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ON MEASURES OF POLYNOMIALS
IN SEVERAL VARIABLES

C.J. SMYTH

The measure of a polynomial is defined as the exponential of a

certain intractable-looking integral. However, it is shown how

the measures of certain polynomials can be evaluated explicitly:

when all their irreducible factors are linear, and belong to one

of two special classes. Asymptotic values for the measures of

two sequences of polynomials in large numbers of variables are

also found. The proof of this result uses a quantitative form of

the central limit theorem.

1. Introduction

For a polynomial P(x]L, ..., x^) € flfo, ..., x ] , Mah ler [6] in 1962

defined the measure M(P) of P as W(0) = 0 and for P $ 0 ,

(1) M(P) = exp
f2TT ,2n iQ

- i - ... iog|P(* \ ...,
(2ir)M J0 Jo

deel"J
Interest in polynomial measures has recently been revived by Boyd [3], who

conjectured that the set

I? = {M{P) : P has integer coefficients}

is closed in R . The algebraic nature of elements of L is also of

interest, and in this connection it is necessary to have explicit formulae

(that is, formulae not involving integrals) for measures of polynomials.

Received 6 August 1980. This work was done while the author was
visiting the University of British Columbia, Vancouver. I would like to
express my appreciation to Professor David Boyd for many helpful
discussions on the subject. He also suggested the problem in Section k,
and supplied reference [7].
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One such formula is

(2) M[a0Tl (*-«;)

which shows that the measure of any element of Z[x] is algebraic. For

polynomials in more than one variable, there appears to be no such general

formula. However, in Section 2 we generalise (Theorem l) equation (2) to a

class of polynomials in several variables, which shows that polynomials in

this class also have algebraic measure.

In Section 3 we show how to find an explicit formula for the measure

of any P € Z[x, y] , all of whose irreducible factors are linear of the

form x + y + 2 cos qn , where q is rational. In particular, we give

(Theorem 2) the formula for the measure of T (x+y) + I , where T is the

nth Chebyshev polynomial, and 1=0, ±1, ±2 .

Another polynomial whose measure has been explicitly calculated is

1 + x + x + x , with measure exp(7C( 3)/(2ir )) (see [3, Appendix l]).

While there appears to be no reason why this measure or the measures of

Theorem 2 should be algebraic, no one has yet found a polynomial with

integer coefficients whose measure can be proved to be transcendental.

For an irreducible polynomial P(x , ..., x ) = £ a(i)x , define

the dimension dim P of P as the dimension in H of the convex hull of

the non-zero a(i) . How for all P with integer coefficients,

M(P) > 1 , and all P with M{P) = 1 have been found ([2], [4], [7]).

The irreducible ones of these all have dim P = 1 , and Boyd [3] asked

whether the function

X(n) = inf{M(P) : P irreducible and dim P = n)

tends to infinity with n . In Section h we show (Theorem 3) that

A/(PM) •* °° («-»•<*>) for two sequences of polynomials P of dimension n ,

which might have been expected to give small measures for all n .

2. Polynomials having algebraic measures

We have

https://doi.org/10.1017/S0004972700006894 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006894


M e a s u r e s o f p o l y n o m i a l s i n s e v e r a l v a r i a b l e s 5 1

THEOREM 1. Suppose P[x, . . . , a; J € n[x , . . . , x ] factorizes as

(3) P[xv . . . , x j = TT («OJ. + o ^ + . . . + a ^ J
J -*-

where a. . € C , and tftai /or each j there is a k(j) such that
t7

Then

In particular, if also P has integer coefficients, then A?(P) is

algebraic.

Note that for n = 1 the theorem reduces to (2) .

The proof i s an immediate application of Jensen's formula

r
where log x = max(O, log x) . Hence for any polynomial <?fx, , . . . . x ,1+ v 1 n—±

we have

(7) log M{Q[x . . . , i J + x J

(6) l (2v id
•— log|e -a|c£9 = log + | a | ,

= log M+(Q)

say.

Suppose without loss of generality that |a | * |a.| + + |a |

I f ^91 i 9 l i
Then log+ lao + a^e + . . . + o ^ e n " I /1 ot̂  | = 0 , so that
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using (7). Applying th is result to each factor of P , we obtain (5).

If P has integer coefficients, then i t i s easily seen that a l l the

ex. . may be taken to be algebraic, so that M{P) i s algebraic.

EXAMPLE 1. M(x+y+k) = \k\ for |fc| 2 2 . Note that M(x+y) = 1 ,

and that M(x+y±l) i s given in Example 5.

EXAMPLE 2 . M{{x+yf±k) = \k\ f o r \k\ ± 2N .

EXAMPLE 3. M(x2-y2+xy+3x-y+l) = p2 , where p = %(l+V5) , since

x 2 - y 2 + xy + 3x-y + l= [x+py+p2) ( x - p ' ^ + p " 2 ) ,

and

p2 = 1 + p , 1 = p"1 + p"2 .

EXAMPLE 4. Let a. be an algebraic integer with conjugates

n, a , — , a . Choose algebraic integers E,-n
 e Q[an) with conjugates

i<;. € <2(o.) , and 15^1 > n , |C^.| 5 1 (i * j) . Then

n

= TT

3. Explicit formulae

The methods of th is section enable us to evaluate the measures of

integral polynomials, a l l of whose factors are of the form

x + y + 2 cos <7ir , q ra t ional . As an indication of the method, we show

tha t , for the Chebyshev polynomials T , U defined by

T (2 cos 6) = 2 cos nQ , V n(2 cos 6) = sin n6/sin 6 :
n n—i

THEOREM 2. (a) We have

(8) M[Un_x{3*y)) = exp(2s(n)) ,

where
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(9) «(n) = I |1 - ̂ f]log 2 cos ^

with

(10)

d | < p v a ' X mod d
n/d odd x ^

(%-X(2)) I X(«7)tan ?f (d odd),
J = l

%d- l 7 r .
2 J x(<7-)cos j (d even).

3=1

' x )

flere x is a character mod d , and L(2, x) = Z
• s - -2

For 1 = 0, ±1 , ±2 .,

(11)

where

(12)

and

= 2*

, Z- = -2 , n even,

2* = {2 , 1 = 2 , n odd,

, otherwise,

(13) ft(n) = •

2s(n) ,

s(3n) - s(n) ,

s(2n) ,

l*(s(n)-s(n/2))

n odd, I = ±2 ,

n odd, I = ±1 ,

n odd, 1 = 0,

n even, I = -2 ,

2((s(3n)-8(3n/2))-(s(n)-s(n/2)J) , n even, I = -1 ,

2[s(2n)-s{n)) ,

2[s{3n/2)-s(n/2)) ,

hs(n/2) ,

n even, 1 = 0,

n even, 1 = 1 ,

n even, 1=2.

We can compute some values of s as follows:

8(1) = 8(2) = 0 , 8(3) = ̂  £(2, X3) . B(k) = h log 2 + \ L{2, xh) ,
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«<5> = 4 log P • 4 ^

where P = %(l+^5) and X^S) = i ;

s(6) = \ log 3 +^?i(2, X3J ,

8(8) = % log 2 + k log(l+V2) + i [£(2, XjJ+V2£(2,

Here XJ {d = 3, U, 5, 8) is the uniquely specified odd character

mod d .

EXAMPLE 5.

M(x+y±l) = ̂ (^(x+j/Jil) = exp[^L(2, X3)] •

EXAMPLE 6.

_lj = 32 / 3 exp[^

EXAMPLE 7.

EXAMPLE 8.

exp[|L(2,

(p = %(lW5) , X5(2) = i) , since T^x) - 2 = (x-2) (x2+a;-l)2 .X5

EXAMPLE 9.

= M(x+y+l)2 = e x p l ^ L{2, X J ]

The proof of Theorem 2 follows d i rec t ly from Lemmas 1, 2 , 3.

LEMMA 1. If 0 < o £ IT/2

M{x+y+2 cos a) = exp 1 - — log(2 cos a) + — £ -̂ —4 sin 2ja

Proof. Now we can change variables from x, y to x~ , x~ i/~
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without affecting the measure, so that

log M{x+y+2 cos a) = log M[X y+x y~ +2 cos a)

= log(2 cos a) + log M\X * 2\
+£sa))

= log(2 cos ex) + —
2(cos%6)
2(cosa)

2a

using (7),

= 1 - ̂  log(2 cos a) + - I log(2 cos %6)d9 .

Then, on expanding log(2 cos £9) as a series in e and integrating,

the result follows.

Let S{n) denote the set of absolute values of the roots of

U Ax) = 0 , excluding 2 cos -r - 0 :

(lU) S{n) = J2 cos ̂ , k = 1, ..., [*(n-l)]\ .

LEMMA 2. We have

(15) Y. loS M(x+y+2 cos a) = s{n)
2(cosa)f5(n)

where s(n) is given by (9).

Proof. From Lemma 1 it is necessary only to prove that

(16) 5: = ^ X ( " 1 )

= ~2 5, mr S v ( 2 > x)

TTW 2<d\n x mo<i d
n/d odd x odd

Firstly, note that for n* = [%(n-l)] ,
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(IT) n\ = £ sin
sinTTj/»

0 , n even, j even,

cot —"- , n even, j odd,

-% tan •£- , n odd, j even,

% cot -g- , n odd, j odd,

on simplification. Hence for n, j not both even, g(j/n, n) is a

function of QIn only, say g{j/n) . Then

7-1

J = l im d\n j=l
n/d odd (j,d)-X

For d even , (-1) g(j/d) = cot jir/d has period d , while for d

odd (-1) g(J/d) has period 2d (as a function of j ). However, since

2TT'(J/2)

23

for 3 even, we have for d odd

J=l

where

0=1
t a n

tan tr (j even)

{-if'1 cot §• (j odd)

has period d . So, on putting

3) + % tan ^T- , <i odd,

(18) td(j) = •

cot 21. , d even,
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t, has period d , and is odd:

(19) td(d-j) = -td(j) .

Also

(20) s = - ^ y £• £ f2tu) .
•m d\n j=l

n/d odd (j\d)=l

It remains only to express the inner sum as a sum of L-functions.

Write tj as a sum over the odd characters mod d :

(21) t-ko) = £ avx(«7) .
X odd • x

Then in the usual way we have, by (21), changing the order of summation,

and orthogonality, that

? d-1

(22) a = -J^- I xU)tdU) .

Finally, since

and

d . kd-\
I X(j) cot H- = 2 £ X(j)cot ̂  (d even)
J=l ,7=1

I [ ^ l = (*-X(2)) f x(j) tan ̂  (d odd),

we obtain, from (20), (21) and (22), that S is given by (l6), as

required.

This proves part (a) of Theorem 2. For part (b), we first look at the

factors of the form x ± 2 of T (x) + I . We find that T (x) - 2 has
n n

(x+2)(x-2) as a factor for n even, and for n odd T (x) ± 2 has

x ± 2 as a factor, and that in no other case is x ± 2 a factor of

T(x) + I . Since M{x+y±2) = 2 by Example 1, this accounts for the factor

2* in (11). For the other roots of T (x) + I , we have

LEMMA 3. Let F-,(n) be the set of absolute values, excluding 0
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and 2 , of the zeros of T(x) + I . Then FAn) is given by (13) on
Yl i-

replacing f by F , s by S , + by u , -by \ , and interpreting

the factors 2, h as the nvariber of times each element of F-t(n) is

repeated.

Proof. Since T (2 cos 6) = 2 cos nQ , we must find the 6 in

(0, TT/2) such that cos nQ = -hi or cos n(ir-6) = -hi . The tedious

details are left to the reader.

This completes the proof of Theorem 2.

4. Asymptotic formulae

In this section we prove the following theorem.

THEOREM 3. As n tends to infinity

M[xQ + ... + x j = eVw + 0(1) ,(23)

where

f uXe~udu
Jl

= 1.11593U ,

and

a = exp

n

Equation (21) shows that the function \{n) , defined in Section 1, is

= exp / g + 0(log n)

0(Vn) . Since M[xQ) = MTl = 1 , equation (22) is an example of

how ill-conditioned the function M is with respect to small changes in

polynomial coefficients. A one-variable example of the same phenomenon was

mentioned to me by Boyd: M[(z-l)2n) = M[ZH) = 1 , but

M((«-l)2B+an) = tfn+OM , where B = M(x*y+l) = 1.38135 .... These

examples show that for polynomials P and Q one cannot hope to bound

M(P+Q) as a function of M(P) and M(Q) only. However

(25) M(P+Q) S 2W+(P)W+(Q) ,

where M+ is defined by (7)- This result is an immediate consequence of
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the inequality

(26) log|a+i| 2 log 2 + log+|a| + log+|fc| .

For Boyd's example cited above, this inequality is only out by at most a

constant factor, since M+((2-l) J = B . Also note that the constant 2
in (25) cannot be removed, as the example P = Q = 1 shows.

For the proof of Theorem 3, we need the following notation: let ||x||

denote the length of X € FT . For a function / : Fr -*• R , define
I f( x) I Ji

B(f) = sup ' * II 11' . For a random v a r i a b l e X with values in R~ , with
j , 1+11*11

x€/T

distribution function G(x) , denote

||

Also, let $ "be the standard fc-dimensional normal distribution function,

** exp(-%||x||2) , and

We also need the following quantitative Central Limit Theorem, which

is a slightly specialised version of one in Bhattacharya and Rao.

LEMMA 4 [?, Corollary 15-5]. Let X , ..., X be n independent

identically distributed random variables with values in Fr , each

component of each X. having mean 0 and variance 1 , and any two

distinct components being independent (that is, the autocorrelation matrix

is the identity). Suppose that G is the distribution function of the

X. , and

(27) | Hx||3dG(x) < C^n* .

Then for every Borel-measurable f with B(f) < » we have

(28) ||

https://doi.org/10.1017/S0004972700006894 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006894


60 C . J . Smyth

Here Q is the distribution function of —?- (X, + .
n * v 1

C , C , C , C, are constants depending only on k .

Proof. From ( 7 ) , because

•2TT (-2IT id

. + X 1 , andn'

(2TT)*

:TT)W JQ JO( 2

/ ( C ( n , 9 ) , S(w, 6 ) ) ^ . . . d 9 n

ir

, e ) , . . . de
i n

where

cos 6 + . . . + V^ cos 6 ) ,C(n, 9) = n~

S(n, 6) = n~*[V2 sin 6̂ ^ + . . . + V^ sin

x 2 + / )(x, j/) = % log+(%(x2+/)) ,

and

1 i f x2 + y2 > X/n ,

0 otherwise.

(29) log w(xQ + . . . + xn) = f /(x)d5n(x) + j xn(x)d«n(x) ,
R2 R2

where x = (x, y) and X. = (A/2 COS 9. , V^ sin 6.) ( i = 1, . . . , n) . Now

apply Lemma h with k - 2 . I t is easy to verify that the conditions of

the lemma are sa t i s f ied , and that B(f) < 1 , and wlz) = 0(e) . Hence

J fd[Qn-») = 0(log n/n%) .

Also
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>\F2
r~Xe~^F dr = % vT1e~u

>^2 h
du = log c ,

so that

(30)

To estimate

fdQn = log c + 0(iog

(31) If ̂
and estimate the two integrals separately. Then apply Lemma 1* to v

where E = C, ? (l + log n)n . To estimate w (e) , note thatC, ? (

sup \xn[y1)-Xn{y2)\ = 0 if ||x|| > «"%+ e
||j/rx||<e
i=l,2

so that

(32) w (e) <

Hence

(33)

[ l.d<b = f
n ii — % 0

= f

*+e , 2
dr = o((log

||x||o,-*+E

= 0((log n)2/n)

and so from (31) and (33),

Combining (30) and (3k), we get from (29) that

log M{x + ... + x J = % log n + log o + <?(log n/n*) ,
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which l ead t o ( 2 3 ) , on exponen t i a t ion .

The a n a l y s i s for (2U) i s somewhat e a s i e r . We have from (T) t h a t

l o g M *n + TT (l« 0

where

(2TT) J O '0

(2TT)?

2ir

2 T T ) n J o " ' J o(2irr

0 , 2 cos

itit0, nh I Y, 1 n

2 1 I" 2CJ = — log (2 cos

(see [5 , equation ( 6 . 8 l ) , p . 152]), and Y. = a" |log 2 cos %9.| has mean
3 3

0 and variance 1 . Hence

log M X0 + T T
where g'(x) = max(0, x) , and P (x) is the distribution function of

. n
n~ Y, % • • Since (27) is satisfied for the Y. , we apply Lemma h with

3=1 ° °
k = 1 , getting

gdfp -<t>) = Ofn } + u + log n)rTh) = o(log n/n*) .

Since

i? V2TT J - »
max(0, xje"*35 d* = — ,

V2TT

we g e t

log M
3=1

(1* j |[= y|[+
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