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Introduction

In [3], Levinson proved a duality theorem for linear programming in complex
space. Ben-Israel [1] generalized this result to polyhedral convex cones in complex
space. In this paper, we give a simple proof of Ben-Israel's result based directly
on the duality theorem for linear programming in real space. The explicit relations
shown between complex and real linear programs should be useful in actually
computing a solution for the complex case. We also give a simple proof of Farkas'
theorem, generalized to polyhedral cones in complex space ([1], Theorem 3.5);
the proof depends only on the classical form of Farkas' theorem for real space.

Notation and preliminary results

Denote by R" (resp. C") n-dimensional real (resp. complex) space; denote by
Rmx" (resp. cmX") the vector space of all m x n real (resp. complex) matrices;
denote by Rn

+ — {xeRn: xt ̂  0, 1 ̂  i ̂  n} the non-negative orthant of R"; and
for x, y e R", x ̂  y denotes x - y e R + . If A is a matrix, then AT, A, AH denote its
transpose, complex conjugate, conjugate transpose.

In this paper, a cone in R" means a closed polyhedral convex cone (in termi-
nology of [1]), denned here as a finite intersection of closed half-spaces in R", each
half-space containing 0 in its boundary. Thus S is a cone in R" iff there is an integer
r and KeRrX" such that

(1) S = {xeRn:Kx^Q}.

(Since trivially S + S <=S and aS c S for ueR+, S is a convex cone by usual
definition.)

The dual cone S* is defined as

(2) S*
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Therefore, if S is defined by the matrix K,

Since, by Farkas' theorem [2]

(3) [Kx ^ 0 => yTx ^ 0 ] o [ 3 z ^ 0: y = K r z ] ,

(4) S* = {yeR':3z£0:y = KTz}

Since ve(S*)*o[yeS*=> vTy ^ 0]

o [z ^ 0 => »rXTz ^ 0] by (4)

(5) (S*)* = S.

Each vector zeC may be written z = x + iy when x, j> e R"; this defines a
natural map p of C" onto R" x R" = R2(I. Define S <= C to be a cone iff pS is a
cone in i?2". (This is not the definition in [1], but is equivalent to it, and its use
simplifies the proofs). Thus, by (1),

(6) x-

where Kt and K2 are real matrices of appropriate dimensions.

Setting
z = x — iy and K = iCj + i-K2,

zeS o Kt(z + z) - iK2(z - z) ^ 0

(7) - f t + mo
<s> Re (£z) ^ 0.

Define S* as the dual cone of S iff p(S*) = (pS)*. Then

<s> 3vv ^ 0: M + iv = KTw.

Note that w is a rea/ non-negative vector.

One version of the duality theorem for real linear programming states that
the dual of (P) is (D), where

(P): Minimize cTx subject to Hx — b 2; 0

(D): Maximize bTy subject to HTy = c and y j£ 0.
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Complex duality

We first extend the duality theorem for linear programming to (closed convex
polyhedral) cones in real space. Let S <= R" and T c Rm be cones, defined, using
(1), by matrices M and K; let CeR", beRm, AeRmx". Consider the following
two problems:
(PI): Minimize cTx subject to Ax — b e T and xeS.
(Dl): Maximize b1 y subject to — ATy + ceS* and ye T*.

THEOREM 1. If either (PI) or (Dl) has an optimal solution, then both have
optimal solutions, and Minimum (PI) = Maximum (Dl).

PROOF. Using (1), (PI) is equivalent to
(PI'): Minimize cTx subject to K(Ax-b)^0 and Mx ^ 0. Substituting

the duality theorem of linear programming shows that the dual of (PI') is

(Dl'): Maximize bTKTw subject to ATKTw + MTv = c,w^0,v^0.

Since from (4), y = KTw e T* and z = MTve S*, (Dl') is the same as (Dl).
Consider the following two problems in complex space, where S c C " and

T<=Cm are cones denned by matiices M and K, ceC, beCm, AeCmx".
(P2): Minimize Re cHz subject to Az — be T and zeS
(D2): Maximize Re bHw subject to — AHw + ceS* and we T*.

THEOREM 2. / / either (P2) or (D2) has an optimal solution, then both have
optimal solutions, and Minimum (P2) = Maximum (D2).

PROOF. (P2) can be written as a problem in real space as follows; denoting
real and imaginary parts by the suffixes r and i:

(P2'): Minimize cjzr + cjzi

(Arz. — A:Z, — b.
Subject to .

\4£zr + Arz, - b,

By Theorem 1, its dual is

(P2#): Maximize bTwx + bjw2.
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where wt and w2 denote the two real vectors involved.
Setting w = wt 4- iw2, i.e., wr = Wj and vv,- = w2, and noting that (pS)*

= p(S*), it is seen that (D2') is identical with (D2).

Generalized Farkas Theorem

THEOREM 3. Let S c R" be a (closed polyhedral convex) cone, b e R",
AeR"""1. Then

[Ax e S => bTx ^ 0 ] O [ 3 M eS*: ATu = b~\.

PROOF. Define S, using (1), by a matrix K. Then

[Ax e S => brx ^ 0] *> [Kylx ^ 0 =*• bTx ^ 0]

<* [3z ^ 0: fe = (KAfz] by (3)

o [3z^0:fc = ^r(Xrz)]

o [3u = Krz e S*: ^rw = 6] by (4).

THEOREM 4. Lef S c C " fee a (closed polyhedral convex) cone, beC,
AeCm*". Then

[Az e S => Re bHz ^ 0] o [3w 6 S*: AHw = i ] .

PROOF. AZ e S => Re fcHz ̂  0

by Theorem 3,

iff 3w = « + /y e S*: AHw = b.
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