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Abstract
Iron is essential for many physiological functions of the body, and it is required for normal growth and development. Iron deficiency (ID) is the
most common form of micronutrient malnutrition and is particularly prevalent in infants and young children in developing countries. Iron
supplementation is considered the most effective strategy to combat the risk of ID and ID anaemia (IDA) in infants, although iron supplements
cause a range of deleterious gut-related problems in malnourished children. The purpose of this review is to assess the available evidence on the
effect of iron supplementation on the gut microbiota during childhood ID and to further assess whether prebiotics offer any benefits for iron
supplementation. Prebiotics are well known to improve gut-microbial health in children, and recent reports indicate that prebiotics can mitigate
the adverse gut-related effects of iron supplementation in children with ID and IDA. Thus, provision of prebiotics alongside iron supplements
has the potential for an enhanced strategy for combatting ID and IDA among children in the developing world. However, further understanding
is required before the benefit of such combined treatments of ID in nutritionally deprived children across populations can be fully confirmed.
Such enhanced understanding is of high relevance in resource-poor countries where ID, poor sanitation and hygiene, alongside inadequate
access to good drinking water and poor health systems, are serious public health concerns.
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Introduction

Iron is a vital micronutrient for most organisms, including
humans and microbes. The availability of iron has both direct
and indirect impacts on host–microbiota interactions due to its
direct role in biochemical processes that are critical to life(1,2).
The most important biological role of iron is as a co-factor for
proteins such as haemoglobin and enzymes involved in
mitochondrial respiration as well as intermediary and xenobiotic
metabolism. Iron also plays an important role in cell growth and
differentiation(3). Despite the importance of iron to life, the
prevalence of iron deficiency (ID) in children remains high,
especially in recourse-poor areas. Low dietary iron intake or iron
overload in the gut caused by malabsorption may alter the
immunemucosal response of the host. This has been observed in
numerous studies that have reported causal effects between iron
and infectious disease, and intestinal inflammatory diseases(4,5).
There is a pool of evidence suggesting a negative impact of iron
supplementation on the gut microbiota of infants(6,7). Thus, both

iron deficiency and excess influence gut microbiota composition
and function, and the development of disease(7,8). The gut
microbiota plays an important role in metabolic processes that
influence vital body functions(7,9,10). Some gut bacteria, including
Bifidobacterium and Lactobacillus, are beneficial to the host(11,12).
This implies that dietary components that support the growth of
such bacteria may be beneficial to gut health and may potentially
reduce risk of infection to the host. Prebiotics are notable
examples of such supportive dietary components. Prebiotics may
bebeneficial during iron supplementation in reducing the adverse
effects that often occur during iron supplementation (see below).

The aim of this review is to assess the available evidence
on iron supplementation and its adverse effects on the gut
microbiota in children living in recourse-poor areas where ID
and ID anaemia (IDA) are prevalent. Further, this review will
consider the evidence on the beneficial effects of prebiotics on
the gut microbiota and their potential to mitigate the adverse
effects of iron supplementation in children.

* Corresponding author: Simon C. Andrews, email: s.c.andrews@reading.ac.uk

Nutrition Research Reviews, page 1 of 9 doi:10.1017/S0954422424000118
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society. This is an Open Access article, distributed
under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0954422424000118 Published online by Cambridge University Press

mailto:s.c.andrews@reading.ac.uk
https://doi.org/10.1017/S0954422424000118
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0954422424000118&domain=pdf
https://doi.org/10.1017/S0954422424000118


Iron

Iron metabolism, nutrition and absorption

Iron is an essential micronutrient that is involved in numerous
metabolic functions including redox-stress resistance, respiration
and DNA synthesis(13). It is best known as a key constituent of
haemoglobin (Hb), which is involved in the delivery of oxygen to
tissues throughout the body. Iron functions as a co-factor in many
metabolic pathways and is required by almost all organisms(13).
There are two main routes through which iron enters the body
naturally: via the maternal bloodstream through the placenta,
which is relevant during gestation; and from the diet by intestinal
absorption, which occurs throughout life after birth. During the
first ∼6 months of life, dietary iron intake in breastfed infants is
relatively low because of the low amount of iron (0.4 mg/l) in
breast milk(14) However, newborn infants generally possess
significant iron stores (250–300 mg), accumulated from the
mother during the last trimester of pregnancy, which largely meet
iron requirements for the first 6 months of life(15). Thus, in infants
born at full term to mothers who were iron-sufficient during
pregnancy, there is little requirement for dietary iron in the first
6 months(15).

Dietary iron presents in two major forms, haem (‘organic’)
and non-haem (‘inorganic’) iron. Dietary haem iron is largely
derived from haemoglobin and myoglobin in meat; hence, the
primary dietary source of haem iron is from the consumption of
animal-based food products, includingmeat and fish, whilst non-
haem iron is mainly obtained from plant-based products such as
cereals, vegetables, fruits, legumes and pulses. The dietary
absorption of haem iron is relatively high (between 15% and
35%); however, it generally accounts for a relatively small
proportion (5–10%) of total dietary iron(16). On the other hand,
the absorption rate (1–10%) of non-haem iron is far lower,
although it represents the main source of dietary iron in both the
developed and developingworld(17). Non-haem iron is absorbed
from the diet in the reduced (ferrous) state, mainly in the
duodenum and ileum(18,19). The details of haem absorption
remain unclear(20). One major reason for the relatively high
absorption of haem iron is that its uptake is largely unaffected by
other dietary components, unlike non-haem iron which is
strongly influenced by dietary composition. For instance,
ascorbic acid and gastric acid improve the absorption of non-
haem iron by reduction and solubilisation(21), whereas phytate,
polyphenols (e.g. tannins) and oxalate, all derived from plants,
act as iron-chelating agents that reduce iron bioavailability and,
thus, restrict iron absorption. An unavoidable consequence of
the poor absorption of dietary iron is that it mostly remains
unabsorbed and so passes into the lower gut where it is
potentially available to the gut microbiota.

Prevalence of iron deficiency

According to the World Health Organization (WHO)(22), IDA
affects approximately 2 billion people worldwide, representing
almost 30% of the world’s population. The WHO(23) also
estimates that about 62.3% of preschool children in Africa are
anaemic, of which ∼50% is attributable to ID(24). ID is not only a
problem of the developing world as it is also the single most

prevalent nutrient deficiency in developed countries(15). ID
affects the development and function of key organs, including
the brain(25–27). Children and women are those most susceptible
to IDA and its deleterious consequences, especially in devel-
oping countries where the situation is further worsened by the
high burden of disease and infection in resource-poor areas and
communities. In infants and children, IDA impairs cognitive
development and function(28). This has serious consequences for
health and is considered to be a major inhibitor of economic
development and productivity by reducing the work capacity of
the population(29,30).

Prevention and treatment of iron deficiency

There are a number of intervention strategies for the prevention
and/or treatment of ID in children. These include the
consumption of iron-rich foods, fortification of food with iron,
iron supplementation and general health-supporting measures
such as deworming programmes. Deworming prevents hook-
worm infection in children; such infections have been linked to
blood loss which drives anaemia(31). For iron-deficient infants
and children in populations where the prevalence of ID is high,
iron supplementation (as recommended by the WHO) has
been the most effective intervention strategy to prevent and/or
treat ID and, hence, reduce anaemia(32,33) as well as ID(34).
Home-based food fortification with ‘multiple micronutrient
powders’ (MNP) is another effective strategy for the preven-
tion/treatment of ID in children below 5 years(35,36). MNP can
reduce anaemia and ID, providing a similar impact to that of
iron supplementation, but MNP also carry the added advantage
of provision of other critical micronutrients (such as zinc
and vitamins) that are beneficial to child growth and develop-
ment(37). For instance, in a randomised controlled trial in
Ghanaian infants between the ages of 6 and 12 months, the
home-based use of MNP resulted in a significantly three-fold
lower level of ID in the intervention group(38). A recent
Cochrane systematic review has highlighted the benefits of
home-based fortification of food with MNP containing iron as
an effective strategy for the prevention and treatment of
anaemia and ID in infants below 2 years of age, indicating that
the resulting improvement in anaemia and ID are comparable
to those achieved using iron supplements(39).

However, the application of iron supplementation and MNP
is not without risk. A controversy arose from the publication of a
randomised controlled trial of iron supplementation in 24 076
preschool children in Zanzibar where the intervention group
(who received a daily iron dose of 12.5 mg) were 11% more
likely to be hospitalised and 12% more likely to die from severe
illness (including sepsis, measles, pneumonia, meningitis and
pertussis) compared with those who did not receive the iron
treatment; this led to the termination of the trial(40). In this study,
children were given either: iron (12.5 mg), folic acid (50 μg) and
zinc (10mg); iron and folic acid; zinc alone; or placebo. It was the
groups that received the iron and folic acid (with or without zinc)
that were withdrawn from the study because of high morbidity
and increased mortality rates(40). The increased morbidity and
mortality risk in the children receiving iron supplements could
be attributed to the likelihood that most of the iron supplement
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received would remain unabsorbed and thus could favour the
proliferation of pathogenic gut bacteria leading to increased risk
of illness. Additionally, iron is an important micronutrient for the
growth and proliferation of the malaria parasite(41,42), implying
that iron supplementation in malaria-endemic areas would most
likely increase the prevalence and disease severity within such
populations(40). Another randomised controlled trial in Africa,
involving 1956 infants and young children fromGhana, reported
increased diarrhoea-related hospital admissions following intake
of 12.5 mg of elemental iron per day over 5 months(43), although
there was a reduction in the incidence of anaemia in the iron
group. Though not investigated, this study implies that iron
supplementation in this population might have caused disruption
to the gut microbiota, leading to diarrhoea. These findings are
similar to the earlier larger population group randomised
controlled trial in Zanzibar, as discussed above(40). Thus, even
though iron supplementation may be an effective strategy to
combat ID, it may cause adverse effects in populations at
increased risk of infection.

Importantly, subsequent studies indicate that iron supple-
mentation does not result in an increased risk of infection or
death as long as there is regular infection control and
surveillance(41,42,44,45). Indeed, iron supplementation has been
shown to improve immune defence in children by increasing
CD4þ cell counts and CD4:CD8 ratios, which is a crucial aspect of
cell-mediated immunity(46,47).

Impact of iron on the gut microbiota

Bacterial colonisation of the gut depends on the ability of
bacteria to acquire iron and other essential nutrients. It has been
shown that almost all gut bacteria, except lactobacilli, are iron
requiring, which indicates that iron is a growth-limiting nutrient
for the gut microbiota(48). Thus, the degree of iron availability is
expected to influence gut microbiota composition. Indeed,
evidence from both animal and human trials has shown that iron
supplementation results in alterations in gut microbiota compo-
sition(49–51).

In rats, iron depletion significantly decreased Bacteroides
and Roseburium spp., whilst Lactobacillus, Leuconostoc,
Pediococcus spp. and Enterobacteriaceae were significantly
increased(50,52). Similarly, in a randomised controlled trial with
147 school children (aged 6–14 years) in Africa (Cote d’Ivoire),
the intake of 20 mg doses of electrolytic iron per day for
6months in iron-fortified biscuits led to a negative alteration in gut
microbiota composition where the number of Enterobacteriaceae
were increased while lactobacilli decreased. The change in gut
microbiota composition was also associated with raised faecal
calprotectin, a marker of gut inflammation(49). Furthermore, there
was no improvement in anaemia or iron status comparedwith the
control (non-iron-supplemented group). This is an important
study because ID is prevalent in children under 5 years in
developing countries and, consequently, such children often
receive iron supplements. However, the results indicate that iron
supplements can have a negative impact on gut health, whilst not
improving iron status, which raises concerns regarding the
efficacy of iron fortification programmes for children in develop-
ing nations.

As indicated, iron supplementation has also been linked to
increased diarrhoea incidence in malnourished children(49). In a
recent study, the effect of high and low iron fortification doses on
the gut microbiota was studied in 6-month-old Kenyan
children(51). In this double-blinded randomised controlled trial,
115 children were fed MNP for 4 months with either: no
additions; 2.5 mg iron per day, as an ethylenediaminetetraacetic
acid (EDTA) complex; or 12.5 mg iron per day, as ferrous
fumarate. The results showed a reduction in Bifidobacteriaceae
(the predominating bacterial group) after iron supplementation,
which shifted the gut microbiome from domination by beneficial
bacteria, including Bifidobacterium and Lactobacillus, to one
containing potentially harmful pathogenic bacteria such as
Enterobacteriaceae. This effect was more significant with the
higher ferrous iron dose. The treatment also resulted in increased
intestinal inflammation (as measured by faecal calprotectin) and
no decrease in anaemia or ID for children who were iron
deficient prior to the intervention. These findings are thus very
similar to those described above(49).

In contrast, Dostal et al.(53) reported potentially positive
effects of iron (ferrous sulphate) supplementation on the gut
microbiota, characterised by increases in Bacteroides spp., and
butyrate producers such as Faecalibacterium prausnitzii and
Coprococcus spp. These effects were observed in a rat model
system carrying faecal microbiota from a healthy 6-year-old
child. In addition, there were significant increases in caecal
propionate, butyrate and acetate concentration in the iron
supplemented rats compared with control (iron-deficient
group), suggesting that iron promotes a beneficial microbial
community and positive metabolite production in a healthy rat
model. In addition, a 38-week randomised placebo-controlled
iron supplementation trial on ID South African children
(6–11 years old) found no effect of iron supplementation on
the relative abundance of the gut microbiota population(53a). It
was thus concluded that iron has no clear effect on the gut
microbiota and inflammation unless there are associated risk
factors such as pathogen infection caused by poor sanitation
and hygiene conditions, inadequate access to good drinking
water and poor health systems(53a). Similarly, a recent clinical
dose–response study in Nigerian toddlers showed that a multi-
nutrient-fortified dairy drink containing iron in three different
daily doses (2.24, 4.48 and 6.72 mg) had no adverse effect on
the gut microbiota but was effective in treating anaemia(54). The
findings of the above two studies are in contrast to those
described earlier in this section(49–51). This likely reflects the
differences in the approaches employed, including the use of
healthy children and populations with low risk of infections as
compared with populations at high risk of ID and infections.
This also highlights the need for further research to fully
understand the factors that influence the impact of dietary-iron
intervention strategies on gut health in children.

Prebiotics and microbiota in children

The nature of prebiotics

Prebiotics are defined as ‘substrates that are selectively utilized
by host microorganisms conferring health benefits to the
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host’(55). Prebiotics have been extensively studied for their
beneficial impact on gut microbiota and health. According to
Gibson et al., prebiotics must possess the following character-
istics to be classified as such: be a selective substrate for specific
bacteria; exhibit resistance to low colonic pH, hydrolysis by
intestinal enzymes and gastrointestinal absorption; and result in
positive effects on host health and wellbeing(55). Common, well-
studied prebiotics include galacto-oligosaccharides (GOS),
inulin and fructo-oligosaccharides (FOS)(56). Inulin and FOS
are both fructans consisting of a linear chain of fructose with
β(2→1) linkages. The degree of polymerisation of inulin is up
to 60, whilst that of FOS is below 10. GOS is classified into two
groups: GOS that is derived from lactose through enzymatic
trans-glycosylation with galactose in β(1→6), β(1→3) and
β(1→4) linkages; and GOS with excess galactose at C3, C4 or
C6

(57,58). The effect of prebiotics is mediated through their
conversion into short-chain fatty acids (SCFA) during fermen-
tation by specific members of the colonic gut microbiota. SCFA
serve as a source of energy to gut epithelia cells, lowering the
pH of the intestinal lumen thus restricting growth of some
pathogens and providing an anti-inflammatory effect to the
host(59). The enhancement of Bifidobacterium and
Lactobacillus spp. in the gut is a common outcome of
prebiotic application with subsequent positive effects on host
health(60). These bacteria have been observed to limit the
growth of pathogens, improve intestinal barrier function and
enhance immune function(61,62) through their production
of SCFA.

Health benefits of prebiotics in children

Breast milk is usually the first food taken after birth. A unique
characteristic of human milk is the presence of ‘human milk
oligosaccharides’ (HMO), which are an important source of
prebiotics for the infant(63). HMO consist of over 200 distinct
structures composed of a range of monomer units including
galactose, glucose, N-acetylglucosamine, fucose and sialic
acid(64). In vitro studies have shown that the utilisation of
specific HMO by the infant gut microbiota is species specific
with the predominating Bifidobacterium spp. acting as the
major HMO fermenters(65). Interestingly, the HMO composi-
tion of breast milk is affected by multiple maternal factors
including body mass index (BMI), mode of delivery, age, diet,
duration of lactation and geographical location(66–68). These
factors are also expected to influence the composition and
functional potential of the infant gut microbiota. Breast milk has
been reported to contain high amounts of HMO (5–20 g/l)(69).
Indeed, there is an association between the diversity and
homogeneity of HMO composition, and the growth and
development of healthy children in their first 6 months of
life(70). However, studies in Gambia and Malawi have shown
an inverse relationship between HMO and undernutrition in
infants(68,71).

Prebiotics are now being considered as a promising
therapeutic tool for the improvement of health as well as
treatment and prevention of a number of diseases in children(59).
There is increasing evidence suggesting that prebiotics offer a
broad spectrum of positive effects on child health, mediated

primarily through the gutmicrobiota(72), as depicted in Fig. 1. In a
randomised controlled double-blind clinical trial that assessed
the effect of FOS on constipation in infants, Souza et al. reported
significantly higher relative abundance of Bifidobacterium spp.
in the faecal microbiota compared to the control(73). Further, the
study reported softer stools in the FOS group compared to the
control. The consumption of FOS has been associated with
significant increases in the relative abundance of colonic
Bifidobacterium spp. according to a recent meta-analysis of
the impact of FOS consumption on the gut microbiota(74). As
indicated above, the fermentation of these prebiotics by the gut
microbiota generates SCFA (in particular, propionate, butyrate
and acetate). SCFA exert a range of benefits on child health
including provision of about 10% of the total body energy(75,76).
Lactate and succinate are also produced by fermentation of
prebiotics. Such fermentation products lower the pH of the gut
which helps to prevent the growth of pathogens(77). Prebiotics
also enhance the absorption of micronutrients, especially
iron(78–80). Prebiotics have been proposed to increase iron
absorption by the production of SCFA during colonic microbiota
fermentation which results in a lower colonic pH. This, in turn,
would be expected to raise ferric iron solubility and availability,
which would increase the potential for reduction of Fe3þ to Fe2þ,
thus supporting iron absorption(81). However, Husmann et al.
did not observe any significant effect of GOS on iron absorption
in women, although, in in vitro, GOS supported a two-fold
increase in iron solubility(82).

There is strong evidence that prebiotics (GOS/FOS) in infant
formula support healthy weight gain(83). In addition, intake of
prebiotic supplements among obese and overweight 7–12-year-
old children resulted in a significant weight loss compared
with the placebo control(84). Thus, prebiotics can support a
healthy body weight in children. However, little is understood
concerning the effect of prebiotics on the gut microbiota
during undernutrition and how this might affect malnutrition
treatment in children. For such reasons, the International
Scientific Association for Probiotics and Prebiotics (ISAPP)
recommends that more research should be conducted on the
mechanism by which the gut microbiota and prebiotics/
probiotics influence undernutrition in specific age groups,
especially children(85).

Prebiotics can also confer direct antimicrobial effects by
adhering to the binding site of bacteria on the enterocyte surface
which blocks the attachment of pathogenic bacteria to the
intestinal epithelium(86,87). The beneficial effects of prebiotics
during infancy have also been reported in a systematic review
that showed a reduced incidence of gastrointestinal infections,
an improved stool consistency, reduced frequency of vomiting
and reduced regurgitation among infants who received formulae
containing FOS/GOS, compared with control formulae(88).
These findings further support the health promoting effects of
prebiotics in children.

Effect of prebiotics on gut microbiota in infants and
young children receiving iron supplementation

Children in developing countries are at increased risk of ID, and
therefore the WHO recommends routine iron supplementation
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in areas with high prevalence of ID(23). With the potential
adverse effects of iron supplementation on the gut microbiota
in such populations, numerous studies have looked at the
mitigating impact of prebiotics during iron supplementation. A
recent study in Kenyan infants suggests that provision of
prebiotic (GOS) during iron supplementation not only improved
anaemia but also offset the adverse effects caused by iron
supplementation(89). In this study, 155 infants of 6.5–9.5 months
were enrolled and randomised into three groups. The first
(control) group received MNP containing 30 mg of ascorbic acid
and other vitamins, and 10.5 g of maltodextrin; the second
(Fe group) received the same but with 5 mg of Fe (2.5 mg as
sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous
fumarate); and the third (FeGOS) group received the same as the
second group but with GOS (7.5 g) instead of maltodextrin
(placebo). After 4 months of the intervention, a significant
decrease (about 50%) in anaemia was observed in the Fe-only
and FeGOS groups comparedwith the control. In addition, there
was a significant increase of bifidobacteria and lactobacilli in the
FeGOS group, but these bacteria were less abundant in the Fe-
only group. The results indicate that combining a prebiotic
(GOS) with Fe supplementation offsets the negative effects of
iron on the gut microbiota whilst improving anaemia out-
comes(89). Supplementing iron with prebiotics may also improve
iron absorption. For instance, Paganini et al. found that GOS
supplements resulted in a 62% increase in iron absorption in
Kenyan infants consuming ferrous fumarate (FeFum) and ferric
sodium EDTA(90). However, another study reported that a single
GOS dose added to the meals of Kenyan infants did not increase
iron absorption(91).

The inclusion of prebiotics has now become an important
practice in formula milk production due to the growing
evidence of the beneficial impact on the gut microbiota in
early life and throughout the life cycle. Most formula milk is
now fortified with GOS and/or chicory root derived inulin

(FOS)(92). The beneficial impact of these prebiotics (GOS and
FOS) in formula milk has been indicated by several studies. For
instance, the growth of bifidobacteria and lactobacilli was
stimulated by FOS and GOS when incorporated into infant
formula milk(93). Increased abundance of these bacteria
(bifidobacteria and lactobacilli) is associated with reduced
diarrhoea incidence in children(94–96), culminating in improved
nutrient absorption and health. Supplementing formula milk
with FOS also resulted in a beneficial impact on the
development of the gut microbiota in preterm infants(97). In
this study, healthy preterm infants were randomly fed with
infant formula supplemented with FOS or standard infant
formula for 14 d after birth. The FOS treatment resulted in
significantly higher bifidobacteria and lower Escherichia coli
levels in the faecal microbiome(97). Other studies have shown
that the addition of prebiotics to infant formula can increase
the abundance of faecal bifidobacteria in infants, such that
levels resembling those of breastfed infants are achieved.
Such effects are associated with increased production of SCFA
along with softer and more consistent stools(98–100). Another
study showed significant increases in faecal concentrations of
lactate, propionate and butyrate in formula-fed infants who
received whey protein with prebiotics, compared with
breastfed infants(100). Other work showed that inulin-type
oligosaccharide supplementation of infant formula milk
increases bifidobacteria abundance and improves stool
consistency (softer stools) and frequency(101). In addition,
GOS supplementation in infants resulted in a reduced
incidence of gastroenteritis compared to the non-supple-
mented group indicating GOS lowers the incidence of
intestinal infections in infants(102). In a double-blind study
on formula-fed newborn infants, FOS/GOS prebiotic caused a
significant reduction in the levels of faecal clostridia and an
increase in bifidobacteria, thus positively impacting the
composition of the gut microbiota(103). In summary, there is

Fig. 1. Effect of prebiotics and iron supplementation on the gut microbiota and health outcomes in children. ↑ and ↓ indicate increase or decrease, respectively, in
microbiota factors and health outcomes upon iron (red font), prebiotic (brown font) or iron plus prebiotic (blue font) supplementation.
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now considerable evidence supporting the favourable effect
of prebiotics on the gut microbiota and gut health of infants.

Furthermore, in a randomised placebo-controlled trial on the
influence of prebiotics on the gut health of young children,
Soldi et al.(104) reported that inulin induces a significant
increase in bifidobacteria levels and mitigates the gut micro-
biota-related adverse effects caused by antibiotics in children
(aged 3–6 years). Similarly, a double-blind, randomised
controlled trial assessing the effect of prebiotics on body fat
and intestinal microbiota in Canadian overweight or obese
children (7–12 years) also found that prebiotic treatment
significantly increases levels of Bifidobacterium spp. and
led to a significant reduction in body fat. Similar treatment
also resulted in a significant reduction in gut inflammation
(as indicated by interleukin 6 levels)(84). All this evidence
suggests that prebiotics can have a beneficial impact on the
gut microbiota, gut inflammation and body fat levels of young
children, and may also improve iron absorption(59,89).

In summary, ID remains a public health concern, with
children and women in developing countries being the most
vulnerable. Iron supplementation may be useful for treating and
preventing ID in children, but there are concerns of the adverse
effects this may have on the health of infants and children. There
is a growing body of evidence suggesting that prebiotics provide
positive effects on the gut microbiota and gut health of infants
and children. Such effects include prevention of childhood
infections such as diarrhoea, and the promotion of infant health,
growth and development. Furthermore, it is now becoming
apparent that prebiotics can also support the application of iron
supplementation in the treatment of ID in children even though
much evidence is still needed to support its use. Thus, prebiotics
have much potential in countering the negative gut health
impact of iron supplements in nutritionally deprived children
with ID, allowing an improvement both in overall health and in
the effectiveness of iron supplementation strategies.

Conclusion and future direction

Iron supplementation and fortification may be considered
effective strategies to manage ID and IDA in children in
developing countries, but it can also cause adverse effects in
populations where risk of malaria and diarrhoea infections is
high. Further research is needed to understand themost effective
iron supplementation regimens for prevention or treatment of ID
whilst avoiding the adverse effects of iron supplementation.
Such studies should be prioritised as iron supplementation
programmes are on-going in developing countrieswhere there is
a high incidence of ID alongside poor sanitation and hygiene,
and inadequate access to clean drinking water, especially for
children under 5 years of age. Prebiotics have been shown to
combat adverse effects caused by iron supplementation and to
have an overall health benefit. Prebiotics thus offer an
opportunity to overcome the negative effects that iron supple-
ments have on the gut whilst providing other important benefits
to the host such as reducing the risk of diarrhoea and malaria.

Manipulation of the gut microbiota represents a clear
opportunity for supporting the treatment of ID in children from

resource-poor countries. Prebiotics have been reported to
improve iron absorption and the potential adverse effects of
unabsorbed iron on the gut microbiota in children in developing
countries. However, more research is needed in this area to
ensure that the best strategies are identified and applied.
Therefore, future research should focus on the ability of
prebiotics to offset the negative effects of iron supplementation,
especially within relevant ID populations, to establish the
efficacy and optimum regimen for such intervention strategies.
Supporting the gut microbiota in this way would also result in
improvement in overall health outcomes in children.
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