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ABSTRACT. Three-dimensional geometric descriptions of microstructure are indispensable to obtain the
structure—property relationships of snow. Because snow is a random heterogeneous material, it is often
helpful to construct stochastic geometric models that can be used to model physical and mechanical
properties of snow. In the present study, the Gaussian random field-based stochastic reconstruction of
the sieved and sintered dry-snow sample with grain size less than 1 mm is investigated. The one- and
two-point correlation functions of the snow samples are used as input for the stochastic snow model.
Several statistical descriptors not used as input to the stochastic reconstruction are computed for the
real and reconstructed snow to assess the quality of the reconstructed images. For the snow samples and
the reconstructed snow microstructure, we also estimate the mechanical properties and the size of the
associated representative volume element using numerical simulations as additional assessment of the
quality of the reconstructed images. The results indicate that the stochastic reconstruction technique
used in this paper is reasonably accurate, robust and highly efficient in numerical computations for the

high-density snow samples we consider.

1. INTRODUCTION

With high-speed large-capacity supercomputing facilities,
numerical simulation has become an important practical
tool to investigate geophysical or engineering problems
involving snow deformation (Bartelt and Lehning, 2002;
Schneebeli, 2004; Johnson and Hopkins, 2005). Recently,
snow mechanics has been applied to the high-fidelity
numerical simulation of tire-snow interaction (Shoop,
2001; Lee, 2009a). However, to obtain reliable results from
numerical simulations requires suitable constitutive laws for
snow, for the specific problem at hand (small and large
deformations, low and high loading rates). This is a
challenging task because the macroscopic mechanical
behavior depends on the snow microscopic characteristics
and other parameters such as temperature and free water
content (Johnson, 1998; Johnson and Hopkins, 2005). A
comprehensive review of snow mechanics (Shapiro and
others, 1997) has pointed out the need to establish an
effective snow classification scheme using parameters that
reflect microscopic information on snow such that specific
macroscopic stress—strain relationships can be ascertained
as a function of snow microstructure. Earlier attempts to
solve this problem have suffered from the lack of an
experimentally based technique to define and measure
snow microstructure that allows a correlation to the thermal
(Kaempfer and others, 2005) and macroscopic mechanical
properties  (Brown, 1980; Mahajan and Brown, 1993;
Bartelt and Lehning, 2002; Schneebeli, 2004) of snow;
additional information can be found using the references
cited in this paper.

The microstructural parameters (grain size, bond size,
etc.) are generally measured as average values. As a
naturally occurring material, snow’s microstructure, how-
ever, is formed in a stochastic rather than a deterministic
sense. Snow then can be regarded as a random porous
material, meaning that snow microstructure can also be
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characterized using statistical descriptors (e.g. two-point
correlation function, lineal-path correlation function) to be
elaborated in detail below. The effective physical properties
of such a random material are determined by the statistical
information embedded in the microstructure. The structure—
property relationship for snows has been studied in the past.
For example, by assuming the similarity of microstructures
between snows and foams, mechanical properties of snows
(e.g. Young’s modulus) have been modeled based on open-
and closed-cell foams (Kirchner and others, 2001; Petrovic,
2003). The elastic moduli are the simplest mechanical
properties for solids, and hence are studied in this paper for
the purpose of evaluating the quality of reconstructed
microstructure. Analytical prediction of the upper and lower
bounds of the effective elastic moduli of multiphase
materials has long been the subject of many theoretical
studies (Hashin and Shtrikman, 1963; Hill, 1965; Roberts
and Garboczi, 1999; Torquato, 2001); for example, the well-
known Hashin-Shtrikman bounds on elastic moduli (Hashin
and Shtrikman, 1963) were obtained knowing only the
phase moduli and volume fractions of the material.
However, volume fraction is not the only factor determining
effective properties. For snow, for example, grain bonds play
an important role in determining snow mechanical beha-
viors (Bartelt and Lehning, 2002; Nicot, 2004; Johnson and
Hopkins, 2005). The bounds can be improved by incorpor-
ating higher-order correlation functions of the microstructure
such that effective properties can be predicted more
precisely. On the other hand, large-scale computational
methods have proved to be useful in determining composite
material properties or behaviors given three-dimensional
(3-D) geometric descriptions of the microstructures (Gar-
boczi and Day, 1995; Roberts and Garboczi, 1999; Johnson
and Hopkins, 2005). Computational methods can yield
direct relationships between the macroscopic properties and
the microstructures of multiphase materials, which can


https://doi.org/10.3189/002214310792447770

406

provide comparison to analytical bounds and experimental
results. More importantly, numerical methods, once vali-
dated, can provide an alternative method to establish
microstructure—property relationships when experimental
data are scarce.

The long-term goal of our research program is to establish
a classification criterion of the mechanical behavior of snow
based on the microstructural statistical information by
carrying out large-scale numerical simulations, and com-
pare the results with available experimental data. For
microstructure-based numerical analysis, obtaining quanti-
tative geometric representations of snow microstructure is
the first step. Recently, X-ray microtomography (XMT) has
been utilized to obtain 3-D high-resolution voxel-based
images of snow microstructure (Coléou and others, 2001).
Experimental methods can be used to obtain real snow
microstructure, but conducting the experiments can be
demanding. If one can develop a stochastic model of the
snow using the microstructural statistics of experimental
data as input, it is hoped that one can reduce the number of
tests and can obtain microstructure—property relationships
using the stochastic model instead. Two-dimensional (2-D)
surface micrographs are relatively easy to obtain experi-
mentally. For a statistically isotropic and homogeneous
porous material, the porosity and the two-point correlation
function calculated from a 2-D image or a 3-D micro-
structure are the same. Therefore, 3-D microstructure can be
numerically simulated by stochastic reconstruction tech-
niques based on the statistical information obtained from
2-D images.

In this paper, the stochastic reconstruction of the snow
microstructure and the calculation of effective elastic
properties (Young’s modulus and Poisson’s ratio) are
presented. The remainder of this paper is organized as
follows. In section 2.1, we review the two widely used
stochastic reconstruction methods and introduce in more
detail the one chosen for the present study. In section 2.2,
we summarize the various quantitative morphological
measures that are frequently used in stochastic reconstruc-
tion to serve either as target functions or for comparison
between the real and simulated microstructures. In section
2.3, we give a brief introduction of the material point
method used to simulate the stress and strain fields of
representative volume elements (RVEs), and the method of
evaluating the effective elastic properties from these fields.
In section 3, we describe the acquisition and processing of
the real snow microstructure images obtained from XMT. In
section 4, we present the results of simulated snow obtained
from the stochastic reconstruction and compare them with
those of real snow. The conclusion is presented in section 5.

2. REVIEW OF THEORY

2.1. Stochastic reconstruction

When snow is considered as a random porous material, its
microscopic morphology can be described by a two-valued
random field Z(x), which is also referred to as the phase
function:

_ [ 1, if x belongs to the pore space
Z(x) = { 0, otherwise,

where x is the 3-D space vector. The first and second

(M)
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statistical moments of the random field Z(x) are given as
p = (Z(x)), (2)

g (u) = (Z(x) - Z(x +u)), (3)

where u is a lag vector and angle brackets denote statistical
averages. In this paper, we only consider statistically
isotropic and homogeneous porous materials, so p repre-
sents the porosity of the porous material, and the correlation
function g,, which can be written as g, (u) (u = ||u])), is only
a function of the length of u and is called the two-point
correlation function. The two-point correlation function
measures the probability that two points a distance u apart
lie in the pore space. For random media without long-range
order, it can be proved from Equations (1-3) that g2(0) = p,
g2(0c0) = p?. The two-point correlation function of the solid
phase is completely determined by the porosity, and the
two-point correlation function of the pore phase by

&) =(1-2(x)-(1 = Z(x+u) =1-2p+g(u),
where g5(u) denotes the two-point correlation function of
the solid phase. Therefore, if the two-point correlation
function of the pore phase is reproduced in the stochastic
reconstruction, that of the solid phase is also reproduced
automatically. Moreover, for the reconstruction, only one of
them needs to be used as the target information, i.e. the two-
point correlation function cannot distinguish between the
two phases.

The purpose of the stochastic reconstruction is to
numerically generate realizations of a two-valued random
field Z’'(x) that share the same statistical information (e.g.
the porosity and the two-point correlation function) with the
real microstructure Z(x). The original motivation for devel-
oping stochastic reconstruction methods is that 3-D micro-
structure of certain materials might be difficult or impossible
to obtain experimentally. However, for these materials, 2-D
surface micrographs might be readily acquired by conven-
tional microscopy. For a statistically isotropic and homo-
geneous porous material, certain types of statistical
information defined for 2-D surface images are the same
as those defined in 3-D space; 3-D microstructure thus can
be numerically simulated by stochastic reconstruction tech-
niques based on the statistical information obtained from
2-D images.

Two major algorithms have been developed for the
stochastic reconstruction of random media: the Gaussian
random field (GRF)-based method (Quiblier, 1984) and the
simulated annealing method (Yeong and Torquato, 1998).
The GRF-based method is well studied, computationally
efficient, but can only reproduce the porosity and the two-
point correlation function of random porous materials.
Therefore, it cannot ensure that the higher-order statistical
information of the simulated random field is the same as that
of the real microstructure. In contrast, the simulated
annealing method can include as many statistical constraints
as required in the objective function. But as the objective
function becomes more complex, the convergence to reach
a global minimum is also more difficult to achieve, and
much higher computational cost is required.

Because of its high efficiency and robustness (Quintanilla
and others, 2007), the GRF-based stochastic reconstruction
technique was chosen in this study. Studies of this technique
date back to 1974 (Joshi, 1974). Based on Joshi’s work,
Quiblier (1984) developed the 3-D stochastic reconstruction
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method which has been utilized in many practical problems
to provide 3-D microscopic geometric descriptions. These
fictitious 3-D microstructures were used to calculate the
effective macroscopic properties of random porous or two-
phase materials (Adler and others, 1990; Kikkinides and
others, 2002). Roberts and Teubner (1995) and Roberts
(1997) brought this GRF-based stochastic reconstruction
method into a general scheme, which can be briefly
described as follows.

Let Y(x) denote a real-valued stationary isotropic Gaus-
sian random field that is completely determined by its first
and second statistical moments. For simplicity, assume
(Y(x)) = 0and (Y(x) - Y(x)) = 1. Many numerical methods
have been developed for the generation of realizations of a
stationary GRF with a given correlation function
gy(u) = (Y(x) - Y(x +u)). Therefore, the two-valued ran-
dom field Z’'(x) can be simply derived from Y(x) using the
following one-level-cut procedure:

ro-{5U9z e

where « is the one-level-cut parameter. The porosity and the
two-point correlation function of Z'(x) are denoted by
p'=(Z'(x)) and gj(u) = (Z'(x)-Z'(x +u)), respectively.
Thus the remaining task is to ensure that p’=p and
gy(u) = g (u). Since Z'(x) is associated with Y(x) by
Equation (4), there exist relationships between p’, g)(u)
and a, g{{u) (Teubner, 1991):

p':(zw)*”z/ et/ dt (5)
! / -1 ! 1 2
g(u) = p - (2m) ./gy<u)mexp( )l ©

The statistical reconstruction method adopted in the present
study consists of the following steps:

1. p’ and g} (u) are directly given or computed from 2-D
digital images of microstructure,

2. gWu) and « are computed from p’ and gj(u) using
Equations (5) and (6),

3. with gy(u) known, realizations of GRF Y(x) are numeri-
cally generated using the fast Fourier transform (FFT)
method that is briefly described below,

4. with the one-level-cut parameter o, realizations of Z’(x)
are generated using Equation (4).

By introducing the one-level-cut process, the original task of
generating realizations of two-valued random field Z'(x) is
then converted into generating realizations of GRF Y(x) with
the correlation function gy(u). An evaluation and comparison
of some GRF generators can be found in Fenton (1994). In the
present study, the FFT method was adopted to generate
realizations of a GRF, as it is efficient and easy to implement.
The discrete realizations of the random field Y(x) in a cubic
domain V= [> are generated by the 3-D inverse FFT:

Ym mns

—1
m] mz ms

(7)

where h is the sample interval in each direction in the space
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domain V, and N=L/h is the number of sampling points in
each direction. Here yYpm, m,m, are random numbers given by

— re im
ym1 myms — (Gm1 nmy m3 Gm1 nmy m;)

Zp(w/M%JrM%JrM%) ®

2 L

M, = mj, i < NJ2
N —m;, m, > N/2

where G and G are independent Gaussian

distributed random variables with zero mean and variance of
5 sin (2wku
sin (2rk)

one, and
B 47T/ 8 - 2rku

is the power spectral density function of the random field Y(x)
(Torquato, 2001). It is worth noting that random fields
generated by the FFT method automatically possess periodic
boundary conditions which are required for statically
homogeneous random fields in the sense that the random
field is infinitely large.

/j:1/2/3/ (9)

(10)

2.2. Quantitative measures

Besides the porosity and the two-point correlation function,
there are many other statistical measures that are briefly
discussed below. Even though they are not used in the
present statistical reconstruction, they can be utilized to
evaluate the quality of reconstructed microstructure.

2.2.1. Specific surface area

Specific surface area s is defined as the ratio between the
inner surface area of a snow sample and its volume. It is
indicative of how well the area of the void-solid interface is
reproduced. It was shown that the specific surface area for
digitized media is a derived quantity of the discrete two-
point correlation function g(u) (Yeong and Torquato, 1998):

o ndg(u)
2D =4 lu=0, (11)

where D is the space dimension. This equation implies that
the accuracy of reproducing the specific surface area is
closely related to how well the beginning part of the two-
point correlation function is reproduced.

2.2.2. Correlation length

The correlation length of the pore space is related to the
porosity and the two-point correlation function by (Talukdar
and Torsaeter, 2002)

= [ (- pa(w du (12)

Two points with a distance larger than the correlation length
are regarded as having no correlation of the value of the
phase function and being purely random to each other.

2.2.3. Lineal path function

The lineal path function of each phase, defined as L{u) for
statistically isotropic and homogeneous porous materials, is
an important morphological quantity that measures the
probability of finding a line segment of length u that lies
entirely in the ith phase. Unlike the two-point correlation
function, the lineal path functions of the pore phase and the
solid phase are not simply related to each other. Moreover,
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this function contains some connectedness information that
makes it a primary target function in the simulated annealing
method (Yeong and Torquato, 1998).

2.2.4. Chord distribution function

Chord distribution function of each phase c{u) is another
useful characteristic related to chord length. The quantity
c{u)du is defined as the probability that a randomly picked
line segment lying entirely in phase i has length in the range
from u to u+du. This quantity directly gives the information
about the connectedness and correlation of microstructure.

2.2.5. Local porosity distribution

The local porosity distribution p(p, L) provides a character-
istic length scale for determining the size of the RVE. The
quantity u(p, L)dp is the probability that the porosity of a
randomly chosen cube of side length L falls into the range

(p, p+dp).

2.2.6. Pore-size distribution function

The pore-size distribution function P(r), also referred to as
pore-size probability density function, is defined such that
P(n)dr represents the probability that a randomly picked
point in the pore phase lies at a distance between rand r+dr
from the nearest point on the pore—solid interface (Torquato,
2001). This function is an intrinsically 3-D microstructural
measure and can only be obtained from 3-D samples. Note
that if we consider pore phase as one of the two phases, the
solid-size distribution function can be defined in the same
way as the pore-size distribution function. The algorithm in
Bhattacharya and Gubbins (2006) is used in this paper.

2.3. Effective elastic properties

In addition to the comparison of quantitative geometric
measures discussed above, we assess the quality of
reconstructed snow by comparing the effective elastic
properties of reconstructed snow with those of real snow
via numerical modeling using the material point method
(MPM; Sulsky and others, 1994). MPM is one of the
meshfree methods that utilize a background mesh as a
computational scratch pad. We used the MPM component
of the program Uintah, developed at the University of Utah
(Parker and others, 2006), mainly due to its parallel
capability and the ease of discretizing XMT images into
material points (Guilkey and others, 2006). In this paper,
each voxel is mapped into a material point. The total
number of material points for a typical microstructure is on
the order of 50 x 10°. A second incentive for using Uintah is
to address the more challenging problem of calculating
effective visco-plastic properties of snow from XMT images
(Lee, 2009b). Like many numerical methods, MPM can use
the explicit and implicit algorithms; for this paper, we used
the implicit algorithm (Guilkey and Weiss, 2003). Uncon-
fined compression simulation was used to obtain the
effective elastic properties; the displacement was prescribed
on one side of the cube, and the reaction force was
calculated. Effective stress was then calculated by dividing
the reaction force by the cross-sectional area; the effective
strain was obtained by dividing the displacement by the side
length of the snow model. The effective Young’s modulus
was then calculated by dividing the effective stress by the
effective strain. For Poisson’s ratio, the average change of the
snow model in the lateral direction was first calculated then
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divided by the side length of the snow model. To obtain
statistics of the effective elastic properties, we used the
stochastic reconstruction method discussed in this paper to
generate five realizations (snow geometries) for recon-
structed snow; for real snow, we sampled different parts of
the snow to obtain five realizations.

We used two theories to put the results obtained from
MPM in perspective. The first is the Hashin—Shtrikman
upper-bound bulk modulus K, and shear modulus G
(Hashin and Shtrikman, 1963):

p(1 - p)k?
=K(1—-p) -2 F7
Ky =K(1 =p) KpTiG (13)
p(1 —p)G*
Gy=G(1-p -E——L2 14
u=G(-p) Cp & M (14)
3K+3G
_ 2 3
HZ_G(K+2G)/ (15)

where p is the porosity or the volume fraction of air, and G
and K are the shear and bulk modulus of ice, respectively.
The second theory we used is for an open-cell foam (Gibson
and Ashby, 1997):

2
1
Esnow = Eice <p::::v> s Vsnow =~ § . (1 6)
where E is Young’s modulus, p is density and v is Poisson’s
ratio. We assume Ei.e=9.3 GPa and vi..=0.3 (Petrenko and
Whitworth, 1999).

3. ANALYSIS OF X-RAY MICROTOMOGRAPHY
IMAGES

The snow sample was collected from the Agricultural Field
at the University of Alaska Fairbanks, and subsequently
sieved into different grain sizes. The smallest grain-size snow
(<1 mm) was used in this study. Snow samples were put in a
custom-made plastic container with a 1cm diameter. The
plastic container was mounted on the stage of an XMT
scanner (SkyScan 1172 microtomograph) located in a cold
room at —15°C. The scanning duration was from a few
minutes to about half an hour, depending on acquisition
settings. The exposure time was tuned to prevent snow
samples from melting during the course of scanning. A
collection of X-ray projection profiles was obtained from the
scanner for the cylindrical-shaped snow sample. A series of
cross-sectional images were then computed using recon-
struction software NRecon. A cross-sectional image of the
snow sample is given in Figure 1a. The cross-sectional
images were further segmented into binary (black and white)
images by computing a histogram of the gray values. Owing
to the distinct brightness contrast of the images, the
histograms of the images were found to be bimodal (inset
in Fig. 1a). Accordingly, the gray value of the valley between
two peaks was selected as the segmentation threshold. As
shown in Figure 1b, isolated ice phase and pore phase
appeared in the segmented images, induced by experimen-
tal noise or error of computer reconstruction process; the
isolated pixels were removed using CTAn software. The
binary counterpart of Figure Ta is shown in Figure 1c, where
black pixels represent ice and white pixels denote pore.
A 3-D visualization of a cube of the snow sample
3.618 x3.618 x 3.618 mm’ in size is given in Figure 1d,
where shaded area represents ice phase.


https://doi.org/10.3189/002214310792447770

Yuan and others: Stochastic reconstruction of microstructure of snow

409

Fig. 1. (@) A gray-level cross-sectional image of the sieved snow sample; image size is 7.35 x 7.35 mm? (pixel size 6 x 6 um®). (b) The
binarized counterpart of (a); small dots of pore and solid phase are artifacts due to the error of the scanning process and reconstruction
process. (c) The result of removal of artifacts in (b). (d) 3-D visualization of a cube of snow microstructure, side length 3.618 mm.

The present study is only concerned with statistically
isotropic and homogeneous porous materials. Therefore, the
statistical average of the random field is identical to the
ensemble average. The porosity of the snow sample was
computed from the binary images to be 0.585, implying a
snow density of 0.381gcm™ given the ice density of
0.917gcm™. The density was also directly estimated by
measuring the mass and volume of the snow sample in order
to verify the quality of the scanned images and the
segmentation procedure. The measured density of the snow
sample, 0.377gcm™, is in good agreement with 0.381¢g
cm™. The two-point correlation function g,(u) of a cross-
sectional image can be computed using Equation (3) by
interpreting the angle bracket as the ensemble average. The
two-point correlation function of the snow sample (Fig. 2)
depicts the autocorrelation of the microstructure as a
function of the lag distance. At zero lag distance, the
function is equal to the porosity p. At large lag distance, the
function approaches its long-range value of p’. The stat-
istical isotropy of the snow microstructure is reflected in

https://doi.org/10.3189/002214310792447770 Published online by Cambridge University Press

Figure 2, in which the two-point correlation functions in
three orthogonal directions were found to be almost the
same. The correlation length computed using Equation (12)
is 56.2um. The porosity and the two-point correlation
function given in Figure 2 from the real snow sample are the
only input statistical information used for the stochastic
reconstruction in the present study.

4. RESULTS

With the porosity p and the two-point correlation g,(u) of the
real snow sample known, the one-level-cut parameter « and
the correlation function gy(u), which are required to
generate realizations of the random field, can be obtained
by Equations (5) and (6). In the present study, the FFT method
was used to numerically generate realizations of the GRF
with the given correlation function. The realizations of the
two-valued random field Z’(x) with desired statistical
information were readily obtained through the one-level-
cut procedure defined by Equation (4).
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Fig. 2. Two-point correlation functions of the real snow sample in
three orthogonal directions. Their consistency implies the statistical
isotropy of the sample.

4.1. Two-dimensional reconstruction results

Equations (7-10) are written for 3-D cases. Replacing them
with their counterparts for 2-D cases in the reconstruction
procedure gives rise to the 2-D statistical reconstruction.
Two-dimensional stochastic reconstruction can generate
much larger images than 3-D reconstruction, computer
memory for which is limited. For this reason, large 2-D
images were reconstructed for visual evaluation of the
reconstruction quality prior to 3-D reconstruction. The
simulated 2-D microstructure is given in Figure 3. The only
difference between Figure 3a and Figure 3b is that a high-
frequency filter is used in Figure 3b to smooth the pore—solid
interface. The threshold of the frequency filter is appro-
priately tuned such that the porosity change is <1%. Visual
comparison between Figures 3b and 1c indicates that the
microstructural morphologies of the simulated and actual
images are quite similar. A quantitative comparison between
the simulated snow and the real snow sample is presented in
section 4.2.

4.2. Three-dimensional reconstruction results

The 3-D reconstruction samples consist of 512 x 512 x 512
voxels (voxel size 12 x 12 x 12 um?®). The two-point correl-
ation function of the 3-D simulated microstructure is plotted
in Figure 4. It can be seen that the two-point correlation
function of the simulated snow matches that of the real snow
very well. It is worth noting that the GRF-based reconstruc-
tion method is a direct method, whereas the simulated
annealing method is an iterative method. Thus, from the
algorithmic point of view, the two-point correlation function
is precisely reproduced in the GRF-based reconstruction
procedure. In practical simulations, simulated finite domain
size and domain discretization can result in slight error. The
limitation of the GRF-based method is that it cannot ensure
that the simulated microstructure has the same higher-order
statistical information as the real microstructure.

To assess how well the other statistical information is
reproduced, quantitative microstructure descriptors defined
in section 2.2 were computed to evaluate the reconstruction
quality. The specific surface area and correlation length are
listed in Table 1. The reconstructed snow has a slightly
higher specific surface area and correlation length than the
real snow.
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4

Fig. 3. The simulated 2-D microstructure; image size is
7.35 x 7.35 mm? (pixel size 6 x 6pm2). (a) Without high-frequency
filtering. (b) High-frequency components filtered out to make the
pore-solid interface smoother.

The comparison of the lineal path functions is given in
Figure 5a and b. It is important to stress that the lineal path
function is reasonably well reproduced even though it is not
used in the reconstruction. A similar conclusion was made
in a study of the reconstruction of chalk pore networks using
the simulated annealing method (Talukdar and Torsaeter,
2002) where it was found that imposing the lineal path
function as the target function in addition to the two-point
correlation function only improves the reconstruction
quality slightly. The drawback of the GRF-based reconstruc-
tion is that it only reproduces the first- and second-order
statistical information. However, if the medium to be
reconstructed is close to the Gaussian distribution, then no
higher statistical information is needed and reasonable
accuracy can be expected. Figure 5a, however, does show
that the solid-phase lineal path function is slightly higher for
the reconstructed than for the real snow, indicating that the
solid phase of the reconstructed snow is more connected
than that of the real snow. This also implies that the pore
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Fig. 4. The two-point correlation function of real and simulated
snow. The two-point correlation function of the simulated snow
matches well with that of the real snow.
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Table 1. Summary of reconstruction results (512 x 512 x 512

voxels)

Parameter Simulated snow Real snow
Specific surface area, s (mm™) 9.1 8.6
Correlation length, /. (um) 57.8 56.2

phase of the reconstructed snow is less connected than that
of the real snow, as shown in Figure 5b. We attribute this
discrepancy to the nature of the Gaussian distribution and
the absence of higher statistical information as inputs.
Incorporation of other statistical information will be
attempted in future work.
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Fig. 5. Quantitative comparisons of the microstructure descriptors: (a) solid-phase lineal path functions; (b) void-phase lineal path functions;
(c) solid-phase chord distribution functions; (d) void-phase chord distribution functions; (e) local porosity distribution functions; and (f) pore-

size and solid-size distribution functions.

https://doi.org/10.3189/002214310792447770 Published online by Cambridge University Press


https://doi.org/10.3189/002214310792447770

412

Fig. 6. 3-D visualization of the simulated snow microstructure
(3.84 % 3.84 x 3.84 mm’).

A reasonable match between simulated and real snow
was also found for the other functions shown in Figure 5¢c—f.
The void-phase chord distribution function is well repro-
duced as shown in Figure 5d. However, the peaks of the
solid-phase chord distributions shown in Figure 5c vary
significantly, indicating there are more single-voxel solid-
phase chords for the reconstructed snow.

The local porosity distribution functions and the size
distribution functions are compared in Figure 5e and f,
respectively. The solid and pore-size distribution functions
(Fig. 5f) are similar to the solid- and void-phase chord
distribution functions. A 3-D visualization of a cube of the
simulated sample 3.84 x 3.84 x 3.84mm? in size is shown
in Figure 6 where shaded area represents the solid phase.

4.3. Results of elastic moduli

Figure 7 shows the comparison of Young’s moduli and
Poisson’s ratios (in means and standard deviations) for real
and reconstructed snow as a function of the size of the snow
cube using MPM simulations. For the largest real snow of
7.488 mm side length, only one sample is available, so no
statistics can be obtained. For real snow, the Young’s modulus

Yuan and others: Stochastic reconstruction of microstructure of snow

remains almost constant, but increases slightly with side
length. For reconstructed snow, no trend can be observed.
Table 2 shows that the reconstructed snow has a higher
Young’s modulus than the real snow; this is attributed to the
higher connectedness of the solid phase of the reconstructed
snow (cf. Fig. 5a, c and f). The Young’s moduli for both real
and reconstructed snows are at the higher end of the test
data, probably because the snow used in this paper is sieved
and more uniform. Since ice creeps easily, it is difficult to
measure the Young’s modulus of snow accurately by isolating
the viscous effect (Kirchner and others, 2001), i.e. some test
results of Young’s modulus reported in the literature could be
a tangent modulus which is smaller than the intrinsic Young’s
modulus, such as calculated in this paper, where viscous
effect is absent in the constitutive model; our approach is
similar to that of Schneebeli (2004) where the order of
magnitude of Young’s modulus calculated is similar to ours.
The Young’s moduli from simulations are all much smaller
than those due to the open-cell foam model or the theoretical
Hashin-Shtrikman bound; the moduli from open-cell foam
can thus be considered a better upper bound than the
Hashin-Shtrikman bound for the snow studied. The Poisson’s
ratios are all smaller than those from the test data and
theories. It is known that Poisson’s ratio is more difficult to
ascertain for a porous than for a solid material (Gibson and
Ashby, 1997); this aspect needs further investigation.
Although it is difficult to draw a definitive conclusion
regarding the size of the RVE for the snow being studied,
5-6 mm seems to be a reasonable range judging from the
distribution of Young’s moduli in Figure 7.

5. CONCLUSIONS

Obtaining a quantitative geometric description of snow
microstructure is essential to investigations of microstruc-
ture-based mechanical or thermal behaviors of snow.
Despite recent advances in experimental methods (e.g.
XMT), stochastic reconstruction of snow microstructure
based on statistical modeling, being a numerical method,
can be an important alternative. The GRF-based stochastic
reconstruction of the sieved and sintered dry-snow sample
with grain size <1 mm has been investigated in the present
study. The visual and quantitative comparisons between the
simulated and real snow microstructure indicated that the
stochastic reconstruction of this type of snow microstructure
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Fig. 7. Means and standard deviations of elastic moduli (a) and Poisson’s ratios (b) of simulated and real snow as a function of the side length

of the snow.
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Table 2. Summary of elastic moduli from simulations and theories

Young’s modulus, £ Poisson’s ratio, v

GPa
Reconstructed snow sample 0.694 +0.056 0.152+0.018
Real snow sample 0.581+0.044 0.153 +0.044
Test data (Shapiro and others,
1997) 0.01-0.8 0.22-0.35
Open-cell foam 1.72 0.33
Hashin-Shtrikman 2.49 0.27

is reasonably accurate even though only the porosity and the
two-point correlation function were used. The nature of
Gaussian distribution and the absence of higher statistical
information as inputs may lead to the higher connectedness
in the simulated than in the real microstructure. The
drawback of the GRF-based reconstruction is that it only
reproduces first- and second-order statistical information.
However, if the medium to be reconstructed is close to the
Gaussian distribution, then higher statistical information is
not needed and reasonable accuracy can be expected. In
conclusion, the GRF-based stochastic reconstruction tech-
nique is reasonably accurate, robust and highly efficient in
numerical simulations, making it a promising algorithm for
providing 3-D quantitative geometric descriptions of ran-
dom porous materials.

The preliminary computations of the effective elastic
moduli of varying sizes of RVEs demonstrated the potential
of the stochastic modeling of snow microstructure for
investigating the microstructure—property relationship.
Further work is needed to determine this relationship by
obtaining improved statistical information for the stochastic
reconstruction beyond the porosity and the two-point
correlation function.
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