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ON THE K-THEORY OF THE COORDINATE AXES

IN THE PLANE

LARS HESSELHOLT

Abstract. Let k a regular noetherian Fp-algebra, let A = k[x, y]/(xy) be the

coordinate ring of the coordinate axes in the affine k-plane, and let I = (x, y)

be the ideal that defines the intersection point. We evaluate the relative K-

groups Kq(A, I) completely in terms of the big de Rham-Witt groups of k. This

generalizes a formula for K1(A, I) and K2(A, I) by Dennis and Krusemeyer.

Introduction

The algebraic K-groups of an algebraic variety encode deep arithmetic

information about the variety. To wit, for non-singular varieties, the alge-

braic K-groups are related to the motivic cohomology groups by means of

a spectral sequence

E2
s,t = Ht−s(X, Z(t))⇒ Ks+t(X).

Indeed, this relationship was the basis of the original definition of motivic

cohomology [1]. For singular varieties and non-reduced schemes, there is

presently no definition of a motivic cohomology theory that relates to alge-

braic K-theory in this manner, but see Bloch-Esnault [2] and Rülling [19]

for some work in this direction. However, it has recently become possible to

evaluate the algebraic K-groups of some singular varieties and non-reduced

schemes by using the cyclotomic trace map or Chern class map to topolog-

ical cyclic homology [6]. We here use these methods to completely evaluate

the algebraic K-groups of the coordinate axes in the plane. The groups in

degrees less than or equal to two were evaluated twenty-five years ago by

Dennis and Krusemeyer [5], but until now the groups in higher degrees have

resisted calculation. We hope that this calculation will help in developing a

motivic cohomology theory for singular varieties and non-reduced schemes.
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94 L. HESSELHOLT

We now describe the results of this paper in more detail. Let k be a

ring, and let A = k[x, y]/(xy) be the coordinate ring of the coordinate axes

in the affine k-plane. The K-groups of A decompose as the direct sum

Kq(A) = Kq(k)⊕Kq(A, I)

of the K-groups of the ground ring k and the relative K-groups of A with

respect to the ideal I = (x, y). We evaluate the groups Kq(A, I) completely

in the case where k is a regular Fp-algebra. The result is stated in terms of

the groups of big de Rham-Witt forms of k as follows.

Theorem A. Let k be a regular Fp-algebra, let A = k[x, y]/(xy) be the

coordinate ring of the coordinate axes in the affine k-plane, and let I ⊂ A be

the ideal generated by x and y. Then for all integers q, there is a canonical

isomorphism

Kq(A, I)
∼
←−

⊕

m>1

WmΩq−2m
k

where WmΩj
k is the group of big de Rham-Witt j-forms of k.

The group K2(A, I) was evaluated by Dennis and Krusemeyer [5] twenty-

five years ago. But it was previously known only that the higher relative

K-groups are p-primary torsion groups [20]. The group of big de Rham-

Witt j-forms WnΩj
k was introduced in [14, Def. 1.1.6]. It decomposes as a

product of the more familiar p-typical de Rham-Witt j-forms WsΩ
j
k defined

by Bloch-Deligne-Illusie [16]. Indeed, by [14, Cor. 1.2.6] there is a canonical

isomorphism

WmΩj
k

∼
−→

∏

d

WsΩ
j
k,

where the product ranges over all integers 1 6 d 6 m that are not divisible

by p, and where s = s(m, d) is the unique positive integer with ps−1d 6 m <

psd. The structure of the groups WsΩ
j
k is well-understood by [16, I.3.9]. For

example, WsΩ
j
Fp

is canonically isomorphic to Z/psZ, for j = 0, and is equal

to zero, for j > 0.

Let B = k[x]×k[y] be the normalization of the ring A, and let K(A,B, I)

be the bi-relative K-theory spectrum defined to be the iterated mapping

fiber of the following diagram of K-theory spectra.

K(A) //

��

K(A/I)

��

K(B) // K(B/I)
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The lower horizontal map in this diagram is a weak equivalence since the

ring k is regular. It follows that also the canonical map

K(A,B, I)→ K(A, I)

is a weak equivalence. We proved recently in [6, Thm. A] that for every

prime p, the cyclotomic trace map induces an isomorphism

Kq(A,B, I, Z/pv)
∼
−→ TCq(A,B, I; p, Z/pv)

and it is the bi-relative topological cyclic homology groups on the right-

hand side that we evaluate here. The method is similar to the calculation of

the topological cyclic homology of the ring of dual numbers by the author

and Madsen [13, 14]. We first prove a general formula that expresses the

bi-relative topological cyclic homology groups above in terms of the RO(T)-

graded equivariant homotopy groups

TRn
α(k; p) = [Sα ∧ (T/Cpn−1)+, T (k)]T

of the topological Hochschild T-spectrum T (k). Here T is the circle group

and Cr ⊂ T is the subgroup of order r. To state the formula, which is valid

for any ring k, we let λi be the complex T-representation C(1)⊕ · · · ⊕C(i).

Theorem B. Let k be an Fp-algebra, let A = k[x, y]/(xy) and B =

k[x] × k[y], and let I be the common ideal of A and B generated by x and

y. Then for all integers q, there is a canonical isomorphism

TCq(A,B, I; p)
∼
−→

∏

lim
R

TRr
q−λ

pr−1d
(k; p)

where the product ranges over the positive integers d that are not divisible

by p. The analogous statement for the groups with Z/pv-coefficients is valid

for any ring k.

The limit system on the right-hand side of the statement of Thm. B

stabilizes in the sense that the structure map

R : TRr
q−λ

pr−1d
(k; p)→ TRr−1

q−λ
pr−2d

(k; p)

is an isomorphism for q < dimR(λpr−1d). See Lemma 2.3 below.

If k is a regular Fp-algebra, the structure of the groups on the right-

hand side of the statement of Thm. B was determined in [14, Thm. 2.2.2];
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96 L. HESSELHOLT

see also [11, Thm. 16]. We recall the result in Sect. 3 below and complete

the proof of Thm. A.

Finally, we mention that the analog of Thm. A for k a regular Q-algebra

is known. Indeed, by a recent theorem of Cortiñas [4, Thm. 0.1] (which

inspired us to prove [6, Thm. A]), the trace map induces an isomorphism

Kq(A,B, I)⊗Q
∼
−→ HC−

q (A⊗Q, B ⊗Q, I ⊗Q)

and the bi-relative negative cyclic homology groups on the right-hand side

were evaluated long ago by Geller, Reid, and Weibel [7, 8]. The result is

that, if k is a regular Q-algebra, then there is a canonical isomorphism

Kq(A, I)
∼
←−

⊕

m>1

Ωq−2m
k

where Ωj
k is the group of absolute Kähler j-forms of k. This formula differs

from the formula of Thm. A in degrees q > 4. Indeed, the group K4(A, I)

is isomorphic to Ω2
k ⊕ k, if k is a regular Q-algebra, to Ω2

k ⊕W2(k), if k is a

regular F2-algebra, and to Ω2
k⊕k⊕k, if k is a regular Fp-algebra and p > 2.

We also remark that, if k is a regular Fp-algebra, and if ps−1 6 n < ps, then

the group K2n(A, I) has exponent exactly ps.

The result of Thm. A was announced in [6, Thm. C].

All rings considered in this paper are assumed to be commutative. We

write N and Ip for the sets of positive integers and positive integers prime

to p, respectively. We say that a map of T-spectra is an F -equivalence if

the induced map of C-fixed point spectra is a weak equivalence, for all finite

subgroups C ⊂ T.

Finally, the author would like to thank an anonymous referee for a very

careful reading of an earlier version of this paper and for a number of helpful

suggestions on improving the exposition.

§1. Topological Hochschild homology

The proof of Thm. B of the introduction is based on a description of the

bi-relative topological Hochschild T-spectrum T (A,B, I) defined to be the

iterated mapping fiber of the following diagram of topological Hochschild

T-spectra.

(1.1) T (A) //

��

T (A/I)

��

T (B) // T (B/I).
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We refer to [11] for an introduction to topological Hochschild and cyclic

homology and for further references. In this section, we will prove the

following result.

Proposition 1.2. Let k be any ring, let A = k[x, y]/(xy) and B =

k[x]×k[y], and let I be the common ideal generated by x and y. Then there

is a canonical F-equivalence of T-spectra
∨

i∈N

T (k) ∧ Sλi ∧ (T/Ci)+[1]
∼
−→ T (A,B, I)

where, on the left-hand side, [1] indicates desuspension.

The rings B = k[x] × k[y] and B/I = k × k are both product rings.

Moreover, topological Hochschild homology preserves products of rings in

the sense that for every pair of rings R and S, the canonical map of T-spectra

T (R× S)→ T (R)× T (S)

is an F -equivalence [3, Prop. 4.20]. Hence, the canonical map from T (A,B, I)

to the iterated mapping fiber of the following diagram of T-spectra is an

F -equivalence.

(1.3) T (k[x, y]/(xy))
ε

//

(φ,φ′)
��

T (k)

∆
��

T (k[x]) × T (k[y])
ε×ε

// T (k)× T (k).

The rings that occur in this diagram are all pointed monoid algebras. By

definition, a pointed monoid Π is a monoid in the symmetric monoidal

category of pointed sets and smash product, and the pointed monoid algebra

k(Π) is the quotient of the monoid algebra k[Π] by the ideal generated by

the base-point of Π. The diagram of rings (1.3) is then induced from the

diagram of pointed monoids

Π2 ε
//

(φ,φ′)
��

Π0

∆
��

Π1 ×Π1 ε×ε
// Π0 ×Π0

where Π0 = {0, 1} with base-point 0, where Π1 = {0, 1, z, z2 , . . . } with

base-point 0, and where Π2 = {0, 1, x, x2, . . . , y, y2, . . . } with base-point 0
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and with multiplication given by xy = 0. The map φ (resp. φ′) takes the

variables x and y to z and 0 (resp. to 0 and z), and the maps labeled ε take

the variables x, y, and z to 1.

The topological Hochschild T-spectrum of a pointed monoid algebra

k(Π) decomposes, up to F -equivalence, as the smash product

(1.4) T (k) ∧N cy(Π)
∼
−→ T (k(Π))

of the topological Hochschild T-spectrum of the coefficient ring k and the

cyclic bar-construction of the pointed monoid Π. This is proved in [13,

Thm. 7.1] but see also [11, Prop. 4]. The cyclic bar-construction is the

geometric realization of the pointed cyclic set with m-simplices

N cy(Π)[m] = Π ∧ · · · ∧Π (m + 1 factors)

and with the Hochschild-type cyclic structure maps

di(π0 ∧ · · · ∧ πm) = π0 ∧ · · · ∧ πiπi+1 ∧ · · · ∧ πm, 0 6 i < m,

= πmπ0 ∧ π1 ∧ · · · ∧ πm−1, i = m,

si(π0 ∧ · · · ∧ πm) = π0 ∧ · · · ∧ πi ∧ 1 ∧ πi+1 ∧ · · · ∧ πm, 0 6 i 6 m,

tm(π0 ∧ · · · ∧ πm) = πm ∧ π0 ∧ π1 ∧ · · · ∧ πm−1.

It is a pointed T-space by the theory of cyclic sets [18, 7.1.9]. It follows

that the T-spectrum T (A,B, I) is canonically F -equivalent to the iterated

mapping fiber of the following diagram of T-spectra.

T (k) ∧N cy(Π2)
ε

//

(φ,φ′)
��

T (k) ∧N cy(Π0)

∆
��

(T (k)∧N cy(Π1))×(T (k)∧N cy(Π1))
ε×ε

//(T (k)∧N cy(Π0))×(T (k)∧N cy(Π0)).

The cyclic bar-constructions of Π1 and Π2 have natural wedge-

decompositions which we now explain.

We define N cy(Π1, i)[m] to be the subset of N cy(Π1)[m] that consists

of the base-point and of the simplices zi0 ∧ · · · ∧ zim with i0 + · · ·+ im = i.

It is clear that the pointed set N cy(Π1)[m] decomposes as the wedge-sum

of the pointed subsets N cy(Π1, i)[m] where i ranges over the non-negative

integers. The cyclic structure maps preserve this decomposition, and hence,
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the geometric realization decomposes accordingly as a wedge-sum of pointed

T-spaces indexed by the non-negative integers.

N cy(Π1) =
∨

N cy(Π1, i)

To state the analogous wedge-decomposition of N cy(Π2), we first recall the

notion of a cyclical word.

A word of length m with letters in a set S is a function

ω : {1, 2, . . . ,m} → S.

The action by the cyclic group Cm of order m on the set {1, 2, . . . ,m} by

cyclic permutation induces an action on the set of words of length m in S.

A cyclical word of length m with letters in S is an orbit for the action of

Cm on the set of words of length m in S. We write ω̄ for the orbit through

ω. By the period of ω̄, we mean the length of the orbit ω̄. In particular,

the set that consists of the empty word is a cyclical word of length 0 and

period 1.

We associate a word ω(π) with letters in x and y to every non-zero

element π ∈ Π2. A non-zero element π ∈ Π2 is either of the form π = xi

or π = yi. In the former case, we define ω(π) to be the unique word of

length i all of whose letters are x, and in the latter case, we define ω(π) to

be the unique word of length i all of whose letters are y. More generally,

we associate to every (m + 1)-tuple (π0, . . . , πm) of non-zero elements of Π

the word

ω(π0, . . . , πm) = ω(π0) ∗ · · · ∗ ω(πm)

defined to be the concatenation of the words ω(π0), . . . , ω(πm). Now, for

every cyclical word ω̄ with letters x and y, we define

N cy(Π2, ω̄)[m] ⊂ N cy(Π2)[m]

to be the subset that consists of the base-point and the elements π0∧· · ·∧πm,

where (π0, . . . , πm) ranges over all (m+1)-tuples of non-zero elements of Π2

such that ω(π0, . . . , πm) ∈ ω̄. As m > 0 varies, these subsets form a cyclic

subset

N cy(Π2, ω̄)[−] ⊂ N cy(Π2)[−],

and we define N cy(Π2, ω̄) ⊂ N cy(Π2) to be the geometric realization. It is

clear that the cyclic set N cy(Π2)[−] decomposes as the wedge-sum of the
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cyclic subsets N cy(Π2, ω̄)[−], where ω̄ ranges over all cyclical words with

letters x and y. Hence, the geometric realization decomposes as a wedge-

sum of pointed T-spaces

N cy(Π2) =
∨

N cy(Π2, ω̄)

indexed by all cyclical words with letters x and y.

Lemma 1.5. There is a canonical F-equivalence of T-spectra

∨

T (k) ∧N cy(Π2, ω̄)
∼
−→ T (A,B, I),

where the wedge-sum on the left-hand side ranges over all cyclical words of

period s > 2 with letters x and y.

Proof. Let ω̄ be a cyclical word of period s ≥ 2. Then every word

ω ∈ ω̄ has both of the letters x and y. Therefore, the compositions of the

canonical map

T (k) ∧N cy(Π2, ω̄)→ T (A)

and the maps φ : T (A)→ T (B), φ′ : T (A)→ T (B), and ε : T (A)→ T (A/I)

are all equal to the constant map. Hence, we obtain a canonical map of

T-spectra

T (k) ∧N cy(Π2, ω̄)→ T (A,B, I)

and the wedge-sum of these maps constitute the map of the statement.

The diagram (1.3) and the F -equivalence (1.4) show that this map is an

F -equivalence.

Lemma 1.6. Let ω̄ be a cyclical word of period s > 2 with letters x and

y. The homotopy type of the pointed T-space N cy(Π2, ω̄) is given as follows.

(i) If ω̄ has period s = 2 and length m = 2i, then a choice of represen-

tative word ω ∈ ω̄ determines a T-equivariant homeomorphism

SR[Cm]−1 ∧Ci
T+

∼
−→ N cy(Π2, ω̄),

where R[Cm]− 1 is the reduced regular representation of Cm.

(ii) If ω̄ has period s > 2, then N cy(Π2, ω̄) is T-equivariantly con-

tractible.

https://doi.org/10.1017/S0027763000025757 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025757


K-THEORY OF THE COORDINATE AXES IN THE PLANE 101

Proof. We refer the reader to [18] for the basic theory of cyclic sets and

their geometric realization. Let ω̄ be a cyclical word of period s ≥ 2 and

length m = si with letters x and y, and let ω ∈ ω̄. We let (π0, . . . , πm−1) be

the unique m-tuple of non-zero elements in Π2 such that ω(π0, . . . , πm−1) =

ω. Then the pointed cyclic set N cy(Π2, ω̄)[−] is generated by the (m− 1)-

simplex π0 ∧ · · · ∧ πm−1. Hence, there is a unique surjective map of pointed

cyclic sets

fω : Λm−1[−]+ → N cy(Π2, ω̄)[−]

that maps the canonical generator of the cyclic standard (m − 1)-simplex

to the generator π0 ∧ · · · ∧ πm−1. We recall that the automorphism group

of the pointed cyclic set Λm−1[−]+ is a cyclic group of order m generated

by the dual of the cyclic operator tm. Since the cyclic operator tsm fixes the

generator π0 ∧ · · · ∧ πm−1, we obtain a factorization of the map fω over the

quotient by the subgroup of the automorphism group or order i = m/s,

fω : (Λm−1[−]/Ci)+ → N cy(Π2, ω̄)[−].

We next recall that the geometric realization of the cyclic standard (m−1)-

simplex is T-equivariantly homeomorphic to ∆m−1 × T, where T acts by

multiplication in the second factor. Moreover, the homeomorphism may be

chosen in such that the dual of the cyclic operator tm acts on ∆m−1 by

the affine map that cyclically permutes the vertices and on T by rotation

through 2π/m; see [13, Sect. 7.2]. It follows that the map fω gives rise to a

continuous T-equivariant surjection

fω : (∆m−1 ×Ci
T)+ → N cy(Π2, ω̄).

There is a canonical Ci-equivariant homeomorphism

∆s−1 ∗ · · · ∗∆s−1 ∼
−→ ∆m−1,

where the group Ci cyclically permutes the i factors in the join on the

left-hand side, and where the map fω collapses the join of a number of

codimension 1 faces of ∆s−1 to the base-point. If the period of ω̄ is s = 2,

then the map fω exactly collapses the whole boundary ∂∆m−1 ⊂ ∆m−1 to

the base-point. Hence, in this case, we have a T-equivariant homeomorphism

fω : (∆m−1/∂∆m−1) ∧Ci
T+

∼
−→ N cy(Π2, ω̄).

The simplex ∆m−1 embeds as the convex hull of the group elements in the

regular representation R[Cm]. This identifies the Cm-space ∆m−1/∂∆m−1
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with the one-point compactification of the reduced regular representation

R[Cm] − 1 as stated. This completes the proof of the statement for s = 2.

If the period s > 2, then there exists a codimension 1 face F ⊂ ∆s−1 that

is not collapsed to the base-point. We have a canonical homeomorphism

cone(F )
∼
−→ ∆s−1

of the unreduced cone on the face F onto the simplex ∆s−1. The canon-

ical null-homotopy of the unreduced cone induces a Ci-equivariant null-

homotopy

∆s−1 ∗ · · · ∗∆s−1 × [0, 1]→ ∆s−1 ∗ · · · ∗∆s−1,

and since the face F is not collapsed to the base-point by the map fω, this

induces a T-equivariant null-homotopy

N cy(Π2, ω̄) ∧ [0, 1]+ → N cy(Π2, ω̄).

This completes the proof of the statement for s > 2.

Remark 1.7. The statement of Lemma 1.6 may be viewed as a topo-

logical refinement of the calculation in [9] of the Hochschild homology of the

pointed monoid ring Z(Π2) = Z[x, y]/(xy). Indeed, for any pointed monoid

Π, the reduced singular homology groups H̃∗(N
cy(Π); Z) and the Hochschild

homology groups HH∗(Z(Π)) are canonically isomorphic.

Proof of Proposition 1.2. It follows from Lemmas 1.5 and 1.6 that we

have an F -equivalence of T-spectra

∨

T (k) ∧ SR[C2i]−1 ∧Ci
T+

∼
−→ T (A,B, I)

where the wedge sum ranges over all positive integers i. The equivalence

depends on a choice, for every cyclical word ω̄ with letters x and y of

period 2, of a representative word ω ∈ ω̄. We choose the representative

ω = xy . . . xy. Now, as a representation of the subgroup Ci ⊂ C2i, the

regular representation R[C2i] is isomorphic to the complex representation

λi = C(1) ⊕ · · · ⊕ C(i), where C(t) denotes the representation of T on C

through the t-fold power map. Hence, a choice of such an isomorphism

determines a T-equivariant homeomorphism

Sλi ∧Ci
T+

∼
−→ SR[C2i] ∧Ci

T+.
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Moreover, since the Ci-action on λi extends to a T-action, we further have

the canonical T-equivariant homeomorphism

Sλi ∧ (T/Ci)+
∼
−→ Sλi ∧Ci

T+

that takes (w, zCi) to the class of (z−1w, z). The completes the proof.

§2. Topological cyclic homology

In this section, we prove the formula for the bi-relative topological cyclic

homology groups TCq(A,B, I; p) that was stated in Thm. B of the introduc-

tion. We derive this formula from the corresponding formula for topological

Hochschild homology that we proved in Prop. 1.2 above. The argument is

very similar to the analogous argument in the case of truncated polynomial

algebras [12, 14, 11]. We refer the reader to [11, 3.7] for the definition of

topological cyclic homology.

We have from Prop. 1.2 an F -equivalence of T-spectra
∨

i∈N

T (k) ∧ Sλi ∧ (T/Ci)+[1]
∼
−→ T (A,B, I),

and we wish to evaluate the homotopy groups of the Cpn−1-fixed point spec-

tra. To this end, we reindex the wedge-sum on the left-hand side after the

p-adic valuation of i ∈ N. The left-hand side is then rewritten as
∨

d∈N

T (k) ∧ Sλ
pn−1d ∧ (T/Cpn−1d)+[1]

∨
n−1
∨

r=1

∨

d∈Ip

T (k) ∧ Sλ
pr−1d ∧ (T/Cpr−1d)+[1],

where N and Ip are the sets of positive integers and positive integers that are

not divisible by p, respectively. Hence, the T-spectrum ρ∗

pn−1T (A,B, I)C
pn−1

is equivalent to the wedge-sum
∨

d∈N

ρ∗pn−1(T (k) ∧ Sλ
pn−1d ∧ (T/Cpn−1d)+)Cpn−1 [1]

∨

n−1
∨

r=1

∨

d∈Ip

ρ∗pn−r(ρ
∗

pr−1(T (k) ∧ Sλ
pr−1d ∧ (T/Cpr−1d)+)Cpr−1 )Cpn−r [1].

Now, for every T-spectrum T , there is a natural equivalence of T-spectra

ρ∗pmTCpm ∧ ρ∗pm((T/Cpmd)+)Cpm ∼
−→ ρ∗pm(T ∧ (T/Cpmd)+)Cpm
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and the pmth root map defines a T-equivariant homeomorphism

(T/Cd)+
∼
−→ ρ∗pm((T/Cpmd)+)Cpm .

Hence, we can rewrite the wedge-sum above as follows.

∨

d∈N

ρ∗pn−1(T (k) ∧ Sλ
pn−1d)Cpn−1 ∧ (T/Cd)+[1]

∨
n−1
∨

r=1

∨

d∈Ip

ρ∗pn−r(ρ
∗

pr−1(T (k) ∧ Sλ
pr−1d)Cpr−1 ∧ (T/Cd)+)Cpn−r [1].

We recall from [15, Lemma 3.4.1] that if T is a T-spectrum, if d ∈ Ip, and

if ι : {Cd} → T/Cd is the canonical inclusion, then the map

V mι∗ + dV mι∗ : πq(T )⊕ πq−1(T )→ πq(ρ
∗

pm(T ∧ (T/Cd)+)Cpm )

is an isomorphism. It follows that the group TRn
q (A,B, I; p) is canonically

isomorphic to the sum

(2.1)

⊕

d∈N

(

TRn
q+1−λ

pn−1d
(k; p)⊕ TRn

q−λ
pn−1d

(k; p)
)

⊕
n−1
⊕

r=1

⊕

d∈Ip

(

TRr
q+1−λ

pr−1d
(k; p) ⊕ TRr

q−λ
pr−1d

(k; p)
)

.

We consider the groups TRn
q (A,B, I; p) for varying n > 1 as a pro-abelian

group whose structure map is the Frobenius map

F : TRn
q (A,B, I; p)→ TRn−1

q (A,B, I; p).

The Frobenius map takes the summand with index d ∈ N in the top line

of (2.1) for n to the summand with index pd ∈ N in the top line of (2.1)

for n− 1. It takes the summand with indices d ∈ Ip and 1 6 r < n− 1 in

the bottom line of (2.1) for n to the summand with the same indices in the

bottom line of (2.1) for n − 1. Finally, it takes the summand with indices

d ∈ Ip and r = n − 1 in the bottom line of (2.1) for n to the summand

with index d ∈ N in the top line of (2.1) for n − 1. It follows that the

sub-pro-abelian group of TRn
q (A,B, I; p) given by the top line of (2.1) is

Mittag-Leffler zero, since the sum in (2.1) is finite. Hence, the projection

onto the quotient pro-abelian group of TRn
q (A,B, I; p) given by the bottom
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line of (2.1) is an isomorphism of pro-abelian groups. The value of the

Frobenius map on the bottom line of (2.1) follows immediately from the

relations FV = p and FdV = d. Indeed, the Frobenius preserves the direct

sum decomposition and restricts to the maps

F = p : TRr
q+1−λ(k; p)→ TRr

q+1−λ(k; p),

F = id: TRr
q−λ(k; p)→ TRr

q−λ(k; p),

respectively, on the first and second summand of the bottom line of (2.1).

We now assume that the group TRr
q−λ(k; p) is annihilated by pm, for

some m. If k is an Fp-algebra, then this group is annihilated by pr. For a

general ring k, we must instead consider the group TRr
q−λ(k; p, Z/pv) which

is annihilated by pv. It follows that the iterated Frobenius F m induces the

zero map from the first term in the bottom line of (2.1) for m + n to the

first term in the bottom line of (2.1) for n. Hence, the canonical projection

onto the second term of the bottom line of (2.1),

TRn
q (A,B, I; p)→

n−1
⊕

r=1

⊕

d∈Ip

TRr
q−λ

pr−1d
(k; p),

is an isomorphism of pro-abelian groups. Here, we recall, the structure map

in the limit system on the left-hand side is the Frobenius map and in the

limit system on the right-hand side is the canonical projection. The group

TRr
q−λ

pr−1d
(k; p) is zero, if q < dimR(λd) = 2d, and hence, the limit group

is the product

(2.2) TFq(A,B, I; p)
∼
−→

∏

r∈N

∏

d∈Ip

TRr
q−λ

pr−1d
(k; p).

We can now evaluate the bi-relative topological cyclic homology groups that

are given by the following long-exact sequence.

· · · → TCq(A,B, I; p)→ TFq(A,B, I; p)
R−id
−−−→ TFq(A,B, I; p)→ . . .

Indeed, under the isomorphism (2.2), the map R corresponds to the endo-

morphism of the product on the right-hand side of (2.2) that is induced

from the map

R : TRr
q−λ

pr−1d
(k; p)→ TRr−1

q−λ
pr−2d

(k; p).
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Hence, the kernel of the map R− id in (2.2) is identified with the limit
∏

d∈Ip

lim
R

TRr
q−λ

pr−1d
(k; p)

and the cokernel is identified with the corresponding derived limit. The

following Lemma 2.3 shows, in particular, that the limit system satisfies the

Mittag-Leffler condition. Hence, the derived limit vanishes and we obtain

an isomorphism

TCq(A,B, I; p)
∼
−→

∏

d∈Ip

lim
R

TRr
q−λ

pr−1d
(k; p)

as stated in Thm. B.

Lemma 2.3. The restriction map

R : TRr
q−λ

pr−1d
(k; p)→ TRr−1

q−λ
pr−2d

(k; p)

is an isomorphism, for q < 2pr−1d.

Proof. We recall from [13, Thm. 2.2] that there is a long-exact sequence

· · · → Hq(Cpr−1 , T (k)∧Sλ
pr−1d)→ TRr

q−λ
pr−1d

(k; p)
R
−→ TRr−1

q−λ
pr−2d

(k; p)→ · · ·

and that the left-hand groups are given by a spectral sequence

E2
s,t = Hs(Cpr−1 ,TR1

t−λ
pr−1d

(k; p))⇒ Hs+t(Cpr−1 , T (k) ∧ Sλ
pr−1d).

The groups in the E2-term do not depend on the representation λpr−1d

beyond its dimension, and they are zero if t < dimR(λpr−1d) = 2pr−1d. It

follows that the map R is an isomorphism, if q < 2pr−1

d as stated.

§3. Regular Fp-algebras

Let k be a regular Fp-algebra. The structure of the groups TRn
q−λ(k; p)

that occur on the right-hand side of the statement of Thm. B of the intro-

duction is given by [14, Thm. 2.2.2], but see also [11, Thm. 11]. If λ is a

finite dimensional complex T-representation, we define

`r = `r(λ) = dimC(λCpr )

and `−1 =∞ such that we have a descending sequence

∞ = `−1 > `0 > `1 > · · · > `r > `r+1 > · · · > `∞ = dimC(λT).

Then the following result is [14, Thm. 2.2.2].
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Theorem 3.1. Let k be a regular Fp-algebra, and let λ be a finite di-

mensional complex T-representation. There is a canonical isomorphism of

abelian groups
⊕

WsΩ
q−2m
k

∼
−→ TRn

q−λ(k; p)

where the sum runs over all integers m > `∞, and where s = s(n,m, λ)

is the unique integer such that `n−s ≤ m < `n−1−s. The group WsΩ
j
k is

understood to be zero for non-positive integers s.

Remark 3.2. It appears to be an important problem to determine the

structure of the RO(T)-graded equivariant homotopy groups

TRn
α(k; p) = [Sα ∧ (T/Cpn−1)+, T (k)]T

for a general virtual T-representation α. The precise definition of RO(G)-

graded equivariant homotopy groups in given in [17, Appendix]. One might

well hope that the RO(T)-graded equivariant homotopy groups TRn
α(k; p)

admit an algebraic description similar to that of the Z-graded equivariant

homotopy groups TRn
q (k; p) given in [10, Thm. B].

We can now complete the proof of Thm. A of the introduction.

Proof of Theorem A. It suffices by Thm. B to show that for positive

integers d prime to p, there is a canonical isomorphism of abelian groups
⊕

m>0

WsΩ
q−2m
k

∼
−→ lim

R
TRr

q−λ
pr−1d

(k; p)

where s = s(m, d) is the unique integer that satisfies ps−1d ≤ m < psd. It

follows from Lemma 2.3 that the canonical projection

lim
R

TRr
q−λ

pr−1d
(k; p)→ TRn

q−λ
pn−1d

(k; p)

is an isomorphism for q < dimR(λpnd) = 2pnd. But for λ = λpnd we have

`−1 =∞ > `0 = pnd > `1 = pn−1d ≥ · · · > `n = d > `n+1 = `∞ = 0.

Hence, Thm. 3.1 gives a canonical isomorphism of abelian groups
⊕

m>0

WsΩ
q−2m
k

∼
−→ TRn

q−λ
pn−1d

(k; p)

where s = s(n,m, λ) is the minimum of n and the unique positive integer t

that satisfies pt−1d 6 m < ptd. The statement follows.
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Remark 3.3. We conclude this paper with a conjecture on the relation-

ship of the K-groups of the rings k[x, y]/(xy) and k[t]/(t2). The element

f = x − y of the ring A = k[x, y]/(xy) is a non-zero-divisor with quotient

ring A/fA = k[t]/(t2). It follows that as an A-module A/fA has projec-

tive dimension 1, and hence we have a push-forward map on the associated

K-groups

i∗ : Kq(k[t]/(t2))→ Kq(k[x, y]/(xy)).

The additivity theorem implies that the image of the map i∗ is contained in

the subgroup Kq(A, I). In particular, we obtain an induced push-forward

map

i∗ : Kq(k[t]/(t2), (t))→ Kq(k[x, y]/(xy), (x, y)).

For k a regular Fp-algebra, the relative K-groups on the right and left-hand

sides were evaluated in Thm. A and [14, Thm. A], respectively. On the one

hand, there is a natural long-exact sequence of abelian groups

· · · → Kq(k[t]/(t2), (t))
∂
−→

⊕

m>1

WmΩq−2m
k

V2−→
⊕

m>1

W2mΩq−2m
k → · · ·

and on the other hand, there is a canonical isomorphism of abelian groups

I :
⊕

m>1

WmΩq−2m
k

∼
−→ Kq(k[x, y]/(xy), (x, y)).

We conjecture that the composite I ◦∂ is equal to the push-forward map i∗.
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