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Spectral Transformations of the Laurent
Biorthogonal Polynomials, II. Pastro
Polynomials
Luc Vinet and Alexei Zhedanov

Abstract. We continue to study the simplest closure conditions for chains of spectral transformations
of the Laurent biorthogonal polynomials (LBP). It is shown that the 1-1-periodic q-closure condition
leads to the LBP introduced by Pastro. We introduce classes of semi-classical and Laguerre-Hahn LBP
associated to generic closure conditions of the chain of spectral transformations.

1 Introduction

In the previous paper [5] we started to study the closure conditions for spectral trans-
formations of the Laurent biorthogonal polynomials (LBP) defined by the recurrence
relation

Pn+1(z) + (dn − z)Pn(z) = zbnPn−1(z), n ≥ 1(1.1)

with the initial conditions

P0(z) = 1, P1(z) = z − d0.(1.2)

Let us recall some basic facts from the theory of spectral transformations of the
LBP (for details see [5]).

It can be shown that there exists a linear Laurent functional L defined on all pos-
sible monomials zn by the moments

c0 = 1, cn = L{zn}, ±1,±2, . . .(1.3)

(in general the moments cn are complex numbers). This functional provides the
orthogonality property

L{Pn(z)z−k} = hnδkn, 0 ≤ k ≤ n,(1.4)

where the normalization constants are

h0 = 1, hn =
b1b2 · · · bn

d1d2 · · · dn
.(1.5)
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The orthogonality property (1.4) can be rewritten as the biorthogonal relation [4],
[3],

L{Pn(z)Qm(1/z)} = hnδnm,(1.6)

where the polynomials Qn(z) are defined by the formula

Qn(z) =
znPn+1(1/z)− zn−1Pn(1/z)

Pn(0)
.(1.7)

Note that the polynomials Qn(z) are again LBP with moments c{Q}
n = c−n.

The transformation Q of the polynomials Pn(z) into the polynomials Qn(z) is an
involution, i.e., Q2 = I, where I is the identity operator.

Another important involution is the transformation T of the polynomials Pn(z)
into the LBP Tn(z) defined as

Tn(z) =
znPn(1/z)

Pn(0)
.(1.8)

The polynomials Tn(z) are again the monic LBP with moments

c{T}
n =

c1−n

c1
.(1.9)

The j-associated polynomials P( j)
n (z) satisfy the recurrence relation

P( j)
n+1(z) + dn+ jP

( j)
n (z) = z

(
P( j)

n (z) + bn+ jP
( j)
n−1(z)

)
(1.10)

with initial conditions P( j)
0 = 1, P( j)

1 (z) = z− d j . Let us recall the scaling property of
LBP [5].

Assume that the polynomials Pn(z) are LBP with moments cn and recurrence co-
efficents dn, bn. The polynomials SP̃n(z) = κ−nPn(κz) are also LBP with moments
c̃n = κ

−ncn and recurrence parameters b̃n = bn/κ, d̃n = dn/κ.
We say that LBP are regular if bn dn �= 0. For the regular LBP the following lemma

holds (see, e.g. [6]):

Lemma 1 Let Pn(z) be a set of regular LBP. Assume that the identity

S1(z ; n)Pn(z) + S2(z ; n)Pn−1(z) = 0, n = 1, 2, . . .(1.11)

takes place, where S1,2(z ; n) are polynomials in z whose coefficients depend on n but
whose degrees are fixed numbers (not depending on n). Then the polynomials S1,2 vanish
identically:

S1(z ; n) = S2(z ; n) ≡ 0.(1.12)
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The main spectral transformations of the LBP are the Christoffel and Geronimus
transformations.

By Christoffel transformation (CT) we mean the transformation

P̃n(z) =
Pn+1(z)−UnPn(z)

z − µ
,(1.13)

where µ is an arbitrary parameter and

Un =
Pn+1(µ)

Pn(µ)
.(1.14)

It is easily verified that the polynomials P̃n(z) are again monic LBP having the mo-
ments

c̃n = (c1 − µ)−1(cn+1 − µcn), n = 0,±1,±2, . . . .(1.15)

If the polynomials Pn(z) satisfy the recurrence relation (1.1), the polynomials
P̃n(z) satisfy the recurrence relation

P̃n+1(z) + d̃nP̃n(z) = z
(

P̃n(z) + b̃nP̃n−1(z)
)
,(1.16)

where

b̃n = bn
bn+1 + Un

bn + Un−1
,(1.17)

d̃n = dn
dn+1 + Un+1

dn + Un
.(1.18)

The reciprocal to the CT is the Geronimus transformation GT (for details see [5]
and [7]).

In what follows we will denote by C(µ){Pn(z)} the effect of the Christoffel trans-
formations of the LBP Pn(z) (i.e., (1.13)).

2 Closure Conditions for Chains of Spectral Transformations

From given polynomials Pn(z), we can construct a chain of polynomial sets

Pn(z ; µ1, µ2, . . . , µN ) = C(µN )C(µN−1) · · ·C(µ1){Pn(z)}(2.1)

applying successively N CT at the points µ1, µ2, . . . , µN . Choosing another set of
points ν1, ν2, . . . , . . . , νM we can construct another chain of polynomials sets

Pn(z ; ν1, ν2, . . . , νM) = C(νM)C(νM−1) · · ·C(ν1){Pn(z)}.(2.2)

By (generalized) q-closure condition we mean the following relation

P( j1)
n (z ; µ1, µ2, . . . , µN ) = qnP( j2)

n (z/q ; ν1, ν2, . . . , νM),(2.3)
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where j1, j2 are arbitrary nonnegative integers and q is a fixed parameter. As usual,

P( j)
n (z) denotes the j-associated polynomial defined by (1.10). The closure condition

(2.3) is thus described by the 4 integers (N, j1 ; M, j2).
We define the LBP Pn(z) obtained as the solution of the closure condition (2.3) as

q-Laguerre-Hahn LBP. If in addition, j1 = j2 = 0, we then obtain q-semiclassical
LBP.

In terms of the recurrence coefficients bn, dn the closure condition (2.3) means

b(N)
n+ j1
= qb(M)

n+ j2
, d(N)

n+ j1
= qd(M)

n+ j2
,(2.4)

where by b(N)
n and d(N)

n we mean the coefficients obtained from bn and dn by the appli-
cation of N CT at the points µ1, µ2, . . . , µN . For the arbitrary scheme (N, j1 ; M, j2),
the relations (2.4) are very complicated non-linear difference equations. However for
some special cases these equations can be resolved in terms of elementary functions.

3 The Simplest 1-1 Closure Condition and the Pastro LBP

In the previous paper [5] we considered the simplest 1-periodic closure condition
(1, 0 ; 0, 0) and showed that it leads to q-Appell LBP.

In this section we consider the closure condition (1, 0 ; 1, 0) with two different
prescribed points µ and ν. We show that the resulting polynomials contain two es-
sential parameters and coincide with those introduced by Pastro [4].

In terms of the polynomials the closure condition means

Pn(z ; µ) = qnPn(z/q ; ν),(3.1)

where

Pn(z ; µ) =
Pn+1(z)−Un(µ)Pn(z)

z − µ
,

Pn(z ; ν) =
Pn+1(z)−Un(ν)Pn(z)

z − ν
,

and Un(µ) = Pn+1(µ)/Pn(µ), Un(ν) = Pn+1(ν)/Pn(ν). In what follows we assume
that µ ν �= 0. Let b(1)

n , d(1)
n be the recurrence coefficients corresponding to the poly-

nomials Pn(z ; µ):

b(1)
n = bn

bn+1 + Un(µ)

bn + Un−1(µ)
,(3.2)

d(1)
n = dn

dn+1 + Un+1(µ)

dn + Un(µ)
,(3.3)

and b(2)
n , d(2)

n be the recurrence coefficients corresponding to the polynomials
Pn(z ; ν):

b(2)
n = bn

bn+1 + Un(ν)

bn + Un−1(ν)
,(3.4)

d(2)
n = dn

dn+1 + Un+1(ν)

dn + Un(ν)
.(3.5)
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We then have the following closure conditions for the recurrence coefficients

bn+1 + Un(µ)

bn + Un−1(µ)
= q

bn+1 + Un(ν)

bn + Un−1(ν)
,(3.6)

dn+1 + Un+1(µ)

dn + Un(µ)
= q

dn+1 + Un+1(ν)

dn + Un(ν)
.(3.7)

Moreover, from the recurrence relation (1.1), we have two additional relations for the
coefficients Un

Un(µ) + dn = µ
(

1 + bn/Un−1(µ)
)
,(3.8)

Un(ν) + dn = ν
(

1 + bn/Un−1(ν)
)
, n = 1, 2, 3, . . .(3.9)

with initial conditions

U0(µ) = µ− d0, U0(ν) = ν − d0.(3.10)

From the conditions (3.6), (3.7), (3.8) and (3.9), we easily find that

Un(ν) = βUn(µ),(3.11)

bn+1 + Un(µ) = γ1qn
(

bn+1 + βUn(µ)
)
,(3.12)

dn + Un(µ) = γ2qn
(

dn + βUn(µ)
)
,(3.13)

where β, γ1, γ2 are arbitrary constants. Assuming that β �= 1, we arrive at the expres-
sion for the Un(µ)

Un(µ) =
µγ1

qγ2

1− γ2qn

1− γ1qn−1
.(3.14)

Taking into account the initial conditions (3.10), we get the restrictions for the pa-
rameters

γ1 = q/β, γ2 = µ/ν(3.15)

and finally the expressions for the recurrence coefficients

bn = −
ν

β

(1− qn)(1− µqn−1/ν)

(1− qn/β)(1− qn−1/β)
,(3.16)

dn = −
ν

β

1− βµqn/ν

1− qn/β
.(3.17)

In view of the scaling property of the LBP, we see that the common factor − ν
β

is
not an essential parameter (it can be removed by scaling transformation). Only two
parameters: the ratio µ/ν and β are thus essential.
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A simple comparision indicates that the recurrence coefficients (3.16) and (3.17)
coincide with those of the polynomials introduced by Pastro [4]. These polynomials
have the following explicit expression

Pn(z) =

(
ν

β

)n (βµ/ν)n

(1/β)n
2φ1

(
q−n, 1/β
νq1−n

βµ

; q,
zq

µ

)
,(3.18)

where (a)n = (1− a)(1− aq) · · · (1− aqn−1) denotes the q-shifted factorial and 2φ1

is the basic hypergeometric function [2].
In order to find explicit expression for the moments cn, we use formula (1.15) of

the transformation for the moments cn under the CT. The closure condition (3.1) is
thus equivalent to the condition

cn+1 − νcn

c1 − ν
= q−n cn+1 − µcn

c1 − µ
, n = 0,±1,±2, . . . .(3.19)

Taking into account the fact that c0 = 1, c1 = d0, we find from (3.19)that

cn = µ
n (ν/(βµ) ; q)n

(1/β ; q)n
, n = 0,±1,±2, . . . ,(3.20)

where q-shifted factorials for negative n are defined [2] as

(a ; q)n =
1

(aq−n ; q)n
.

We thus have the following:

Proposition 1 The closure condition (3.1) characterizes the Pastro polynomials.

An interesting property of the Pastro polynomials is their self-similarity property
with respect to the involutions Q and T. Indeed, consider what happens under the
involution Q. We have from (3.20) the expression for the new moments

c{Q}
n = c−n = ν

−n (βq ; q)n

(βµq/ν ; q)n
.(3.21)

Comparing (3.20) and (3.21), we see that the moments c{Q}
n are obtained from the

moments cn by the folowing substitution of the parameters: µ → 1/ν, ν → 1/µ,
β → ν/(βµq). Hence, the corresponding polynomials Qn(z) have the same struc-
ture, i.e., they are again the Pastro polynomials. (This was noticed by Pastro himself
[4]). It is shown similarly that the polynomials Tn(z) defined by (1.8) are again Pastro
polynomials with modified parameters.

Note that the Pastro polynomials are believed to be “the most general” LBP having
an explicit expression in terms of basic hypergeometric functions (see also [1]).

https://doi.org/10.4153/CMB-2001-034-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-034-3


Criterion for Simultaneous Solutions 343

4 Another Example of 1-Closure

In this section we consider one more example of closure condition leading to co-
efficients bn, dn expressible in terms of elementary functions. Consider the scheme
(1, 0 ; 0, 1). In terms of the polynomials this means

C(µ){Pn(z)} = qnP(1)
n (z/q),(4.1)

where P(1)
n (z) are the 1-associated LBP defined in (1.10).

In terms of the recurrence coefficients this condition reads

qbn+1 = bn
bn+1 + Un

bn + Un−1
,(4.2)

qdn+1 = dn
dn+1 + Un+1

dn + Un
,(4.3)

Un + dn = µ(1 + bn/Un−1), n = 1, 2, 3, . . .(4.4)

with initial condition

U0 + d0 = µ.(4.5)

Omitting simple technical details, we merely give the generic solution of the sys-
tem (4.2)–(4.4) which is:

dn = −
µγ1

qγ2(1 + γ1qn−1)
,(4.6)

bn+1 = −
µγ1(1 + γ2qn)

qγ2(1 + γ1qn−1)(1 + γ1qn)
, n = 1, 2, 3, . . .(4.7)

Un =
µγ1

qγ2

bn+1

dn+1
.(4.8)

The initial condition (4.5) yields

d0 = −µ/γ2, b1 = −
µ(γ2 + 1)

γ2(γ1 + 1)
.(4.9)

Note that the corresponding polynomials depend in an essential way on 2 (arbitrary)
parameters γ1, γ2 (the parameter µ can be reduced to µ = 1 by a scaling transforma-
tion).

The polynomials Pn(z) corresponding to these recurrence coefficients do not co-
incide with any known system of LBP. It would be interesting to find explicit expres-
sions for these polynomials.
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5 Difference Equation for q-Semiclassical LBP

In this section we return to the generic case (N, 0 ; M, 0) corresponding (in our
terminology) to the q-semi-classical LBP.

Explicitly we have the condition

Pn(z ; µ1, µ2, . . . , µN ) = qnPn(z/q ; ν1, ν2, . . . , νM).(5.1)

In order to derive the difference equation for the q-semi-classical LBP we first need
the following:

Lemma 2 Let Pn(z) be LBP satisfying the recurrence relation (1.1). The polynomial
Pn+ j(z), j = 1, 2, . . . , can be expressed in terms of Pn(z), Pn−1(z) according to

Pn+ j(z) = A j(z ; n)Pn(z) + B j(z ; n)Pn−1(z),(5.2)

where A j(z ; n) and B j(z ; n) are polynomials in z of degree j with coefficients depending
on n.

The proof is almost obvious: for j = 1 we have from the recurrence relation
Pn+1(z) = (z − dn)Pn(z) + zbnPn−1(z), i.e., A1(z ; n) = z − dn, B1(z ; n) = zbn are
polynomials of the first degree. Then the Lemma is proven by induction in j.

As a consequence of this Lemma we have that

Pn(z ; µ1, µ2, . . . , µN) =
AN (z ; n)Pn(z) + BN (z ; n)Pn−1(z)

(z − µ1)(z − µ2) · · · (z − µN )
,(5.3)

where AN(z ; n) and BN(z ; n) are some N-order polynomials in z. Analogous
expressions can be written down for the polynomials Pn(z ; ν1, ν2, . . . , νM).

Using these expressions we can extract from the condition (5.1) the following sys-
tem

Pn(qz) = X(z ; n)Pn(z) + Y (z ; n)Pn−1(z),

Pn−1(qz) = V (z ; n)Pn(z) + W (z ; n)Pn−1(z),
(5.4)

where X(z, n), Y (z, n), V (z, n), W (z, n) are rational functions in z of fixed degrees.
From (5.4), we then easily find the second-order difference equation

Pn(q2z) = Ω1(z ; n)Pn(zq) + Ω2(z ; n)Pn(z),(5.5)

where

Ω1(z ; n) = X(qz ; n) +
W (z ; n)

Y (z ; n)
,

Ω2(z ; n) = Y (qz ; n)V (z ; n)−
W (z ; n)X(z ; n)

Y (z ; n)

(5.6)

are rational functions whose degrees do not depend on n.
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