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The flexural dynamics of melting ice shelves
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ABSTRACT. A conspicuous precursor of catastrophic ice-shelf break-up along the Antarctic Peninsula,
reported widely in the literature, is the gradual increase in surface melting and consequent proliferation
of supraglacial lakes and dolines. Here we present analytical and numerical solutions for the flexure
stresses within an ice shelf covered by lakes and dolines, both isolated and arrayed. We conclude that
surface water promotes ice-shelf instability in two ways: (1) by water-assisted crevasse penetration, as
previously noted, and (2) by the inducement of strong tensile flexure stresses (exceeding background
spreading stress by 10-100 times) in response to surface water mass loads and ‘hydrostatic rebound’

occurring when meltwater lakes drain.

INTRODUCTION

Scambos and others (2003) produce a compelling argument
that the presence of standing bodies of surface meltwater and
their sudden drainage via englacial conduits into the sub-
ice-shelf ocean drove the explosive collapse of the Larsen
B ice shelf, Antarctica, in 2002. The presence of surface
meltwater bodies and their propensity to drain, forming dry
lake beds and dolines, is further documented by Van den
Broeke (2005) and by Glasser and Scambos (2008). In this
paper we investigate the response of ice-shelf flexure stresses
to surface water loads and, most particularly, to the sudden
changes in surface loading that accompany lake drainage.
We use the term doline, as defined by Moore (1993), to
refer to a drained lake. (The term ‘ice caldera’” was used
by Stephenson and Fleming (1940).) The purpose of our
investigation is to establish a preliminary understanding of
flexure stresses induced by surface lakes and dolines, and
to further understand why such ablation features contribute
to catastrophic fragmentation and break-up of various ice
shelves along the Antarctic Peninsula. Figure 1 is an aerial
photograph showing both the complex patterns of surface
lakes, and a raised doline surrounded by a meltwater moat.

The field settings of lakes and dolines on Antarctic ice
shelves are extensively described for the Larsen B ice
shelf (Glasser and Scambos, 2008, and references therein)
and, most notably, for the George VI Ice Shelf, where
observations have been compiled for more than 70 years
(e.g.Wager, 1972; Reynolds, 1981; personal communication
from T.O. Holt and others, 2011). Similar observations are
reported for Arctic ice shelves (Hattersley-Smith, 1957).
These observations lead to the realization that surface
lakes are incised into the ice-shelf surface by a process
of local ablation enhancement associated with reduced
albedo of standing water (Tedesco and others, 2012). As
the lakes accumulate, they begin to flex the ice shelf
downward, causing further deepening and attraction of
surrounding meltwater runoff patterns (Hattersley-Smith,
1957; Sergienko, 2005). Spatial patterns of dolines are
reported by Glasser and Scambos (2008). Sometimes dolines
are clustered in groups, as was evident on the portion of the
Larsen B ice shelf within the downstream extent of Crane
Glacier (fig. 3b of Glasser and Scambos, 2008).

The first field description of an ice-shelf doline we are
aware of was in the report of the initial sledging exploration
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of the George VI Ice Shelf in 1936 (Stephenson and Fleming,
1940). This report describes the encounter by a sledging team
of an unusual ‘rising’ ice-shelf surface where it is normally
smooth and level, with a ‘bowl-shaped basin, nearly a mile
across, bordered by ice-cliffs 100 feet high, ... [iIn the bottom
of [which] were several mounds of angular ice-blocks piled
up to a height of 30 or 40 feet above the general level of
the floor’. While it is not possible to specifically identify the
doline observed by this sledging team, their description fits
with the impression given by the dolines present today on
the George VI Ice Shelf (e.g. Fig. 1).

While surface lakes can grow to large horizontal scales,
exceeding several kilometers (e.g. fig. 3 of Glasser and
Scambos, 2008), they are more typically sub-kilometer in
horizontal scale and occur in arrays or patterns that can
be very complex (Reynolds, 1981; Reynolds and Hambrey,
1988; personal communication from T.O. Holt and others,
2011). The vertical scale of lakes and dolines is less well
constrained by observation. Bindschadler and others (2002)
used IKONOS satellite image photoclinometry to deduce
doline depth for a variety of examples on the Larsen B
ice shelf in the years prior to its break-up. They reported
vertical dimensions ranging from 5 to 20m in ice that was
~250m thick. In some of the deepest dolines, Bindschadler
and others (2002) reported a conspicuous floor, suggesting
a shallow remnant of the original lake with an ice lid filling
the base of the doline. Dolines significantly deeper than the
freeboard elevation were not reported.

ELASTIC OR VISCOUS ICE RESPONSE?

Ice-shelf response to changing surface meltwater loads
is a problem that can involve both viscous and elastic
deformation. The most common approach in the literature
is to treat ice-shelf flexure as a problem in elastic bending
(e.g. Reeh, 1968; Scambos and others, 2005). Sayag and
Worster (2011), who formulate ice-shelf flexure at grounding
lines in terms of elastic deformation, argue that the deciding
factor determining whether to use fluid or elastic deformation
is whether the timescale of the phenomena causing the
deformation is short compared with the time required to
create significant viscous deformations.

A common approach to deciding whether to use viscous or
elastic rheology in a given problem is to determine whether
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Fig. 1. Aerial photograph of surface meltwater lake patterns and
a doline on the George VI Ice Shelf (photograph courtesy of
Dominic Hodgson, 2011, British Antarctic Survey). The doline is
located at ~71°07’S, 67°58’ W. The dimensions of the doline are
~950m x ~550 m.

the timescale of the forcing is long or short compared
with the Maxwell time (Maxwell, 1867), 7 = u/E, where
w is a characteristic viscosity and E is a characteristic
spring constant (we use Young’s modulus of elasticity). This
timescale is the e-folding timescale associated with the
response of a simple spring (with spring constant determined
by E) connected in series with a simple dashpot (with
viscosity p). Using 1 = 10° GPas, and taking F = 10 GPa,
gives 7 ~ 10°s ~ 10 days. Insofar as melting seasons along
the Antarctic Peninsula can persist for >60 days (Scambos
and others, 2000), the response of the ice shelf to lake
growth probably invokes a combination of both viscous and
elastic deformation. However, under the assumption that
lake drainage is very rapid, on the order of minutes to hours,
an elastic treatment of flexure stresses induced immediately

MacAyeal and Sergienko: Flexural dynamics of melting ice shelves

following is valid. In the present study, we restrict ourselves
to treatment of ice as an elastic medium, and make note of
the fact that possible viscoelastic treatment may be needed
to refine the treatment of flexure induced by surface lake
development over multiple years. It is important to stress that
the analysis we present below, where we treat the ice shelf
as an elastic medium, will estimate stresses that are likely
to be upper bounds on what will actually exist in nature.
This is because viscous relaxation will tend to reduce stresses
associated with the elastic response.

ISOLATED SURFACE LAKE AND DOLINE

We begin the analysis with an examination of an isolated
lake/doline that is perfectly circular with azimuthal sym-
metry, and where the surrounding ice shelf is of uniform
thickness, H (Fig. 2). The center of the lake/doline forms the
origin of a cylindrical coordinate system, where r, 6 and z
are the coordinates (with z = 0 at sea level).

Analytic solutions

Analytic solutions describing the flexure and stress regime of
the isolated circular lake and doline can be adapted from the
thin-plate treatment of various lithospheric flexure problems
associated with oceanic plate volcanism. Following Brotchie
and Silvester (1969) and Lambeck and Natiboglu (1980), we
consider an infinite elastic plate of rigidity D, given by

EH?
D_12(1—y2) W
where H is the ice thickness and v = 0.3 is the Poisson ratio.
The lake (or doline) is represented by adding an azimuthally
symmetric and spatially uniform surface load (or upward
force) to the plate within a disk-shaped region centered at
r =0, and with a radius equal to Lq. Shear deformation and
stretching in the plate is disregarded, and the flexural rigidity
(which depends on ice thickness) is assumed uniform for
simplicity. The equation governing the vertical displacement,
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Fig. 2. Idealized geometry of an isolated supraglacial lake/doline feature. (a) Before and after drainage view of the lake/doline. (b) Cross
section of the idealized geometry with annotation of boundary conditions.
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7(r), of the elastic plate is the familiar biharmonic equation

DV47] + pswgn = F

where F(r) is the surface load given by

F(r) = {(wa - pilgd !f r<ly
0 if r > 14

for the filled lake, and for the doline:

F(r) = —pigd If r<ly
0 if r > Ld

(2)

“4)

where g is the acceleration due to gravity, and pi, py, and
psw are the densities of ice, fresh water and sea water,
respectively. Boundary (at r = 0, oo) conditions are (Brotchie

and Silvester, 1969; Lambeck and Natiboglu, 1980)

[n(r=0)| < o

o, _

In(r — c0)| =0
n

(5a)
(5b)
(5¢0)

(5d)

Continuity constraints are additionally applied at r = Lg:

[n(r=Lg)] =0 (6a)
on
[775 (r= Ld)] =0 (6b)
M (r=1Lg)] =0 (6€)
[Q(r=La)] =0 (6d)
where [-] = 0 indicates a no-jump (continuity) condition,

My =—-D ( + rr) is the radial bending moment and

Q = ? is the radial shear. For both the filled lake and

2

the doline, the actual load is applied to a patch of the plate
surface, and no attempt is made to resolve the variability of
the deformation within the plate. This will constitute one
of the main reasons why the analytic solution will differ
from numerical solutions, which feature full treatment of
z-variation in the geometry, to be shown below. Variation
of radial stress, T, within the infinitesimally thin plate
addressed by the analytic solution is assumed to be linear,
achieving maximum absolute values, max |T|, at the upper

and lower surfaces of the ice.

Brotchie and Silvester (1969) and Lambeck and Natiboglu
(1980) developed the analytic solution of the above problem,
which we adapt to represent the forcing of the filled lake
or doline. This solution is written in terms of Kelvin—Bessel

functions (see Appendix)

n (;) = ;i?g {1 + Gy Ber G) + (;Bei G)}

for r < Ly, and
n G) = piivr()g [C{Ber (

+ClKei (;)]

r

—I =
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) + G Bei (7) + C3Ker G

)

for r > Ly, where |* = D/(pswg) is the radius of flexural
stiffness defined by Lambeck and Natiboglu (1980). The
various constants C; and C/ (i = 1,...,4) are determined
from the boundary (regularity) and transmission conditions,
Egn (6), and are listed in the Appendix; they are the same as
eqgn (3¢) of Lambeck and Natiboglu (1980).

Numerical solutions

We present numerical solutions for the flexural response
to an isolated lake or doline, because we anticipate that
numerical methods will be required to handle complexities
of geometry arising from lakes and dolines in natural settings.
The governing equations in the numerical model are the
familiar stress-balance equations for an elastic medium
written in terms of the elastic displacement, u:
vau + ;

21 +v) 21 +v)(1 —2v)
where n; is an upward-pointing unit vector in the cylindrical
coordinate system used to study isolated lakes/dolines with
azimuthal symmetry (and for comparison with the analytic
solutions described above).

For the analytic solution, the horizontal extent of the ice
shelf is infinite. For the numerical solutions, the radial extent,
R, of the ice shelf is 20 km, and is sufficiently large to separate
the flexural regime of the lake/doline from any that may be
introduced by far-field boundary conditions, such as an ice
front. The choice R = 20km is ~10 times the horizontal
wavelength, A, of the damped sinusoid that develops at an
ice front due to bending moments introduced by sea-water
pressure (e.g. Sergienko, 2005, 2010). For future reference,

_ VD
-2

For the analytic solution, the thin-plate approximation is
used, so there is no z dimension to resolve. In the numerical
model, variations of stress and strain within the finite-
thickness geometry of the ice shelf are treated explicitly. In
the far field, the thickness of the ice shelf is assumed to be
uniform at H = 250m for the experiments in which the
results are compared with the analytic solution described
above. The depth of the lake or doline is also treated as
uniform, with depth, d, equal to the distance from the
ice-shelf surface to sea level. This choice is arbitrary, but
seems reasonable given that dolines with depth exceeding
the freeboard height of the ice shelf are not observed. After
examining the solutions associated with a sharp, step-like
boundary at the edge of the lake or doline (Fig. 2), a smoother
profile was adopted to avoid a discontinuity in radial stress
that would occur at the lake/doline boundary as a result. A
hyperbolic tangent profile with a scale width, Ls, of 100 m
is adopted for the surface profile of the ice shelf, S(r), in the
vicinity of the lake or doline:

_d r—Ld
S(r) = 5 {1 +tanh< L )}

Sensitivity experiments were performed to establish that Ls
in the range 100-250m would eliminate the discontinuity
without significantly changing the solution at locations of
maximum tensile stress away from the lake or doline edge.
To assess the performance of the numerical model, we
construct two numerical solutions: a ‘reduced’ and a ‘full’
ice-shelf solution. The reduced solution is intended to display
only the effects associated with the lake or doline in isolation

V(V-u)=—pignz (9

A

(10)

(1m
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Fig. 3. Comparison of numerical and analytic solutions for the
vertical displacement of the ice-shelf mid-plane for (a) isolated lake
and (b) doline. Circles denote a numerical solution of the same
thin-plate problem as the analytic solution.

from the background effects associated with the far-field
conditions of an ice shelf (e.g. pressure forces at an ice front)
and with the hydrostatic balance. The reduced solution is
composed as a test of the numerical methods, since it is most
comparable with the analytic solution where the thin-plate
approximation eliminates all but the most simple resolution
of stress variation, specifically pressure, within the vertical
dimension of the ice shelf. The full solution represents the
combination of the lake or doline with the effects that arise
within the ice shelf as a result of its hydrostatic equilibrium
in the surrounding water and bending moments introduced
at the ice front. Since the problem is treated as linear (the
nonlinearity introduced by the fact that boundary strains
will slightly alter the boundary conditions is artificially
suppressed), the full solution can be viewed as the linear
combination of the reduced solution, involving just the lake
or doline, with a solution to a flat-plate ice shelf where only
far-field effects are in play. The full solution is compared to
the analytic solution only to assess how strong the effects of
the lake or doline are, relative to the background elastic state
of an ice shelf.

Reduced problem boundary conditions

To produce the reduced numerical solution, the ice-front
boundary condition is specified to be stress-free, the
gravitational body force term is removed from Eqn (9), and
the boundary condition on the bottom surface of the ice shelf,
z = B(r), is specified in terms of a perturbation pressure
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associated with displacement of the bottom boundary from
a reference rest position:

p(r)

= pewg (B(r) - ﬂH) (12)
7=B(r) Psw

For the lake, we apply a surface pressure to the ice surface,
z = 5(r), that represents the reduced load (dependent on the
density difference between ice and water) associated with
filling the surface depression between z = d and z = S(r)
with fresh water:

= (ptw — i) g (d = S(n) (13)
z=S(r)

For the doline, we apply an upward surface force to the ice-
shelf surface that represents the gravitational load of the ice
that is missing between z = d and z = 5(r):

= —pig (d —S(n) (14)
z=5(r)
At the origin, r = 0, in both the reduced and the full (see
below) solutions, an axial symmetry condition is applied.
Note that S(r) — d when r > L4, so the loads associated
with the lake and doline are spatially confined.

p(r)

Full problem boundary conditions

The full numerical solution involves the same geometry as the
reduced numerical solution, but without the simplifications
associated with removing the gravitational body force and
the pressure of sea water at the base and at the far-field ice
front (r = L). For the lake, the full pressure of fresh water is
specified, as is necessary for the ice to achieve hydrostatic
equilibrium under the influence of the gravitational body
force:

p(r)

= pwg (d — S(n) (15)
z=5(r)

For the doline, the upper surface is free:

The pressure at the ice front (r = L) is given by

_ ) —pswgz if z<0 (17)
r=L

P 0 ifz>0

Comparison of solutions

Comparisons of numerical solutions with analytic solutions
are presented in Figures 3-5. The comparisons are made
for parameter values suggested by the observations of
Bindschadler and others (2002) just prior to the collapse
of the Larsen B ice shelf: H = 250m, Ly = 1000m and
d = (1= pi/psw)H = 28.7m, with p; = 910kgm >, psw =
1028kgm™, p, = 1000kgm™> and g = 9.81ms~2.
Vertical displacement of the ice-shelf mid-plane for the full
numerical solution, n(r), is shown in Figure 3. The full
numerical solution is bracketed by the analytic solutions
for the distributed load and for the effective point load,
respectively, for both lake and doline cases. This suggests that
the effect of finite thickness associated with the numerical
solution tends to reduce the effective radius of a distributed
load, because of the separation between the mid-plane of
the ice shelf and the upper surface where the lake/doline
is placed. Additionally, the resolved vertical geometry of
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Fig. 4. Comparison of numerical (full and reduced solutions) and
analytic radial stress, Ty, for the azimuthally symmetric isolated
lake. Stresses are evaluated at (a) the surface of the ice shelf,
z = S(r), and (b) the base of the ice shelf, z = B(r).

the numerical solution accounts for changes in the flexural
rigidity, which depends on the ice thickness. As an additional
test of the numerical solver, we computed the solution to the
same thin-plate problems described by the analytic solutions.
The circles which overlay the blue curves in Figure 3 show
the agreement.

Comparisons of radial stresses, T, between the numerical
solutions, both full and reduced, and the analytic solution
for the distributed load are evaluated at the ice-shelf surface
and base, z = S(r) and z = B(r), respectively, and are
presented in Figures 4 and 5 for the case of a lake and doline,
respectively. For the analytic solution, the radial stress, Ty,
is given by

E
T = mz [T]rr + %nr} (18)
with z = +£H/2. For the full numerical solution, the radial
stress is given by:

E

B m (v — Ter — viegy + €z)] (19)

r

where e, epp and e are the strain tensor components,
evaluated at appropriate locations in the cylindrical co-
ordinate system.

The radial stresses of the reduced numerical solution (red
curves in Figs 4 and 5) fit the analytic solution closely, but
not exactly, because the analytic solution does not explicitly
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Fig. 5. Comparison of numerical (full and reduced solutions) and
analytic radial stress, Ty, for the azimuthally symmetric isolated
doline. Stresses are evaluated at (a) the surface of the ice shelf,
z = S(r), and (b) the base of the ice shelf, z = B(r).

resolve the variations of ice thickness associated with the
reduced numerical solution. In the far field, as r > L4, both
the analytic and reduced Ty, for both lake and doline cases,
asymptote to zero. The radial stresses for the full numerical
solution in both lake and doline cases (black curves in Figs 4
and 5) are comparable in shape to the analytic solution near
the origin, but are offset by a constant negative value in the
far field. This difference reflects the fact that the gravitational
body force, in concert with the compressive pressure of water
on the ice-shelf bottom and ice front, creates a compressive
elastic strain in the ice shelf and thus a reference elastic stress
that is compressive.

PARAMETER SENSITIVITY, ISOLATED LAKE/DOLINE

From these considerations, we restrict our parameter sweep
of d and Ly to the ranges [0 m — (1 — pi/psw)H] and [100 m
— 2000m]. For H, we sweep the range [100 — 500m],
because this range includes the ice thickness values of the
two most prominent examples of ice-shelf disintegration (the
Wilkins and Larsen B ice shelves, estimated to be ~175m
and ~220m thick, respectively).

Using the same finite-element package used to develop the
full numerical solutions described above for isolated lakes
and dolines (the structural mechanics module of COMSOL),
we conducted a parameter sweep on three parameters,
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Fig. 6. Regions where tensile radial stress develops in response to
(a) lakes and (b) dolines, i.e. T;x > 0 (shaded or cross-hatched
regions). Maximum values of positive (tensile) Ty are achieved at
the ice/water or ice/air boundaries in all cases, and the numerical
values of these maxima are given as a function of parameters H
and Ly in Figures 7 and 8. In the case of a filled lake, tensile
Ty does not develop on the ice-shelf bottom directly beneath the
center of the lake until d > dc, where dc is a critical depth
(determined numerically) shown in Figure 9. The vertical arrows
on the left-hand side of the ice shelf indicate the relative elastic
displacement of the ice-shelf mid-plane, which is comparable to
the displacement of the neutral axis of an elastic plate in analytic
solutions, n. The small V-shaped symbols in the tensile regions
represent a schematic view of how fractures would develop from the
elastic flexure stresses displayed. The depth of the lake and doline
depicted in this schematic diagram is exaggerated for clarity. In our
simulations, we do not consider depths which exceed the freeboard
of the ice shelf.

the ice thickness, radial extent and depth, H, Ly and d,
respectively, to determine where, and by what magnitude,
tensile radial stresses (assuming an elastic ice shelf) would
develop in response to lakes and dolines. We computed
the stress regime over the entire ice shelf and examined the
results to determine where tensile radial stresses, T, > 0,
would develop in the portions of the ice shelf nearest to the
lake or doline feature. Results of the parameter sweep on
H, Ly and d are summarized in Figures 6-9. Our working
assumption is that positive (tensile) radial stress will be
a necessary condition for ice fracture. We leave a more
definitive analysis of the connection between the stress
regime of lakes and dolines and fracture for future study.

For filled lakes, tensile radial stress, T,;, develops in two
regions depending on the values of H, Ly and d. At the
surface of the ice shelf immediately adjacent to the lake’s rim,
a zone of weak (<100 kPa) tensile stress develops for virtually
all values of H and Ly when the doline depth, d, is set at the
sea-level reference value of (1 — pi/psw)H, recommended
by the observations of Bindschadler and others (2002). For
H = 250m, the approximate thickness of the Larsen B ice
shelf prior to its collapse, tensile radial stress failed to develop
at the base of the ice shelf immediately beneath the lake at
r = 0 unless d was significantly larger than the sea-level
reference value (Fig. 9).

Tensile radial stress is more prominent in the case of a
drained lake, or doline, than in the case of a filled lake. As
shown in Figure 8, tensile radial stress develops at the ice-
shelf base immediately adjacent to the downward projection
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Fig. 7. Maximum positive (tensile) radial stress, max(Trr)yim,
generated by the elastic flexure at the surface of the ice shelf (at the
surface location depicted in Fig. 6a) in response to an azimuthally
symmetric lake filled with fresh water. (a) The maximum tensile
stress values as a function of H and Ly. (The contour interval,
denoted by c.i., is T0kPa.) (b) The maximum tensile stress values
as a function of H and Ly/\, where X is the flexural wavelength
given by Eqn (10). The gray region in (b) denotes the region of
parameter space not filled by the parameter sweep shown in (a). The
max(Tr)yim is expected to be tensile in this region, however. White
areas in (a) and (b) denote the parameter range where max(T)sim
is compressive (negative).

of the rim of the former lake when Ly > 4H. This relationship
between Ly and H is a result derived empirically, and is
apparent from the plots in Figure 8. The fact that T, quickly
exceeds several hundred kilopascals when Ly crosses this
threshold suggests that drainage of lakes that have developed
to a large radius will be a strong source of fracture in an ice
shelf.

To address the question of what might limit lake depth,
we conducted a parameter sweep of d and Ly for a fixed
thickness, H = 250m. As shown in Figure 9, tensile radial
stress, Ty > 0, develops on the bottom of the ice shelf directly
under the lake when L[4y >~500m. As the size of the
doline increases to ~1500 m, this tensile stress develops for
increasingly shallow values of d. The shallowest value for d
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Fig. 8. Maximum positive (tensile) radial stress, max(Tr)paes
generated by the elastic flexure at the base of the ice shelf (at the
basal location depicted in Fig. 6b) in response to an azimuthally
symmetric doline. (a) The maximum tensile stress values as a
function of H and Ly. (b) The maximum tensile stress values as
a function of H and Ly/A, where X is the flexural wavelength
given by Eqn (10). The gray region in (b) denotes the region of
parameter space not filled by the parameter sweep shown in (a). The
max(Trr)pase is €xpected to be tensile in this region, however. White
areas in (a) and (b) denote the parameter range where max(Tir)p e
is compressive (positive).

for which tensile stress is developed is ~45m, and occurs
for lake widths of ~1500m. As lakes get larger than this
radius, the value of d required to obtain tensile radial stress
increases, eventually converging on a value of ~75 m. Given
that lakes and dolines are generally observed to have depths
of (1 — pi/psw)H or less, the process of developing tensile
radial stress beneath the center of the lake appears not to be
responsible for what determines maximum lake depth before
drainage.

PARAMETER SENSITIVITY, LAKE/DOLINE ARRAYS

In the previous section, we presented the flexure-induced
stress regime of a single, idealized lake or doline. In
this section, we consider an array of 20 identical lakes
or dolines imbedded in a two-dimensional ice shelf. The
domain represents an idealized cross section of uniform
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Fig. 9. Maximum radial stress as a function of d on the base of the
ice shelf directly beneath the filled lake, max(Tyr)p g0, (se€ Cross-
hatched region in Fig. 6a) for various lake diameters, and with
H = 250m. Blue curves are results for lakes with Ly < 1500 m.
Black curves are results for lakes with Ly > 1500 m. Curves for
all values of Ly lie (approximately) to the right of the curve with
Ly < 1500m. The lake depth, dc (denoted by circles), where
max(Trr)pase DECOMes positive (tensile) is a function of Ly. For Ly
between 250 and 8000 m, d¢ lies below the dashed vertical line at
d =~ 45m.

initial thickness (H = 250 m, prior to the placement of lakes
or dolines), within the x-z plane, under the assumption of
plane strain. This array of supraglacial features represents a
simplified representation of the lakes and dolines observed
by Glasser and Scambos (2008) on the Larsen B ice shelf
prior to its collapse. As shown in Figure 10, 20 lakes or
dolines are placed in a linear array separated by Ls from each
other. The total length of the ice shelf between a simplified
grounding line at x = O (represented by a ‘roller’ boundary
condition, u = 0, w is free, where u and w are the x and
z displacements) and an ice front at the extreme right-hand
end is 4\ + 20(Ly + L), and thus expands or contracts as
parameters Ly and Ls are varied. Boundary regions of length
2 that are free of lakes or dolines are placed at either end of
the array of supraglacial features so as to isolate them from
the effects of the ice front or grounding line. Analysis of the
resulting flexural effects is restricted to the neighborhood of
the 10th and 11th lakes/dolines to avoid effects associated
with the two ends of the array. (Typically, stresses become
slightly more tensile at the ends of the array.)

For arrays of supraglacial lakes (Fig. 11) zones of tensile
stress extend downward from the surface of the ice shelf
within the areas of the ice shelf that are between the
lakes, for all values of L4 and Ls between 500 and 4000 m
(the parameter ranges are motivated by the observations of
Glasser and Scambos, 2008). The value of the maximum
stress gets up to ~600kPa for lakes of very large width
(~4000m) and separations of Ls & A.

For arrays of dolines, as shown in Figure 12, tensile stresses
extending toward the central plane of the ice shelf develop
on the doline floors and on the ice-shelf bottom directly
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Fig. 10. Geometry, boundary conditions and definitions associated with numerical experiments addressing an idealized ice shelf with
periodic surface lake/doline array. Location of maximum tensile stresses shown by shading.

under the segments of ice shelf that separate the dolines. In
agreement with the results of a single, isolated lake/doline,
the zones of tensile stress in the array of dolines have ~5 to
~10 times higher tensile stress than in the case of the array
of lakes. Tensile stresses exceed 9 MPa on the floor of the
dolines when Ly ~ )\; and exceed 9 MPa on the bottom of
the ice shelf when Ls = X.

DISCUSSION

The very compelling argument for standing surface water
as the immediate proximal trigger of catastrophic ice-shelf
disintegration (e.g. Scambos and others, 2000, 2003, 2005;
Van den Broeke, 2005; Glasser and Scambos, 2008) has
strong observational support, but is based on only one
aspect of surface water’s influence on ice-shelf fracture.
This argument (Scambos and others, 2000, 2003) focuses
on how meltwater assists vertical crevasse penetration (e.g.
based on concepts articulated by Van der Veen, 1998a,b,
and references therein). The tensile stress required to initiate
crevassing, as argued by Scambos and others (2000), comes
from the steady background stresses in the horizontal plane
(Txx, Tyy and Tyy) that cause viscous-like ice-shelf spreading
(albeit with Glen’s flow law).

4000
3500
3000 400 kPa

2500

2000 | 200 kPa

Width (m)

1500

1000

500

2000
Separation (m)

3000 4000

Fig. 11. Maximum tensile stress, max(Tz);in, developed at the
surface of the ice shelf between surface lakes in the middle of the
array of 20 lakes (measured between the 10th and 11th lakes, as
pictured in Fig. 10). This stress is maximized when lake separation,
Ls, is approximately equal to the flexural wavelength, A, when lake
width exceeds ~2500 m.
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The results of our study show that the presence of surface
meltwater in supraglacial lakes and, most notably, the
absence of surface meltwater from dolines that suddenly
drain (most likely by the meltwater-assisted crevasse mechan-
ism outlined by Scambos and others, 2003) can significantly

a 4000
3500

3000
= 2500
9000 kPa
2000

Widt

1500

1000

c.i.=500 kPa 5000 kPa

1000 2000 3000
Separation (m)

500 4000

5000 kPa

.i.=500 kPa
2000
Separation (m)

1000 3000

Fig. 12. Maximum tensile stresses, max(Tzz)fioor and max(Tzz)figs,
developed either (a) on the floor of the doline or (b) on the base of
the ice shelf. The values are extracted from the solution in the middle
of the array of 20 lakes (measured between the 10th and 11th lakes,
as pictured in Fig. 10). The floor stress is maximized when lake
separation, Ls, is approximately equal to the flexural wavelength,
A; and the bottom stress is maximized when lake width, L, is also
approximately equal to the flexural wavelength.
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contribute to the tensile stresses in the horizontal plane that
are required to initiate crevassing. The background tensile
stress of the Larsen B ice shelf in a configuration several years
before its break-up, estimated by Scambos and others (2000)
from an ice-shelf flow model, is ~20kPa (fig. 10 of Scambos
and others, 2000). Our study shows that the presence of
meltwater, and its sudden drainage, produces tensile flexure
stresses that are 10-100 times larger at a variety of locations,
including the surface and base of the ice shelf.

A simple explanation for why dolines are more likely to
produce ice-shelf fracture than the lakes from which the
dolines originate can be found by considering Archimedes’
principle. For each meter of ice removed from the upper
surface of the ice shelf, the Archimedes principle requires
that the remaining, underlying ice move (via flexure) ~90 cm
upward to achieve hydrostatic balance. In comparison, for
each meter depth of a freshwater lake on the surface,
only 1T0cm of downward movement is required to achieve
hydrostatic balance. The upward flexure induced by lake
drainage is always a factor of ~10 larger than the downward
flexure induced by the surface meltwater loads that create
the doline basin.

We thus argue that the well-recognized relationship
between the presence of surface water on ice shelves and
their sudden instability includes two important processes: the
water-assisted crevasse propagation process, as articulated
by Scambos and others (2003), and the process we describe
here, the creation of strong flexure-induced tensile stresses,
especially when lakes drain to become dolines. Our results
suggest that supraglacial lakes, particularly when arrayed
in patterns similar to that observed prior to the break-up of
the Larsen B ice shelf (Glasser and Scambos, 2008), induce
tensile stress at the ice-shelf surface approaching ~100 kPa.
Even more significant, when these surface lakes drain, much
larger tensile stresses, i.e. exceeding 9 MPa for parameters
similar to those on the Larsen B ice shelf, develop at
both the ice-shelf surface (on the floors of the dolines)
and at the ice-shelf base, adjacent to the point below the
rims of the dolines. Thus, we have found a mechanism
where standing surface meltwater, and more specifically
its sudden drainage, such as observed immediately prior
to the break-up event of the Larsen B ice shelf (Scambos
and others, 2003), is capable of adding to the tensile stress
regime that contributes to ice-shelf break-up.

What remains to be done in future research is to examine
the process of fracture propagation in light of the flexural
stresses we have illustrated here. Previous work (e.g. Van
der Veen, 1998a,b; Scambos and others, 2000; Plate and
others, 2012, and references therein) on ice-shelf fracture
mechanics has established that water-assisted crevassing can,
and does, penetrate the full thickness of ice shelves under
circumstances where the only tensile stress is associated with
the background spreading stress of the ice shelf, generally
<100 kPa. While the flexure stresses described in the present
study are sufficiently large in magnitude to create starter
fractures on both the ice-shelf surface and base, depending
on loading conditions, flexure stress is a strong function
of z. Ultimately, even the strongest tensile stress on one
surface is coupled with an equally strong compressive stress
on the opposite surface. We postulate, based on intuition,
that fractures created by ice-shelf flexure will ultimately
propagate through the neutral surface (typically the mid-
plane of the ice shelf) and continue to grow through the
full thickness of the ice shelf, because the z-variation of the
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flexure-induced stress will follow the interval of unbroken
ice, either below the crevasse tip or above. Also, it is possible
that fractures started by flexure stresses may continue to
propagate via the background stress within the ice shelf,
once flexure has been relieved by water-load redistribution
and viscous creep. Thus, the background stress regime
considered by Scambos and others (2000) may continue to
determine ice-shelf instability, in spite of the presence of
temporally varying flexure stresses that can have much larger
tensile values. These issues require careful consideration
within the context of a fracture-mechanics study.

CONCLUSION

Scambos and others (2003) attributed the collapse of the
Larsen B ice shelf to a hydrofracturing mechanism enabled
by the sudden drainage of many surface meltwater lakes.
The results of our study suggest that there is additional
significance to the sudden disappearance of surface lakes. In
particular, during the brief time (determined by the viscous
relaxation of elastic response, ~10 days) following the onset
of drainage, the ice shelf will likely experience strong tensile
flexure stress induced from the hydrostatic rebound caused
by the removal of surface meltwater. The tensile flexure
stress magnitudes that we estimate in our study can exceed
the background spreading stress by orders of magnitude,
can occur on both the ice-shelf surface and base, and can
produce multiple fractures on the ice shelf if associated
with arrays of draining lakes. Our study thus leads to the
speculation that the causal connection between ice-shelf
surface lake drainage and subsequent ice-shelf break-up may
involve more than just the hydrologically assisted fracture
process. Drainage of surface lakes by any means, regardless
of whether the englacial transit of the water induces fracture,
may induce fracture by flexural dynamics.
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APPENDIX

Constants used to express the analytic solution for a
lake/doline load on an ice shelf under the thin-plate
approximation, C; and C/ in Eqns (7) and (8), are given
as follows (Brotchie and Silvester, 1969; Lambeck and
Natiboglu, 1980):

G = L—IdKer’ (L—Id (A1a)
C, = —L—/dKei' (L—Id) (A1b)
Cl=C=0 (Alc)

) (A1d)
Ci = EBei’ <L—/d> (Ale)
(

where Ker'( ), Kei’( ), Ber’() and Bei’() are complex-valued
functions given by

__ Bery(x) + Beiy (x)

Ber'(x) = S B (A2a)
Bei'(x) = w (A2b)
Ker'(x) = w (A2¢)
Kei (x) = —Keh(x)\_ﬁKe” i (A2d)
and where
Bern(x) = Re :/n (xe%)} (A3a)
Bein(x) = Im [/ (xe—)} (A3b)
Kern(x) = Re e—* Kn (xe”f’)] (A30)
Kein(x) = Im [e~ 'K, (xe%i)} (A3d)

and, finally, where J,(x) is a Bessel function of the first kind,
Kn(x) is a modified Bessel function of the second kind and

where | = v/—1.
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