
Proceedings of the Edinburgh Mathematical Society (1996) 39, 133-141

ON AN EXISTENCE RESULT FOR NONLINEAR
EVOLUTION INCLUSIONS

by STANISLAW MIGORSKI

(Received 13th July 1994)

In this paper we present an existence result for a class of nonlinear evolutions inclusions. A result on the
compactness of the solution set for a differential inclusion is also established.

1991 Mathematics subject classification: 34G20.

1. Introduction

Recently, in an interesting paper [10], Papageorgiou has studied the dependence of
the solutions of an evolution inclusion of the form

x(t) + A(t, x(t)) e F(t, x(t)) a.e. t e (0, T)

*(0) x

on the parameter. However, the main existence theorem of his paper (see Theorem 3.1
in [10]) ensuring the nonemptiness of the solution set for the evolution inclusion (1) has
a gap in its proof and therefore, in our opinion, is incorrect. Namely, Papageorgiou (see
[10, pp. 145-146]) exploited in his proof the result of Nagy [6, Theorem 2] which states
that 'W (the space, where the solution of the inclusion is sought) is compactly embedded
into C(0, T; H) (the space of continuous functions from the time interval [0, T] into H);
see the notation of Section 2 below. In [5] the present author has delivered an example
which shows that Theorem 2 of Nagy [6] is false. For this reason, the proof of existence
of solutions to (1) can not arise directly from the reasoning given in [10].

We remark that in the paper [12], Papageorgiou has extensively used the existence
theorem ([10, Theorem 3.1]) and the result of Nagy ([6, Theorem 2]) to get the
existence of optimal trajectories in some variational problems associated with evolution
inclusion (1).

It can be observed that the results of [10] and [12] on the compactness of the
solution set of (1) in C(0, T;H) are valid without an appeal to Nagy's inaccurate result
and for V a separable Banach space, provided that xoe V. In fact, in this case the
solution set of (1) is sequentially compact in C(0, T;w— V) (see [1] or [8]) and hence
Corollary 4, p. 85 of Simon [13] entails that it is compact in C(0, T;H).

In this paper we are going to present the result on existence of solutions to the

133

https://doi.org/10.1017/S0013091500022847 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022847


134 STANISLAW MIGORSKI

evolution differential inclusion (1) with the initial condition xoeH. We follow the
procedure that closely resembles the one of Papageorgiou [10]. A crucial point in our
approach is the fact that the solution map of the associated evolution equation is
continuous in suitable topologies (see Proposition 1). Let us underline that in this way,
we obtain the existence result, given previously in [10], under weaker hypothesis that V
(the space appearing in the Gelfand triple, see Section 2) is a reflexive Banach space and
not a Hilbert one as it was requried in [10]. This allows us to enlarge the class of
problems to which the result can be applied. Proposition 1 and Corollary 1 given in
Section 3 show that Theorem 3.2 of [12] is true (even for xoeH) and the results
concerning variational problems (see Theorem 4.3 and Theorem 4.4 in [12]) are still
valuable. Finally, we mention that Theorem 1 (for p = q = 2) can be found also in [9]
and a "nonconvex" version of it was proved in Theorem 3.4 of [11].

For the convenience of the reader, we firstly present the result on the continuous
dependence of solutions to the evolution equation on the right hand side and then we
give the proof of the existence result indicating the place into where the new ingredient
comes.

2. Preliminaries

Let H be a separable Hilbert space and let V be a subspace of H carrying the
structure of a separable reflexive Banach space, which embeds into H densely and
continuously. Identifying H with its dual, we have the Gelfand triple (see e.g. [15])
VaHczV, where all embeddings are continuous and dense. Moreover, we assume in
this paper that these embeddings are also compact. We denote by <•, •> the duality of V
and its dual V as well as the inner product on H, by ||.||,|.| and ||.||K. the norms in V, H
and V, respectively. Given a fixed real number T>0 and 2 ^ p < +oo, we introduce the
following spaces f = Z/(0, T; V), jf = L"{0,T;H), ^" = Lq(0,T;H), r1 = L«(0, T; V),
(l/p+l/q=l) and Hr = {we'V\w'eV}, where the derivative is understood in the sense
of vector valued distributions. Clearly if'cf '<= jf'cV'. The pairing of Y and "V' and
the duality between JC and JC are denoted by

Given a Banach space 9C, the symbols w—SC, s—W are always used to indicate the space
9C equipped with the weak and the strong (norm) topology, respectively.

Let (fi, Z,/i) be a measure space, X be a separable Banach space. A multifunction F
defined on fi with values in the space 2X of all nonempty subsets of X is called
measurable if F~(£): = {coefi: F(co) n E #0} eZ, for every closed set E<=X. F is called
graph measurable if GrF: = {(oj,x)eSlx X:xeF(o))} eZ x@(X) (here @(X) is the family
of all Borel subsets of X). We denote by SP

F (1 ^p^oo) the set of all selectors of F that
belong to L"{Q;X) i.e. SP

F = {feLp(QX):f(a>)eF(co) n a.e.}. Let (Y, xY), (Z, TZ) be
Hausdorff topological spaces. A multifunction G: Y-*2Z is (ty — TZ) upper semi-
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continuous (u.s.c), if for every CczZ closed in TZ topology, G~(C) is closed in xY

topology in Y. By ^/((.)(A
r) we denote the family of all nonempty, closed, (convex)

subsets of X. Finally, given a sequence of sets Sn e 2r, the sequential Kuratowski upper
limit is defined by

y, as

3. Existence theorem

Definition. A function x e f is called a solution of problem (1) if and only if

f x(t) + A{t,x(t))=f(t) a.e. t e (0, T) in V,
jx(0) = xo

with/eS*,..,,.,,.

We will need the following hypotheses:

H(A): A: [0, T] x K-» V is an operator such that
(1) t-*A(t,v) is measurable from [0,T] to K',
(2) v-*A(t, v) is hemicontinuous and monotone from V to V,
(3) ||/l(£,i;)||K.^a(l+ Hull""1), a.e. te(0, T), Vi;e V with a >0,
(4) (A{t, i;),y>^c||u||p, a.e. te(0, T) with c>0.

//(F): F: [0, T] x H-^^fc(H) is a multifunction such that
(1) (t,x)->F(r,x) is graph measurable,
(2) GrF(t, •) is sequentially closed in H x (w-fl), a.e. t e(0, T),
(3) |F(t,x)|ga(t) + 6|x|2/«, a.e. te(0,T), with aeL\(0,T),fe>0.

The hypotheses H(A) and H{F) for p = q = 2 coincide with the ones of Papageorgiou
[10].

The following result concerns the solution map for (2) and plays a crucial role in the
proof of the main theorem.

Proposition 1. If hypothesis H(A) holds and xoeH, then the map which to every right
hand side feJtf" in (2) assigns the unique solution X = X(/)EWCZC(0,T;H) of (2), is
continuous from w-Jtf" into w — 'W and from w — $C into C(0, T;H).

Proof. Let/„,/£.#" be such that

/ , - » / in w-*' (3)
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and let xn = x(/n) be the sequence of unique solutions to (2) in "W corresponding to /„
(see Theorem 4.2 of Barbu [3, p. 167] or Theorem 1.2 of Lions [4, p. 162]). From the
classical a priori estimates on the solutions to parabolic equations (see Chapter 2.1 of
Lions [4]), we know that {*„} lies in a bounded subset of "W. By passing to a
subsequence, if necessary, we may assume that

xn->x in w--W, (4)

for some xsW. Since f c j f compactly (see Theorem 5.1 in [4, p. 48]), we also have

xn->x in s-J^. (5)

Let us consider the convex set # m ={w6#:w(0) = xo}. It is closed (and hence weakly
closed) in iV, in virtue of the fact that iVc:C(0,T;H) continuously (see e.g. Ahmed and
Teo [1]).

Since xneifr
xo, we deduce from (4) that

xo. (6)

We claim that

lim sup «/l(xn), x n - x » :gO, (7)

where we denote by A:"V-*1f' the Nemytski operator corresponding to A i.e.
(Av)(t) = A(t, v(t)) for a.e. t. Multiplying the equation xn + A(xn)=fn in duality with
xn —x, using the integration by parts formula (see e.g. Proposition 23.23, p. 422 of
Zeidler [15]) and (6), we obtain

|xn(T)x(r) | + « ^ ( x n ) , x n x » = « / n , x n - x » . (8)

From (3) and (4), by taking the limit in (8) and dropping the positive term, we get

l i m s u p « X ( x n ) , x n - x » g l i m ( « / n , x n - x » - « x , x n - x » ) = O.

This proves the claim.
We are going to show now that by possibly reindexing and/or dropping to a further

subsequence, we may assume that xn-»x in C(0, T;H). For every n and a.e. te(0, T), we
put

An(t) = (A(t, xn{t)) ~ A(t, x(t)), xn(t) - x(t)>.

Applying Fatou's Lemma to a nonnegative functions kn (compare hypothesis H(A) (2)),
using (4) and (7), we have
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r T T

0 g J lim inf An(s) ds ^ lim inf j Xn(s) ds ̂  lim sup J An(s) ds
O n n 0 n 0

T T

^ lim sup J </i(s, xn(s)), xn(s) - x(s)> ds - lim inf J </l(s, x(s)), xn(s) - x(s)> ds
n O n 0

= limsup<C4(xn),xn-x»g0.
n

From the above inequalities, we deduce that limn j J 2n(s) ds = 0, which thanks to the
nonnegativity of kn, implies An->0 strongly in 1/(0, T). Therefore, we may assume,
passing to a next subsequence, that

Xm(t)->0 a.e. re(0,T). (9)

Using hypothesis H{A)(3){4), for a.e. ie(0, T), we have

Xn(t) = (A(t, xn(t)), *n{t)> ~ <A(t, xn(t)l *(t)> - (A(t, x(t)), xn(t)> + (A(t,

From this inequality and (9), it follows that {||xn(t)||} is bounded for a.e. te(0, T) and
n^n0. So we have shown that the sequence {*„} belongs to a bounded set of
L°°(0, T; V). Moreover, since the sequence {xn} lies in a bounded subset of V and
VczH compactly, we deduce, by a version of the Arzela-Ascoli theorem (compare
Corollary 4, §8 in [13]) that

xn->x in C(0,T;H).

Now, it remains to show that x is a solution of (2). From hypothesis H(A)(2), it
follows (see Proposition 2.5 in Chapter 2 of Lions [4]) that A has the generalized
pseudomonotone property (M) (i.e. vn->v in w — "f, Avn-*% in w — ir' and
limsupn«^un,i;n —u>>^0 imply ^ = /4u). In view of hypothesis H(A){3), {Axn} is
bounded in V, so we may assume that

/4(xJ->z in w--T' (10)

with ze'f'. From (4), (7) and (10), we have z = Ax and Axn-*Ax in w — 'f". We pass to
the limit in the equation

and we get «x,4/» + «^(x),T» + « / , T » for every ̂ ef. Hence

x(t) + A(t,x(t))=f(t) a.e. te(0,T),

https://doi.org/10.1017/S0013091500022847 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022847


138 STANISLAW MIGORSKI

which together with (6) implies that x = x(/) is a solution to (2). From the uniqueness of
solutions of (2), we infer that the whole sequence {xn} converges to x in both w — iT
and C(0, T; H). This completes the proof of the proposition.

Theorem 1. If hypotheses H(A), H(F) hold and xoeH, then (1) admits a solution.

Proof. We follow the ideas used in [10] for the case p = q = 2.

Step I. We will show a priori estimates on a solution. Suppose that xeW is a solution
of (1). We multiply in duality the first equation in (2) by x ( ) and using Schwarz
inequality, we obtain

for every te[0, T]. Using Young's inequality

ab^-a"+ — bq^a,b,e>0,p>l,\/p + l/q=l
P q

and the fact that H(F)(3) implies

\f(s)\"^2->-l((a(s))" + b'>\x(s)\2), (11)

we easily get

P 0

+ 2_\{a(s))'lds+
lJ2k)9\\x{s)\2ds

OF t\ Q \ F I r\

where p>0 is such that | | ^ / ? | | | | . It exists since by hypothesis VcH continuously.

Choosing e = -(pc)1/p, the Gronwall lemma implies
P

|x(t)|^M, M>0. (12)

Next, we also have
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for every t e [0, T]. This implies that

Hxll^M,, Mt>0. (13)

Since

with some y>0, using (11), we have

0

T

+ a«T+a'>
o

which means that

| |x | |^^M2, M2>0. (14)

Thus it follows from (13) and (14) that there exists a finite positive number M3 such
that ||x||-#r^M3, where x is any solution to (1).

Step 2. We consider the problem (1) with a modified multivalued term. We define the
modified multifunction F: [0, T] x H-^^/c(H) by

F(t,x)

It is easy to see that F satisfies //(F)(l)(2) and \F(t,x)\^a{t) + bM2lq = :d(t), a.e. t, where
aeL\(0,T).

We define

B { / f ' | / ( ) | g ( 0 a.e.

and a map r.B-*if given by r( / ) = x, where x e i f is the unique solution to the
problem (2). Let R be a multifunction defined on B by

«( / ) = S>(,r(/)(.)): = {/6Ll(0,T;//):/(t)6F(t)r(/)(0) a.e. t}.

Firstly, since F is graph measurable and L1 integrably bounded, using Aumann's
selection theorem (see Theorem 5.10 in [14]), we have that / ? ( / )#0 . Moreover, since F
is 0"/(.(f/)-valued and \F(t,r(f)(t))\^a(t) a.e. t, the multifunction R has closed and
convex values and R:B-*&/e(B).
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We will show that R is (w — J#") x(w — Jtf") u.s.c. on B. Since B is a compact in
w — 3#", it suffices to prove that GrR is weakly-weakly closed in BxB (see Chapter I.I
of Aubin and Cellina [2]). Let (/„, z j e GrR, fn->f and zn-*z both in w - J T . From
Proposition 1, we know that

r(L)(t)-+r(f)(t) in s-H, We[0, T].

Since F satisfies //(F)(l)(2), we deduce that

w - lim sup F(t, r(Q{i)) c F(t, r(f)(t))

n

for a.e. t. Invoking Theorem 4.2 of [7], we have

w-limsupR(/J = w-lim sup S>(.,r(/n)(.))£Si_limsupF(.ir(/n)(.))£S>(.,f(/)(.„ = /?(/).
n n

The above inclusion implies that (f,z)eGrR. This shows that GrR is w — w closed and
proves that R is w — w u.s.c. on B.

Step. 3. We apply the well known Kakutani-KyFan fixed point theorem for set-valued
mappings (see Chapter 1.12 in [2]) to the multifunction R. We deduce that there exists
f*eB such that f*eR(f*). The corresponding solution x* = r(/*) is a solution to the
problem (1) with the modified multifunction F. However, the same estimate as in Step 1
(see (12)), implies that \x*(t)\^M. Thus F(t,x*(t)) = F(t,x*(t)) for a.e. t, which means
that x* is a solution to (1). This completes the proof of the theorem.

Corollary 1. If the hypotheses of Theorem 1 hold, then the solution set of {I) is a
nonempty, weakly compact subset of W and a compact subset of C(0, T; H).

This conclusion was earlier obtained in Theorem 3.2 of [12] on the basis of the
compactness result of Nagy and under the additional assumption that V is a Hilbert
space.
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