates and (b,d) oscillation frequencies as functions of the toroidal mode
number n for various αT values: αT = 0 (red solid line with squares), αT = 0.05 (blue solid line
with circles), αT = 0.1 (magenta solid line with plus symbols), αT = 0.5 (green solid line) and
αT = 1 (resistive modes without zero crossing: black crosses; resistive modes with one zero
crossing: black diamonds). The orange circle marks the change of the mode type.

(a) (b)

(c) (d)

FIGURE 10. Fourier spectra of the real part of the radial velocity perturbations for (a,c) the
resistive n = 3 mode without zero crossing and (b,d) the resistive n = 3 mode with one zero
crossing (a,b) without and (c,d) with taking ion diamagnetic drift effects into account.
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FIGURE 11. Growth rates γ and absolute values of the oscillation frequency |ω| as functions of
n∗ for the axisymmetric equilibrium (solid lines) and the 3-D equilibrium (dots and diamonds)
with (red) and without (black) taking diamagnetic drift effects into account. The blue stars
represent the absolute value of half of the ion diamagnetic drift frequency |ω∗

i |/2.

axisymmetric configurations, but they may be different (non-degenerate) in the case of 3-D
configurations. Finite oscillation frequencies (imaginary parts of the eigenvalues) always
have the same absolute values, but opposite signs (ω1 = −ω2). However, those opposite
signs do not mean that the corresponding modes rotate or oscillate contrarily. In fact, they
rotate in the same direction as an illustration of the rotation in real space would show. In
figure 11 the two growth rates of the instabilities are marked by dots and diamonds for the
considered 3-D equilibrium. Here only the growth rates of the n∗ = 1 internal kink mode
without diamagnetic drift effects are slightly non-degenerate. We characterise the modes
as n∗, because in 3-D geometry several n harmonics couple together and contribute to the
Fourier spectrum of a mode, that is, n∗ indicates the toroidal mode number of the global
mode structure. As already mentioned in the introduction, in many cases n∗ corresponds
to the dominant toroidal Fourier harmonic contributing to the mode. In figure 13(a,b)
the structures of the two solutions obtained without diamagnetic drift effects are shown
for an n∗ = 1 mode. They are orthogonal to each other, and they correspond to pure
cosine (figure 13a) and sine (figure 13b) functions, because of the stellarator-symmetric
equilibrium. In the case of an axisymmetric configuration the two structures would be
equivalent, that is, one structure could be transformed into the other by multiplying the
eigenfunctions with eiφ (toroidal angle φ = ±90◦). Such a transformation is not possible
in 3-D geometry. While, for the given example, the radial velocity perturbation (which
in linear MHD is equivalent to the displacement of the mode) is perpendicular to the
displacement of the helical core in figure 13(a), it is parallel in figure 13(b). These different
locations result in the slightly unequal growth rates given in 13(a,b). (This small difference
of the growth rates would only be well visible in an enlargement of figure 11.) The
perturbation perpendicular to the helical core grows faster than the perturbation parallel
to it. For a more detailed discussion of fast- and slow-growing solutions in 3-D tokamak
configurations we refer the reader to Puchmayr et al. (2023). For completeness, it should
also be mentioned that the complex linear eigenvalue problem, which is solved by the
CASTOR3D code, can be multiplied with any complex number (�= 0). That is, amplitudes
and signs of the eigenfunctions are not determined.

In figure 11 the eigenvalues of the low-n∗ modes are shown as a function of n∗ with and
without taking the ion diamagnetic drift effect into account, and assuming αT = 0.5. While
without diamagnetic drift effects the n∗ = 1 growth rates are appreciably non-degenerate
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(a) (b)

FIGURE 12. (a) Growth rates and (b) oscillation frequencies of the two possible n∗ = 1 modes
as functions of the scaling parameter αs (enlargement of the interesting region). The green dotted
lines (αs = 0.01875) mark the limit when the growth rates become degenerate and the modes start
to oscillate.

(see also figure 12a), they become degenerate when taking those effects into account.
As expected, the induced oscillation frequencies have opposite signs and equal absolute
values. The latter agree to a good approximation with the high-β axisymmetric results and
half the value of the ion diamagnetic drift frequency, |ω∗

i |/2. Although the eigenvalues
of the modes are very similar for the 3-D and the axisymmetric equilibria, there are two
noteworthy differences between the two cases which we discuss in the following.

(a) If the growth rates of the two orthogonal solutions are different (non-degenerate)
in the case without diamagnetic drift, a minimum strength of the diamagnetic drift effect
(which corresponds to a minimum drift frequency) is necessary to equalise the growth
rates and to start the mode oscillation. In figure 12 the growth rates and oscillation
frequencies of the two possible n∗ = 1 modes are shown as functions of the scaling
parameter αs. The initially non-degenerate growth rates converge until they become equal,
while the modes start to oscillate (ω1 = −ω2). The opposite signs of the oscillation
frequencies result in the same oscillation cycle, but are phase-shifted in time. An
analogous behaviour has been observed with respect to plasma rotation in the case of
external kink modes of a quasi-axisymmetric stellarator equilibrium (Strumberger &
Günter 2019) and edge-localised modes in 3-D tokamak equilibria (Puchmayr et al. 2023).
There, a minimum plasma rotation frequency is required for modes with non-degenerate
growth rates to start oscillation. In figure 13 the vectors characterise the radial velocity
perturbation in the R–Z plane at toroidal angle ϕ = 0◦ and time t = 0 (t = 0 refers to the
mode structure at the beginning of an oscillation cycle). Taking the ion diamagnetic drift
effect into account, the structures are slightly rotated with respect to the location of the
helical core.

(b) Diamagnetic drift effects change the Fourier composition of the eigenfunctions,
as is illustrated for the n∗ = 6 mode in figure 14. There, we only show the radial
velocity perturbation of the cosine-type function (Fourier coefficients of the complex and
complex conjugate eigenfunctions have the same sign and size), because the sine-type
function (Fourier coefficients of the complex and complex conjugate eigenfunctions have
opposite signs) yields no new information. (This also holds for the imaginary part of
the Fourier coefficients.) Without diamagnetic drift effects the complex and complex
conjugate components of the Fourier spectrum are equal (see figure 14a). However, with
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(a) (b)

(c) (d)

FIGURE 13. Structures of n∗ = 1 mode for the two orthogonal solutions (a,b) without and (c,d)
with taking the ion diamagnetic drift effect into account. The vectors characterise the velocity
perturbation in the R–Z plane at toroidal angle ϕ = 0◦ and time t = 0.

diamagnetic drift effects the complex or complex conjugate components strongly dominate
the Fourier spectrum (figure 14b). It is not only the diamagnetic drift effects that cause
such a decoupling of the complex and complex conjugate parts of the eigenfunctions.
This decoupling has also been observed in the case of toroidal plasma rotation as
described in Puchmayr et al. (2023). Besides, figure 14(a) illustrates the coupling of many
toroidal harmonics. There, the dominant n cannot be identified. However, considering the
perturbation in real space (see figure 14c), the n∗ = 6 character of the mode appears.
Taking diamagnetic drift effects into account, the toroidal coupling is reduced. The m/n =
6/6 harmonic yields the largest contribution to the Fourier spectrum of the perturbation
shown in figure 14(b), while the contributions of the other n harmonics are reduced. This
reduction leads to a more uniformly distributed mode structure in the poloidal direction
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(a) (b)

(c) (d)

FIGURE 14. (a,b) Fourier spectra of the real part of the radial velocity perturbation and (c,d)
mode structures of the n∗ = 6 mode (a,c) without and (b,d) with ion diamagnetic drift effect. In
(a,b) the solid and dashed lines denote the contributions of the complex and complex conjugate
eigenfunctions, respectively. The largest contributions are marked by their poloidal and toroidal
harmonics, m/n. In (c,d) the vectors characterise the velocity perturbation in the R–Z plane at
toroidal angle ϕ = 0◦ and time t = 0.

(see figure 14d). The coupling of the poloidal harmonics plays only a minor role for the
mode structure, because of the very flat q-profile.

4. Summary and outlook

The 3-D linear resistive CASTOR3D code has been upgraded with respect to
diamagnetic drift effects. The numerical results have been verified by comparing
growth rates and oscillation frequencies computed with various coordinate types (see
Appendix B). Furthermore, the presented results confirm previous findings (see e.g.
Aiba 2016): (i) an ideal mode becomes stable when the absolute value of its oscillation
frequency exceeds the corresponding ideal growth rate (the growth rate obtained without
diamagnetic drift effects) and (ii) the oscillation frequency of an ideal mode agrees to a
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good approximation with half of the absolute value of the corresponding ion diamagnetic
drift frequency, that is, ω ≈ ω∗

i /2.
Besides the standard approximations of equal pressures pi = pe = 0.5p or cold ions

pi = 0, pe = p, the CASTOR3D code allows any constant ratio of ion and electron
pressures. The results show a strong dependence on this ratio. For ideal modes the
stabilising diamagnetic drift effect decreases when the ion pressure is reduced, and is
negligible for cold ions, because the ion diamagnetic drift effect is the major effect. In
the case of resistive modes, however, both ion and electron diamagnetic drift effects are
important. Their stabilising effects strongly depend on the ion/electron pressure ratio and
the plasma resistivity. The oscillation frequencies of these modes agree very well with
the corresponding ion diamagnetic drift frequencies, that is, ω ≈ ω∗

i . Eventually, the type
of the most unstable mode may change when diamagnetic drift effects are taken into
account. The types of the modes have been specified by analysing the corresponding ideal
or resistive energy functional that has been determined from the solution of the eigenvalue
problem without diamagnetic drift effects.

Finally, the CASTOR3D code has been applied to a 3-D equilibrium, that is, a high-β
equilibrium with helical core. These first results obtained for ideal kink and interchange
modes confirm: (i) the growing stabilising diamagnetic drift effect with increasing toroidal
mode number (which is the dominant toroidal harmonic n∗) and (ii) the oscillation
frequencies of the modes correspond to a good approximation to ω∗

i /2. Besides these
similarities with the high-β axisymmetric equilibrium, additional effects have been
found, namely: (i) sufficiently strong diamagnetic drift effects lead to a degeneration of
otherwise non-degenerate growth rates, (ii) only modes with degenerate growth rates are
able to oscillate and (iii) the diamagnetic drift effects change the composition of the
eigenfunctions, that is, either the complex or the complex conjugate parts dominate the
Fourier spectrum of the mode, and also the coupling of the toroidal harmonics is reduced
leading to an alteration of the mode structure.

While here simple test equilibria have been investigated to demonstrate the reliability
of the CASTOR3D code, the code will be applied to realistic tokamak and stellarator
equilibria next. Diamagnetic drift effects are, for example, of particular importance for
MHD instabilities located in the pedestal region of H-mode plasmas (ELM stability).
For this reason, an important application of the extended CASTOR3D code will be an
investigation of how 3-D magnetic fields produced by magnetic perturbation coils, which
are used for ELM control, change the linear MHD stability limits.
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FIGURE 15. Ion diamagnetic drift frequency as a function of the square root of the normalised
toroidal flux s for a 1/1 mode and two volume-averaged β-values: 〈β〉 = 2.96% (black solid line:
2-D equilibrium; red dashed line: 3-D equilibrium) and 〈β〉 = 0.97% (black solid line). The
dotted vertical line marks the position of the ι = 1 flux surface.

Appendix A. Ion diamagnetic drift frequency

The ion diamagnetic drift frequency ω∗
i = V ∗

i · k (k is wavenumber vector) is a useful
quantity for the discussion of diamagnetic drift effects. In Boozer coordinates (s, v, u) the
contravariant toroidal V∗v

i and poloidal V∗u
i components of the ion drift velocity

V ∗
i = mi

e
1
ρ

B × ∇pi

B2

= mi

e
1
ρ

∂pi

∂s

(
I

Φ ′J + Ψ ′I
r,v − J

Φ ′J + Ψ ′I
r,u

)
= V∗v

i r,v + V∗u
i r,u (A1)

are constant on flux surfaces, because ion pressure pi, mass density ρ, poloidal current
J, toroidal current I and the derivatives of poloidal flux Ψ ′ and toroidal flux Φ ′ depend
only on the radial flux coordinate s. We approximate k by k = −i(∇f /f ), with function
f = f0(s) exp(2πi(mu − nv)). The latter describes the perturbation by the leading m, n
Fourier harmonics. Then, we obtain for the ion diamagnetic drift frequency

ω∗
i = 2π(mV∗u

i − nV∗v
i ). (A2)

Applying (A2) to the 1/1 modes of the high- and low-β test equilibria, we get the ion
diamagnetic drift frequencies shown in figure 15. There, we assumed pi = pe, that is,
αT = 0.5. The resulting absolute values of the ion diamagnetic drift frequencies amount
to |ω∗

i | = 5841 rad s−1 (high-β case) and |ω∗
i | = 1947 rad s−1 (low-β case) at the ι = 1 flux

surface. There is no visible difference between the drift frequencies of the 2-D and 3-D
high-β equilibria, because of the identical profiles and the small deviations between 2-D
and 3-D flux surfaces. (Here the ion diamagnetic drift frequency is negative because of
the used orientation of the magnetic field.)

Appendix B. Numerical accuracy

The CASTOR3D code uses nested, non-orthogonal 3-D flux coordinates (Strumberger
& Günter 2017). Its general formulation allows the use of various coordinate types (e.g.
NEMEC coordinates (Hirshman & Whitson 1983), Boozer coordinates (Boozer 1982)
and 2-D straight field line coordinates (Huysmans et al. 1993)). The latter are limited
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(a) (b)

FIGURE 16. Growth rate γ and absolute value of the oscillation frequency |ω| of the ideal
modes as functions of the toroidal mode number n for (a) 2-D equilibrium, αT = 0.4, and (b) 3-D
equilibrium, αT = 0.5 (NEMEC flux coordinates: black solid lines; Boozer coordinates: green
crosses; 2-D straight field line coordinates: red circles). Here γideal is the growth rate without
taking diamagnetic drift effects into account. (a) Growth rate γ and |ω| with ion and electron
diamagnetic drift effects and (b) γ and |ω| only with ion diamagnetic drift effect (black solid
lines, green crosses) and with both effects (NEMEC coordinates: blue diamonds).

to axisymmetric equilibria. Using different coordinate types, errors in the formulation
and/or implementation of the matrix elements, as well as a non-sufficient radial resolution
or an unsuitable Fourier spectrum will lead to differing results. We therefore performed
convergence studies with respect to Fourier spectra and radial grid resolutions for these
three coordinate types and compared the results, in order to find the most appropriate
ones.

Figures 16 and 17 show the almost perfect agreement of growth rates and oscillation
frequencies obtained for ideal and resistive modes. Of course, only NEMEC and Boozer
coordinates have been used in the case of the 3-D equilibrium (figure 16b). Concerning
memory and computational time, 3-D calculations are much more expensive than 2-D
calculations because of the toroidal mode coupling. Furthermore, they are more sensitive
to numerical inaccuracies, so that non-physical ‘parasitic’ solutions and non-physical
oscillations of the eigenfunctions increase with every physical effect that is additionally
taken into account. Therefore, the computations presented in § 3.3 are restricted to the
ion diamagnetic drift effect taken into account by the gyro-viscosity. Using NEMEC
coordinates, however, we have been able to find several solutions taking ion and electron
diamagnetic drift effects into account simultaneously. These results are additionally shown
in figure 16(b). They confirm that neglecting the pressure terms in Ohm’s law (2.14) is
justified for the considered high-β equilibrium.

There are several criteria to distinguish between non-physical and physical solutions.
(a) Viewing the Fourier spectra of all perturbed quantities. In the case of non-physical
solutions all Fourier spectra oscillate irregularly. (b) Making a scan over physical
parameters (e.g. resistivity, toroidal mode number, etc.). The eigenvalues of non-physical
solutions usually yield no smooth curves. (c) Making a scan over numerical parameters
(e.g. number of radial grid points, number of Fourier harmonics, etc.). The eigenvalues
of ‘parasitic’ solutions do not in general converge. They strongly depend on numerical
parameters. (d) Using different coordinate types. Sometimes, a coordinate type produces
more non-physical solutions than another one. While, ideally, physical solutions have
almost identical eigenvalues in different coordinate systems (see figures 16 and 17), the
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(a) (b)

FIGURE 17. (a) Growth rate and (b) oscillation frequency as functions of the toroidal mode
number (NEMEC flux coordinates: black solid line; straight field line coordinates: red circles;
Boozer coordinates: green crosses) of the resistive modes with ion and electron diamagnetic drift
effects.

‘parasitic’ eigenvalues can usually not be reproduced with other coordinates. Together,
these criteria allow one to identify the ‘parasitic’ solutions in most cases.
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