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Introduction

In [3]}, Levinson proved a duality theorem for linear programming in complex
space. Ben-Israel [ 1] generalized this result to polyhedral convex cones in complex
space. In this paper, we give a simple proof of Ben-Israel’s result based directly
on the duality theorem for linear programming in real space. The explicit relations
shown between complex and real linear programs should be useful in actually
computing a solution for the complex case. We also give a simple proof of Farkas’
theorem, generalized to polyhedral cones in complex space ([1], Theorem 3.5);
the proof depends only on the classical form of Farkas’ theorem for real space.

Notation and preliminary results

Denote by R" (resp. C") n-dimensional real (resp. complex) space; denote by
R™™" (resp. C™*") the vector space of all m x n real (resp. complex) matrices;
denote by R’ ={xeR":x;,20, 1 £ i< n} the non-negative orthant of R"; and
for x, ye R", x = y denotes x — ye R} . If A is a matrix, then 47, 4, A" denote its
transpose, complex conjugate, conjugate transpose.

In this paper, a cone in R" means a closed polyhedral convex cone (in termi-
nology of [1]), defined here as a finite intersection of closed half-spaces in R”, each
half-space containing 0 in its boundary. Thus S is a cone in R" iff there is an integer
r and K € R"*" such that

6)) S={xeR": Kx 2 0}.

(Since trivially S+ S =S and aS < S for «eR,, S is a convex cone by usual
definition.)
The dual cone S* is defined as

(2 S*={yeR":xeS=y"x=0}
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Therefore, if S is defined by the matrix K,
S* = {yeR" Kx 2 0=yTx = 0}.
Since, by Farkas’ theorem [2]
3) [Kx 2 0=y"x 2 0]<[3z20: y = K"Z],
4 S*={yeR":3z20:y=K"z}
Since ve (S*)* <= [yeS* =0Ty = 0]

<[z20=>0"K"z220] by (¥

<Kvz=0,
%) S$H*=S.

Each vector z € C" may be written z = x + iy when x, y € R"; this defines a
natural map p of C" onto R* x R” = R?", Define S = C" to be a cone iff pS is a
cone in R?". (This is not the definition in [1], but is equivalent to it, and its use
simplifies the proofs). Thus, by (1),

©) x + iye S [K,K,] (;)go
where K, and K, are real matrices of appropriate dimensions.
Setting
z=x—1iy and K=K, +iK,,
zeS <« K|(z+2)—iK,(z—2)=20
<« Kz+Kz20
@)

< Re (Kz) 2 0.
Define S* as the dual cone of S iff p(S*) = (pS)*. Then

T
® u+iveS*¢3w§O:(K1)w=(u)
K7 v
<Iw20:u+iv=Kw.

Note that w is a real non-negative vector.

One version of the duality theorem for real linear programming states that
the dual of (P) is (D), where

P): Minimize ¢Tx subject to Hx — b >0

(D): Maximize b7y subject to H'y =c and y = 0.
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Complex duality

We first extend the duality theorem for linear programming to (closed convex
polyhedral) cones in real space. Let S = R” and T = R™ be cones, defined, using
(1), by matrices M and K; let CeR", be R", A= R™*". Consider the following
two problems:

(P1): Minimize ¢Tx subject to Ax — be T and x€8S.
(D1): Maximize b7y subject to —ATy + ce S* and ye T*.

THEOREM 1. If either (P1) or (D1) has an optimal solution, then both have
optimal solutions, and Minimum (Pl) = Maximum (D1).

Proor. Using (1), (P1) is equivalent to

(PL"): Minimize c'x subject to K(4Ax—b) =0 and Mx = 0. Substituting
A b w .
(M) for H, (0) for b, and ( v) for y, in (P),

the duality theorem of linear programming shows that the dual of (P1’) is
(D1Y): Maximize bTK™w subject to ATK'w + MTo=c,w=0,02 0.

Since from (4), y = KTwe T* and z = MTve S*, (D1’) is the same as (D1).
Consider the following two problems in complex space, where S = C" and
T <= C™ are cones deficred by matiices M and K, ceC", be C™, Aec C™™",
(P2): Minimize Re ¢z subject to Az — beT and ze S
(D2): Maximize Re b¥w subject to — A¥w + ce S* and we T*.

THEOREM 2. If either (P2) or (D2) has an optimal solution, then both have
optimal solutions, and Minimum (P2) = Maximum (D2).

ProoF. (P2) can be written as a problem in real space as follows; denoting
real and imaginary parts by the suffixes r and i:

(P2": Minimize ¢z, + ¢z,

. Az, — Az, — b,
Subject to (Ain b Az — b‘) epT

Zr
(Zl ) =p5.

By Theorem 1, its dual is

(P2'): Maximize bfw, + b]w,.
T 4T
Subject to (— ( A’Ai) (wl) + (c, ))G(PS)*
AT AT Wa <
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w,
e(pT)*:
(Wz) (pT)*;

where w, and w, denote the two real vectors involved.
Setting w=w, + iw,, i.e., w,=w, and w;=w,, and noting that (pS)*
= p(S*), it is seen that (D2’) is identical with (D2).
Generalized Farkas Theorem

THEOREM 3. Let S < R" be a (closed polyhedral convex) cone, beR",
AeR™ " Then
[Ax€S =b"x 2 0]<[JueS*: ATu=1>b].

Proor. Define S, using (1), by a matrix K. Then
[AxeS = bTx 2 0] < [KAx =2 0=b"x 2 0]
< [32=20: b = (K4)"Z] by (3)
< [3z220: b = AT(K"2)]
< [qJu=K"zeS*: ATu=b] by (4).
THEOREM 4, Let S = C" be a (closed polyhedral convex) cone, beC",

AeC™ " Then
[AzeS = Reb¥z =2 0] < [Iwe S*: 4A¥w = b].

PROOF. AzeS=Reb¥z20

A —A, z bAT /2
: r 1 r r r >
ift (Ai Ar) (Zi ) €pS= (bi) (Zi) =0
AT AT

o 3 (:’)e(pS)*=P(S*)1 (—AiT A,T) <Z>= (Z’)

by Theorem 3,
iff Iw=u+ ive S*: A%w = b.
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