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ABSTRACT. Preliminary results are presented on a
solution of the two-dimensional time-dependent continuity
equation for mass conservation governing ice-sheet dynamics.
The equation is solved using a column-averaged velocity to
define the horizontal flux in a finite-element formulation.
This yields a map-plane model where flow directions,
velocities, and surface elevations are defined by bedrock
topography, the accumulation/ablation pattern, and in the
time-dependent case by the initial surface configuration.
This alleviates the flow-band model limitation that the
direction of flow be defined and fixed over the course of
the modeling experiment. The ability of the finite-element
method to accept elements of different dimensions allows
detail to be finely modeled in regions of steep gradients,
such as ice streams, while relatively uniform areas, such as
areas of sheet flow, can be economically accommodated with
much larger elements. Other advantages of the finite-element
method include the ability to modify the sliding and/or
flow-law relationships without materially affecting the
method of solution.

Modeling experiments described include a steady-state
reconstruction showing flow around a three-dimensional
obstacle, as well as a time-dependent simulation
demonstrating the response of an ice sheet to a localized
decoupling of the bed. The latter experiment simulates the
initiation and development of an ice stream in a region
originally dominated by sheet flow. Finally, a simulation of
the effects of a changing mass-balance pattern, such as
might be anticipated from the expected carbon dioxide
warming, is described. Potential applications for such a
model are also discussed.
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Accumulation/ablation rate.
Flow-law parameter.
Sliding-law parameter.
Global capacitance matrix.
Fraction of the bed melted.
Global load vector.
Acceleration of gravity.
Ice-surface elevation.
Ice thickness.
Constitutive equation constant of
proportionality.
Global stiffness matrix.
Sliding-law exponent.
Flow-law exponent.
Density of ice.
Ice flux.
Time.
Column-average ice velocity.
Column-average deformation (flow)
velocity.
Sliding velocity.
Variational trial function.
Map-plane coordinates.

INTRODUCTION

Modeling ice sheets has become more important as well
as more practical for a number of reasons. As more and
more field data on the configuration of present-day ice
sheets are accumulated, the important boundary conditions
defining ice-sheet behavior become available. At the same
time, the increasing body of information requires more and
more sophisticated models adequately to depict reality.
Small-scale features with important dynamic consequences,
such as ice streams, require modeling on widely varying
spatial and temporal scales (Mahaffy, 1976; Jenssen, 1977;
Oerlemans, 1982).

Assessment of the present condition and future response
of major existing ice sheets requires a time-dependent
solution. This solution must allow variation of such major
controlling influences as the mass balance, the temperature-
dependence of the ice hardness, the variations in bed
coupling, and the deformation of the bedrock itself.
Changes in the bed coupling should be able to reflect both
spatial and temporal variations produced by internal effects
such as accumulating melt water at the bed, as well as
externally produced effects due to changing climate.

Reconstructions of paleo-ice sheets, both as steady-state
and time-dependent solutions, allow greater insight into the
processes controlling stability and decay of present-day ice
sheets. At the same time, reconstructions provide a window
through which glacial geologists can refine their
interpretations of glacial indicators, thereby providing more
accurate descriptions of the environment of the past. As
input to atmospheric models, these reconstructions allow a
clearer picture of the climate in the past, and perhaps of
the driving forces behind climate change in the past and
future. Ultimately, a predictive model capable of modeling
future glaciations will be both necessary and possible.

As a step towards this process, we present here a
model of glacier dynamics that we feel has several
advantages over many of the current models in use. The
model presented here consists of a solution of the
two-dimensional continuity equation for mass flow. The
solution is obtained using a finite-element technique which
builds upon previous work with a flow-band model
(Fastook, 1987).

The finite-element formulation as an equation solver
has several advantages over more traditional finite-difference
schemes. Specification of complex, non-uniform, and
variable boundary conditions is easier to implement in a
finite-element formulation, as the primary boundary
condition, the boundary flux, occurs in a natural fashion in
the element equations. Element boundaries, defined by nodal
points, need not be rectangular or uniform in size. This
allows more precise modeling of small dynamic features
such as ice streams while allowing areas with relatively
uniform properties such as an interior region of sheet flow
to be economically modeled with fewer elements.

The two-dimensional nature of the solution frees us of
many of the restrictions imposed by the one-dimensional
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Fastook and Chapman: Map-plane linite-element model
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Solution of this non-linear problem can proceed by an
iterative solution to the corresponding linearized problem.
Initially k(x,y) is assumed to be uniform over the domain
of the problem. A solution for H, the ice thickness, (and
hence also for h, the surface elevation related through the
bedrock elevation) can be found. From this solution, a new
k(x,y) can be constructed from Equation (6), and a new
solution can be found. This process is repeated until the
solution converges (i.e. the thickness stops changing). The
rate of convergence is dependent on the initial uniform
value given to k(x,y).

The application of the finite-element method starts
with

and hence are only approximate. However, because of the
generality and flexibility of the finite-element method, any
"law" relating column-average velocity and surface slope can
be used, allowing for future improvements as theory
dictates. In the model, <:Jh is calculated at the centroid of
each element by using the finite-element shape functions
and their derivatives as interpolating functions.

The proportionality constant k(x,y) of Equation (2) can
be obtained by combining Equations (2), (3), (4), and (5)
which results in •

The following details of this formulation are meant as
an introduction to this model. This description is included
as the modeling philosophy differs considerably from the
usual stress-strain-rate solutions found in most
finite-element models. The development of the formulation
is based on techniques which can be found in greater detail
in Becker and others (1981) and in Fastook (1987).

The problem here is to solve the two-dimensional
time-dependent continuity equation describing a map-plane
model of ice flow. The solution to this equation represents
ice-surface elevation, h, at (x,y) coordinates on a map of
non-uniform bed elevations and accumulation/ablation rates,
a(x,y). Boundary conditions may include either a specified
ice thickness, H, along a boundary or a specified ice flux
through a boundary. A finite-element solution is
implemented using a Galerkin method which is described in
Becker and others (1981).

The continuity equation for the model can be written

FINITE- ELEMENT FORMULA nON

flow-band model. In a flow-band model, flow directions
must be defined externally by the modeler. In addition,
these flow patterns must in general remain fixed during any
time-dependent process that is being modeled. In flow-band
models, two-dimensional effects are approximated by
assuming uniform properties across the width of the flow
band which itself is allowed to be non-uniform along the
direction of flow. Clearly, during the growth or
disintegration phase of an ice sheet, the flow patterns and
catchment areas would not and should not be held fixed. In
our current finite-element formulation, flow directions are a
derived quantity and can vary in time as the configuration
of the ice sheet changes.

From a physical interpretation, the flux at a point
(x,y) in the plane is given as the product of ice thickness
and column-averaged velocity, U, while the finite-element
method requires the expression of the flux-like variable as
proportional to the surface slope. Hence, the flux is given
in a constitutive equation as

It should be noted that the parameter I is basically
unknown for both present and past ice sheets. An estimate
of I for paleo-ice sheets can be obtained from glacial
erosion patterns (Hughes, 1981). For present ice sheets, I
can be estimated from considerations of the pressure-melting
point, measurements by radar echo-sounding, and from the
existence of ice streams (Drewry, 1983). At present there is
considerable controversy over the nature of the sliding law.
In this model we use a simple sliding relationship dependent
upon melting and regelation of ice flowing over bedrock
obstacles (Weertman, 1964), although any sliding relationship
relating velocity to surface slope could be used. The sliding
velocity is given by

o-(x,y) = UH = -k(x,y)<:Jh(x,y).
(8)

be manipulated
the symmetric

n

ah]- - vdxdy.atIHRfl.-(-k'h).dxd,

R

which results from manipulation of the continuity and
constitutive equations. This form of the equation is very
difficult to solve because the equation must be satisfied at
every point in the domain of the problem.

The finite-element method allows for are-formulation
of the problem via the principle of weighted residuals,
thereby producing an equation which represents the same
physical principles, but in a more average sense. This
residual form of the equation takes the form

This formulation of the problem is more amenable to
solution, because, while it is satisfied over the whole region
of the domain R of the problem, it is also satisfied over
any smaller region n of the domain R. A grid can then be
applied to the domain R which divides the region into
smaller units called elements. An equation identical to
Equation (8) can then be written for an element n of R
which is called the element equation.

The equation for each element can
using Gauss' theorem which results in
formulation of Equation (8) for the element

(2)

(3)

(1)

as a
(flow)

a(x,y) - <:J.O'(x,y) .
ah(x,y,t)

at

U = IUs + (1 - I)UF•

The column-averaged velocity can be written
combination of sliding and internal deformation
proportional to the areal fraction of the bed melted:

and the flow velocity (Glen, 1955; Weertman, 1957) is given
by

U = [pgH<:Jh]m
s B ' (4)

+ I kdhvds
dnan

(9)

(5)

Neither of these formulations includes longitudinal forces

where kdh/dn is as the normal component of the flux
crossing the boundary of the element n. When the solution
for the many elements is combined to recreate the original
domain R, these terms will exactly cancel for adjacent
elements, so that their only contribution will be for
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Fig. I. The bedrock configuration for flow around obstacles,
a uniform flat bed at sea-level with two ridges 2000 m
high approximately 600 km long running from the top of
the figure to the bottom, separated by approximately
100 km at their bases and approximately 500 km at their
peaks. with superimposed velocity vectors for the
configuration at 16 000 years.

two ridges 2000 m high approximately 600 km long running
from the top of the figure to the bottom, separated by
approximately 100 km at their bases and approximately
500 km at their peaks. Top and bottom boundaries are
specified to allow no flux to cross, while the right-hand
boundary has a specified flux of 1.0 x 105 m2jyear. The
accumulation rate over the domain is zero everywhere, so
that the ice margin advances from right to left, eventually
over-riding the ridges and covering the entire domain.
Velocity vectors are shown for an intermediate time (17000
years) when the right-hand ridges have been over-run, but
the ice has not crested the left-hand ridge. The magnitude
of the vectors is indicated by the horizontal line at the top
of the figure, which represents a velocity of 333 mjyear.
Typical velocities along the right-hand margin are in the
neighborhood of 20 mjyear, with maximum velocities
reaching approximately 50 mjyear in the thick ice (3000 m)
filling the valley and in the thinner ice (1500 m) along the
crest of the over-ridden ridge. Figure 2 shows surface-
elevation contours for this time period, again with velocity
vectors superimposed. The very strong topographic control
of the flow direction is clear in this figure, with velocity
vectors in the valley region being deflected by as much as
650 from the unimpeded direction of flow. As both ridges
are over-ridden, the topographic control declines with
deflections lowering to approximately 150 in the valley
region.

Fig. 2. Surface-elevation contours for 17000 years. again
with velocity vectors superimposed.
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>-

(10)

(12)
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(11 )

dt At

dhi
KI"J·hi + C· .--IJ dt

The vector hi represents the unknown ice elevations at each
of the nodal points defining the domain R. The elements of
Kij and Cij, and Fi are integrals of simple linear functions
ana their products so that the integrations can be performed
analytically or with a simple numerical scheme (nine-point
Gaussian integration is used here). For the steady-state
solution, the time-derivative term is zero and Equation (10)
is simply

which can be solved for the unknown h's by standard
methods.

For the time-dependent solution, an unconditionally
stable backward difference scheme is used where the time
derivative is approximated by

Here, the vector and matrix indices have been dropped and
the Nand N + I represent the Nth and N + 1st time steps.
Replacing the time derivative in Equation (10) and solving
for the solution vector at the N + 1st time step, one
obtains

elements with no neighbors, i.e. the boundary of the domain
R. Hence, the specification of fluxes along boundaries to
the domain occurs naturally in the formulation of the
problem.

The finite-element method is then applied to the
resulting element equation. The unknown h and the trial
function v are replaced by finite summations over basis
functions with coefficients equal to their values at the four
nodal points used to define the shape of the quadrilateral
elements. Combining the various element equations relating
the nodal values of the unknown h, one obtains a global
matrix equation of the form

where 1 is the identity matrix. Thus, given an initial
surface for an ice sheet (the hN vector) and a new set of
boundary conditions (the FN + 1 vector). a solution for the
new ice-sheet surface at the N + 1st time step is obtained.

It is convenient to use the backward-difference scheme
because of its inherent unconditional stability. Also, while
the order of accuracy of the backward-difference scheme is
O(k + h2) and other numerical schemes of a higher order of
accuracy could have been used, the backward-difference
scheme does not alter the method of solution which results
from the implementation of the finite-element method. A
higher-order scheme, such as a Crank-Nicholson or leap-
frog scheme, would be computationally difficult to install in
the model. Also, the lower order of accuracy is not
apparent until time steps greater than 200 years are
modeled.

Three modeling experiments are described in this
section. As' discussed in the finite-element formulation
section, the domain of the problem must be divided into
elements via a' grid. In each of the modeling experiments, a
square domain 1000 km on a side is defined by 225 nodal
points in a rectangular arrangement which form 196
elements. The following experiments have been chosen to
demonstrate some of the strengths of the finite-element
model.

The first experiment depicts flow over and around a
series of obstacles, in this case a set of intersecting
mountain ridges. Figure 1 shows the bedrock configuration
for this experiment, a uniform flat bed at sea-level with
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Fig. 3. Steady-state surface-elevation contours and velocity
vectors for a symmetric accumulation distribution.

Fig. 5. Steady-state surface-elevation contours and velocity
vectors for the asymmetric accumulation pattern.

Fig. 4. Time-dependent profiles along the Y = 0.0 transect
through the ice sheet at 1000 year intervals. depicting the
response to the changed accumulation pattern.

through the ice sheet at 1000 year intervals, depicting the
response to the changed accumulation pattern. Thinning near
the left-hand margin is 0.185 m/year during the first 1000
year interval, and increases gradually to 0.29 m/year as the
ice-sheet margin retreats approximately 140 km in this
8000 year simulation. Thinning at interior points also begins
near 0.185 mjyear, but instead declines as a new steady-state
configuration is attained between 7000 and 8000 years.

Figure 5 shows the steady-state surface-elevation
contours and velocity vectors for the asymmetric
accumulation pattern. Note the significantly lowered dome,
which is displaced approximately 130 km to the right, as
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well as the marked asymmetry in the velocity magnitudes.
While the right-hand side velocities remain essentially
unchanged in magnitude, velocities in the lowered
accumulation region are reduced by 60% to as little as
10 m/year.

The final modeling experiment is a simulation of the
time-dependent evolution of an ice stream. In this
simulation, an ice sheet with a fully frozen bed provides
the initial configuration, and the response is monitored as a
part of this ice sheet is decoupled from the bed by
allowing sliding. The domain is again a 2000 km square,
with the central accumulation rate adjusted so that the ice
sheet just reaches the boundaries of the domain. Ablation
around this central region insures that ice velocities are
close to zero along this margin. Figure 6 shows the
steady-state surface-elevation contours and velocity vectors
for this initial configuration. A channel 400 km wide and
500 m deep extending from the center of the ice sheet to
the right-hand margin provides a slight degree of
asymmetry to this initial configuration. Velocities in this
channel reach 100 m/year, twice the value in the region of
the flat bed, and do not decline to zero at the domain
boundary, indicating a flux across the grounding line which
would either produce an ice shelf or calving icebergs. A
slight shift of the central dome to the left with

Fig. 6. Steady-state surface-elevation contours and velocity
vectors for no sliding. A channel 400 km wide and 500 m
deep extending from the center of the ice sheet to the
right-hand margin provides a slight degree of asymmetry
to this initial configuration.
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The second modeling experiment is a simulation
demonstrating the effects of a changing mass-balance
pattern. Figure 3 shows steady-state surface-elevation
contours and velocity vectors for a symmetric accumulation
distribution. The domain in this experiment is a square
2000 km on a side. The accumulation rate is 0.4 mjyear over
a region covering approximately 90000 km2 centered on the
figure coordinates (0.0, 0.0). Everywhere outside this region
the ablation rate is -<l.4 m/year, resulting in a steady-state
ice sheet with a diameter of approximately 1200 km. Note
the velocity attains a maximum value of 30 mjyear
approximately 400 km from the center of the ice sheet,
declining as the ice approaches the margin.

Beginning with this configuration, the accumulation rate
over the left-hand side of the ice sheet is reduced by 95%
(0.2 m/year for X ( 0.0, 0.4 m/year for X > 0.0). Figure 4
shows time-dependent profiles along the Y = 0.0 transect
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CONCLUSION

These experiments demonstrate the ability of the finite-
element formulation to model properly the effects of a
non-uniform bedrock configuration, a changing and
non-uniform mass-balance pattern, and the formation of an
ice stream. It is important to note that this finite-element
formulation also allows for a non-uniform sliding or flow-
law parameter as well as for a non-uniform column-
averaged ice density. It is also possible to allow all of the
properties to be spatially non-uniform or temporally variable
in the same experiment whether it is a steady-state or
time-dependent, application. The model is quite capable of
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Fig 8. Surface-elevation contours and velocity vectors for the
new steady-state configuration with sliding in the
channel.
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Fig. 7. Time-dependent profiles along the Y = 0.0 transect
through the ice sheet at 200 year intervals for the first
1000 years, and 1000 year intervals thereafter. depicting
the response to the initiation of sliding in the channel.

Figure 8 shows surface-elevation contours and velocity
vectors for the new steady-state configuration with sliding
in the channel. Note the general retreat of the margins even
far from the ice stream as much more of the mass balance
flows out through the thawed channel. Strong down-draw, a
marked concavity in the contours, and strong converging
flow into the ice stream is evident over the region of
thawed bed. Velocity along the thawed channel increases
along its length, attaining sliding velocities of over 680
m/year at the grounding line. This increase in ice flux of
more than a factor of 5 would certainly affect the existence
of any ice shelf along this margin. The time-dependent
profiles show the generally faster response of the ice sheet
to a change in basal conditions when compared to its
response to change in mass balance.

accompanying decline in surface slope on the right is all
that this channel produces.

Beginning with this configuration, all bedrock below
sea-level is assumed to thaw, thereby allowing sliding
(Weertman, 1964) as the bedrock obstacles are drowned by
the increased water layer. Figure 7 shows time-dependent
profiles along the Y = 0.0 transect through the ice sheet at
200 year intervals for the first 1000 years, and 1000 year
intervals thereafter, depicting the response to the changed
basal conditions. Initial thinning rates are very high,
approaching I m/year at the head of the ice stream. These
rates decline rapidly and a new steady-state configuration is
attained in approximately 5000 years. In this time the dome
elevation lowers by 450 m and shifts over 200 km away
from the ice stream.

C)
C)
If)
(T)

0
0
co
ru

~o
::Eo~~

MS. received 26 September /988

52

https://doi.org/10.3189/002214389793701464 Published online by Cambridge University Press

http://www.ingentaconnect.com/content/external-references?article=0028-0836()297:5867L.550[aid=7131614]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()81:6L.1059[aid=7087481]
https://doi.org/10.3189/002214389793701464

