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Mounting research evidence has shown that neural network (NN) models can be impressively
performant in processing and analyzing data for challenging, niche, and complex scientific tasks,
including electron microscopy [1]. As domain scientists begin to more commonly implement machine
learning (ML) tools into their scientific workflows, we need to better understand how these relatively
black-box stochastic models behave in new environments and how we can make pragmatic and data-
informed decisions to ensure that scientific results gleaned from ML tools are valid and trustworthy.
While there has been considerable ML research concerning model architectures and optimization,
relatively little has been done to understand how data affect model performance, especially in scientific
applications. Data curation provides scientists a singular opportunity to use their expert domain training
and scientific priors to design ML tools that are well-suited to their needs. Unfortunately, for many
tasks, and especially supervised-learning tasks, there is a dearth of suitable and labeled data ready for
use in ML model development. For this, we can leverage modern computing resources and generate
suitable simulated datasets as a replacement to effectively tackle challenging microscopy analysis tasks
[2]. To further address this need in the field of electron microscopy, we have developed a series of tools
and programmatic workflows which can be used to automatically generate large simulated databases as
well as to statistically assess the performance of NN models under varying data conditions.

In this work, we present a general framework, some guiding principles, and some automated tools for
constructing arbitrary synthetic datasets which closely mimic experimental data as produced on the
TEM and for studying the use of synthetic datasets in machine learning workflows. Here, we study a
simple model problem, segmentation of nanoparticles in high-resolution TEM micrographs, and analyze
the performance of models on several different experimental datasets. We also demonstrate that models
trained completely on simulated data can achieve state-of-the-art performance; model performance, both
in- and out-of-distribution, can be further saturated with transfer learning on small amounts of
experimental data (Fig. 1).

Our data generation pipeline begins with a structural generation tool, Construction Zone (CZ). CZ is an
open-source Python package, built on top of popular materials modeling packages [3,4,5], that allows
for the generation of arbitrary nanoscale atomic scenes in an algorithmic and automated way. We used
CZ to generate several thousands of spherical gold nanoparticles with random planar defects, which are
then placed at random orientations and random locations onto amorphous carbon substrates. For each
structure, with and without the substrate, we perform HRTEM simulations using Prismatic [6].
Aberrations, arbitrary focal conditions, and Poisson noise are applied to the simulation outputs to
generate data under varying imaging conditions. Thresholds of the phase image of the substrate-free
nanoparticle are used to create corresponding segmentation masks. Saved data are annotated with
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relevant metadata—such as structural details and applied data augmentations—so that arbitrary subsets of
the data can be selected and so the data generation process can be fully backtracked; metadata are
propagated forward as data are further processed from the structural generation stage.

To understand the effectiveness of data curation strategies on HRTEM segmentation performance, we
trained several hundreds of models on various subsets of simulated datasets under fixed training
conditions and fixed model architecture. For each unique subset of training data, we trained at least five
models to help control for stochastic variance of training performance. Each model was then further
trained in a transfer-learning phase on a small portion of experimental data. Performance benchmarks on
several experimental datasets were measured at each epoch while training. "Real-time™ performance
benchmarks on out-of-distribution datasets provide great insight into the generalization dynamics of
trained models and are crucial for understanding how NNs can be trained to generalize across
applications and the effects of data curation (Fig. 2). Trained models are similarly saved with
accompanying rich metadata.

Our results indicate that some aspects of dataset composition might not be so important, such as precise
modeling of the structures or aberration conditions, while other aspects, such as structural variation and
imaging conditions, can be greatly influential to model performance. Careful data curation can lead to
robust model training and performance without needing an extremely large training dataset. Our data
pipelines can be trivially extended to much more complex characterization tasks, such as grain
identification or combined real-space imaging and spectroscopy, and can easily be scaled to train larger,
more generally powerful networks. Metadata rich databases, in this study and future work, are
particularly important in facilitating our analysis and enabling us to make (more) precise statistical

statements.
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Figure 1. Distributions of network performance (left column) on large Au NP data(top), small Au NP
data (middle), and small CdSe NP data (bottom) after simulated training on a variety of subsets of
simulated data. In general, transfer learning can improve performance (right column); gains in
performance are most likely and significant on the target dataset, and still possible on out-of-distribution
datasets. Larger dice score is better.
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Figure 2. Neural network performance dynamics for network trained on simulated Au nanoparticle data,
and then further trained a small amount of experimental data. Performance measured on simulated
(purple), large Au NPs (blue), small Au NPs (orange), and small CdSe NPs (green). During synthetic
training phase, simulation performance saturates quickly, while experimental performance improves
slowly. Performance improves out-of-distribution for a small amount of time during transfer learning,
after which it decays—the more data seen during transfer learning (lighter hue), the stronger decay
effect. Larger dice score is better.
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