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Abstract
Statistical methods are usually applied in examining diet–disease associations, whereas factor analysis is commonly used for dietary pattern
recognition. Recently, machine learning (ML) has been also proposed as an alternative technique in health classification. In this work, the
predictive accuracy of statistical v. ML methodologies as regards the association of dietary patterns on CVD risk was tested. During 2001–2002,
3042 men and women (45 (SD 14) years) were enrolled in the ATTICA study. In 2011–2012, the 10-year CVD follow-up was performed among
2020 participants. Item Response Theory was applied to create a metric of combined 10-year cardiometabolic risk, the ‘Cardiometabolic
Health Score’, that incorporated incidence of CVD, diabetes, hypertension and hypercholesterolaemia. Factor analysis was performed to
extract dietary patterns, on the basis of either foods or nutrients consumed; linear regression analysis was used to assess their association with
the cardiometabolic score. Two ML techniques (k-nearest-neighbor’s algorithm and random-forests decision tree) were applied to evaluate
participants’ health based on dietary information. Factor analysis revealed five and three factors from foods and nutrients, respectively,
explaining 54 and 65% of the total variation in intake. Nutrient and food pattern regression models showed similar accuracy in correctly
classifying an individual according to the cardiometabolic risk (R2= 9·6% and R2= 8·3%, respectively). ML techniques were superior
compared with linear regression in correct classification of the individuals according to the Health Score (accuracy approximately 38 v. 6%,
respectively), whereas the two ML methods showed equal classification ability. Conclusively, ML methods could be a valuable tool in the field
of nutritional epidemiology, leading to more accurate disease-risk evaluation.
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CVD is the leading cause of death, with strokes and heart
attacks being responsible for approximately 80% of CVD deaths
in the developing world(1). Towards this direction, current
guidelines have underlined the importance of early risk esti-
mation, as the first step in identifying individuals at high risk(2,3),
so that patients can receive appropriate counselling and treat-
ment. Dietary habits have long been associated with cardio-
vascular health(4), and different dietary strategies have been
proposed for reducing the burden of CVD(5). In the past, the
vast majority of studies were focused on single nutrients or
foods consumed, instead of adopting a holistic approach by
assessing dietary patterns. However, the use of single foods or
nutrients is accompanied with two major methodological pro-
blems. First, there is a great chance of high level of collinearity

among food variables; collinearity tends to inflate the variance
of the estimated regression coefficients, as some of the inde-
pendent variables are totally predicted by the other indepen-
dent variables. This situation affects the effect size of the
regression estimates, producing high standard errors in the
related independent variables, thus leading to less robust
results. A second problem that may occur in the single-food/
nutrient approach is the unknown or unmeasured synergistic
effect of specific foods on the investigated health outcome, as
foods and nutrients more likely act in synergy, reaching a point
where the joint effects of the foods and nutrients work on
something other than a simple additive manner(6). Thus, dietary
patterns have been extensively studied in the past years in
relation to a variety of health outcomes, including CVD(7),
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whereas pattern recognition analysis has frequently been used
in nutritional epidemiology. Two methodologies have been
mainly proposed: the a priori and the a posteriori dietary pat-
tern analysis. In brief, in the a priori methodology already
known dietary patterns, such as the Mediterranean diet, are
used as the ‘gold standard’, and various diet indices (e.g.
MedDietScore, Mediterranean Adequacy Index and so on) are
used to measure the level of adherence to these predefined
patterns. On the other hand, the a posteriori analysis is usually
derived through multivariate statistical techniques, such as
cluster, principal components or factor analysis(8).
Apart from the classical statistical approaches for extracting

patterns, an alternative approach has been proposed as a pat-
tern recognition and classification methodology, the machine
learning (ML)(9). ML is a sub-area of artificial intelligence, whose
ultimate goal is to devise learning algorithms to do the learning
automatically from available data without human intervention
or assistance. This area comprises numerous different types of
algorithms that can process large amounts of data, such as
nutrition information, and ultimately transform data into
knowledge, further used to infer some intelligent action or
decision. It must be noted that ML is –for the time – being used
as an adjunct, to help experts increase their knowledge in a
wide range of data and problem fields(10–12) and help in
decision-making rather than replacing them.
To the best of our knowledge, the use of ML methodologies in

assessing nutrition-related disease risk has never been
performed. Moreover, until now, no comparative analysis has
been performed neither between food and nutrient factors’ pre-
dictive ability on disease risk estimation nor between ML meth-
odologies and the statistical approaches. Thus, and under the
context of the ATTICA study, the aim of this work was a between-
method comparison, that is, statistical v. ML methodologies, as
regards their classification ability on evaluating long-term cardio-
metabolic risk through nutrition patterns’ assessment. Two
commonly used ML methodologies were applied: the k-nearest-
neighbor’s algorithm and the random-forests (RF) decision tree.
The secondary goal was to compare the predictive accuracy of the
food patterns with the nutrient patterns’ approach, as well as the
accuracy between the ML methods used on cardiometabolic risk.

Methods

Baseline sampling procedure (2001–2002)

The ATTICA study is a large-scale, prospective cohort study
carried out in the province of ATTICA, where Athens is a major
metropolis (78% urban and 22% rural regions)(13). During
2001–2002, 4056 inhabitants were randomly selected to parti-
cipate; those with a history of CVD and other atherosclerotic
disease, having chronic viral infections or living in institutions
were excluded from participation. Of them, 3042 individuals
completed the baseline assessment: 1514 were men (18–87
years, 46 (SD 14) years) and 1528 were women (18–89 years, 45
(SD 14) years). All participant interviews were carried out by
trained personnel (i.e. cardiologists, general practitioners, die-
titians and nurses), who administered standard questionnaires.
The study was conducted according to the Declaration of

Helsinki guidelines; all procedures involving human subjects
were approved by the ethics committee of the First Cardiology
Department of the University of Athens. Written informed
consent was obtained from all individuals.

Measurements (2001–2002)

Information about socio-demographic characteristics (age, sex
and years of school), history of hypertension, hypercholester-
olaemia and diabetes, anthropometrics, smoking status, dietary
habits and physical activity was collected through face-to-face
interviews. Smoking status was evaluated through pack-years of
smoking, and those who reported current smokers or have
stopped smoking during the preceding year were defined as
smokers in this analysis. Physical activity was evaluated using
The International Physical Activity Questionnaire, an index of
weekly energy expenditure using frequency (times/week),
duration (in min) and intensity of sports or other habits
(in expended energy content per time); according to this score,
participants were classified as at least moderately active during
a substantial part of the day or inactive(14). Weight (in kg) and
height (in m) were measured using standardised procedures,
and BMI was calculated as the ratio of weight:height squared.

The dietary evaluation was based on a validated semi-
quantitative FFQ, the European Prospective Investigation into
Cancer and Nutrition (EPIC)-Greek questionnaire, which was
kindly provided by the Unit of Nutrition of Athens Medical
School(15). The questionnaire included questions on the aver-
age consumption of 156 food items or beverages commonly
consumed in Greece, within the previous year. On the basis of
this information, eighteen common food groups were created,
based also on their macronutrient composition. Alcohol con-
sumption was measured by daily ethanol intake, in wine glasses
(100ml and 12% ethanol concentration), whereas coffee intake
was measured in cups of coffee (1 cup= 250ml). Using food
composition tables and standard portion sizes, the following
nutrients were calculated: total fat; MUFA; PUFA, calculated as
the sum of n-3 and n-6 fatty acids; SFA, carbohydrates and
protein. Ethanol was also calculated.

The 10-year follow-up evaluation (2011–2012)

During 2011–2012, the 10-year follow-up was performed. Of
the 3042 participants, 2583 completed the follow-up (85%
participation rate), but a detailed evaluation of the participants’
cardiometabolic status was available in 2020 individuals, who
comprised the working sample of this work. For the participants
who died during the follow-up, the information was achieved
from their relatives, and/or death certificates. The definition of
the investigated outcomes was based on International Coding
Disease (ICD)-10 version. In particular, information about par-
ticipants’ health status concerned development of the following:
(a): myocardial infarction, angina pectoris, other identified
forms of ischaemia (ICD-9 coding (or 10th edition) (410–414.9,
427.2, 427.6 (I20–I25)), and coronary revascularisation (414.01)
(i.e. coronary artery bypass surgery and percutaneous coronary
intervention); (b) heart failure of different types (400.0–404.9,
427.0–427.5, 427.9, 428.– (I50.2–)) and chronic arrhythmias
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(I49.–); (c) development of stroke (430–438 (I63.–)); and
(d) development of hypertension, hypercholesterolaemia and
diabetes. Both at baseline and at the 10-year follow-up,
hypercholesterolaemia was defined as total cholesterol levels
>5·2mmol/l or the use of lipid-lowering agents, diabetes
mellitus (type 2) as fasting blood glucose≥7mmol/l or the use
of anti-diabetic medication, and hypertension as an average of
three consecutive blood pressure measurements ≥140/90mmHg
or use of anti-hypertensive medication. The working sample size
was adequate to achieve 92% statistical power to evaluate the
relative risk of 0·70 between the null and the alternative two-sided
hypothesis, when the exposure variable was increased by 1 unit
and with a significance level (α) of 0·05.
Further details about the baseline procedures and the 10-year

follow-up of the ATTICA study can be found elsewhere(16).

Development of a combined 10-year ‘Cardiometabolic
Health Score’

To quantify the overall 10-year cardiometabolic risk of the
participants – that is, incidence of CVD, hypertension, diabetes
mellitus and/or hypercholesterolaemia – the Item Response
Theory (IRT), using a Rasch model, was applied. By IRT
method, a single score was developed using as ‘items’ indivi-
duals’ information about their health status (i.e. ‘response’)
during the 10-year follow-up. More details about IRT can be
found elsewhere(17). Latent scores were obtained for each
participant and then transformed into a 0–100 scale, with higher
values indicating lower 10-year cardiometabolic risk (i.e. better
health status, which means less likely to have developed a
CVD event or another cardiometabolic disorder, hypertension,
diabetes or hypercholesterolaemia).

Food and nutrient factors’ derivation

Factor analysis, using the principal component method, was
applied in order to identify dietary patterns based on foods or
nutrients. The correlation matrix (instead of the covariance) was
preferred in order to account for the variety in food or nutrient
measurements’ scale. The Kaiser–Meyer–Olkin test (a measure
of sampling adequacy for performing factor analysis) was
relatively high, that is, 0·61 (greater than the cut-off point of
0·6), indicating a relatively good inter-relationship between the
food/nutrient variables that permits to apply factor analysis(11).
Food groups (see Table 2) that entered in the analysis were
coded as servings per month. The orthogonal rotation (with
varimax option) was used to derive optimal non-correlated
factors (food patterns). The information was rotated to increase
the representation of each food to a factor. Parallel analysis
was used in order to determine the number of factors retained;
this analysis is an alternative technique that compares the
scree plots of factors of the observed data with those of a
random data matrix of the same size as the original. On the
basis of the principle that higher absolute values indicate that
the food variable contributes most to the construction of the
factor, the patterns were named according to loadings of
the foods that correlated most with the factor (i.e. those with
loadings >0·3).

For the nutrient factors derivation, the same methodology
was applied. Seven major nutrients were selected and studied
(see Table 2).

Statistical analysis

Linear regression analysis was performed to investigate the asso-
ciations of factors (food and nutrient patterns) on Cardiometabolic
Health Score, taking into consideration sex, age, BMI, physical
activity and smoking (presented as b-coefficients, standard errors
and standardised β-coefficients). The assumptions of linearity for
the continuous independent variables and constant variance of
the standardised residuals were assessed through plotting the
residuals against the fitted values; collinearity between the inde-
pendent variables was evaluated using the variance inflation
factors. R2 was calculated to find how well each fitted model
predicted the dependent variables (the higher the R2, the better
the model fits the data), and is indicative of the percentage of the
variance in the dependent variable that the independent variables
explain collectively. Akaike information criterion (AIC) was used
to compare the accuracy of statistical modelling, with lower values
indicative of a more predictive model. All reported P values were
based on two-sided tests. R software (version 3.4.3, 2017) was
used for all statistical calculations.

Machine-learning analysis

ML techniques, that is, k-NN and RF algorithms, were applied to
computationally extract information from ATTICA database;
thereafter, a food model and a nutrient model were created for
each examined ML algorithm. The k-NN algorithm is one of the
most efficient classifiers with various applications, from text
mining(18) to bioinformatics(19). Mathematically, k-NN classifies
a sample to a specific class, by using its k nearest neighbors;
thus, each sample is placed among its k ‘closest’ samples and is
assigned a class based on the majority of the neighbours. RF, on
the other hand, is the least prone to over-fitting(20), ‘tree-based’
classifier, which classifies a sample by creating multiple trees,
with each tree giving an independent classification. The final
classification is the one having the most votes. Each sample was
categorised into one out of five disjoint classes based on the
developed Cardiometabolic Health Score. ML analysis was
started by dividing the available data into two non-overlapping
sets: the first set (training) was used for the training of the
models, whereas the second (testing) was kept in order to
evaluate the model performance. To ensure that the data
categorisation into training and testing sets was representative,
multiple holdout samples were used. To ensure the single use
of each record, k-fold cross-validation (k-fold CV) was used,
dividing the data into k completely separate random partitions,
called folds. Owing to the fact that k-NN is based on the
Euclidean distance and some of the data set’s numeric variables
were in a larger scale than others, it was necessary that all
numeric values be normalised to 1, so that each variable has the
same impact on the multi-dimensional feature space. Next, 10
different folds were created, each containing 10% of the total
data. For each fold, the k-NN model was built from 90% of the
fold data, and the remaining 10% was used to evaluate the
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produced model. For RF classifier, no normalisation was
necessary. Similarly, the same ten different folds were used. For
each fold, an ensemble of trees (called forest) was created and
the model decided on the categorisation of a sample, through
voting. The accuracy of each ML method was calculated as the
ratio of the sum of true positive and negative calls divided by
the number of samples. For both classifiers, as 10-fold CV was
used, once all ten models were produced and evaluated, the
average of all accuracies for each fold gave the overall classifier
accuracy. All the implementations were carried out in R
language, using in-house scripts and the R-packages ‘Class’,
‘Random Forest’ and ‘Caret’. The procedure of creating the folds
and using each different fold to train and evaluate the classifier
is computationally expensive. However, each fold evaluation is
independent of all the other ones, and thus original specialised
code was written to parallelise it into different computer cores,
retaining the time cost of the ML procedure significantly low.

Results

The baseline characteristics of the participants, as well as the
10-year incidence of CVD, hypertension, diabetes and
hypercholesterolaemia, overall and by Cardiometabolic Health
Score tertile, are presented in Table 1. The mean Cardiometa-
bolic Health Score was 59·8 (SD 36·3) for men and 61·2 (SD 35·7)
for women, suggesting a better 10-year cardiometabolic health
status of women compared with men (P< 0·001).

Linear regression (food v. nutrient patterns) and
cardiometabolic risk estimation

Factor analysis extracted five food patterns that explained 54%
of the total variation in intake. The loadings of the five food
patterns are presented in Table 2. According to the extracted
loadings (values >0·3) and their signs (positive or negative),
factors were characterised by predominantly higher consump-
tion of the following food groups:

(1) Factor 1: fruit, vegetables, cereals, legumes and fish.
(2) Factor 2: meat and poultry.
(3) Factor 3: sweets, dairy products, potatoes and eggs, but

lower consumption of soft drinks.
(4) Factor 4: butter, and alcohol, but lower consumption of

other added fat.
(5) Factor 5: seed oil, but lower consumption of olive oil.

Factor 1 was the most dominant food pattern and explained
13% of the total variation. Each of the remaining four factors
explained 8% (factor 5) to 12% (factor 2) of variation in intake.
Regression analysis revealed that only age and BMI were
inversely associated with Cardiometabolic Health Score; that is,
increased age and BMI were associated with worsened health
status at the 10-year follow-up, with age having the strongest
effect (highest β-coefficient) ( Table 3).

Similarly, factor analysis using nutrients (i.e. total fat, MUFA,
PUFA, SFA, protein, carbohydrates) was performed. The ana-
lysis resulted in the extraction of 3 factors that explained 65% of

Table 1. Baseline characteristics and 10-year incidence of CVD, hypertension, diabetes mellitus and hypercholesterolaemia of the ATTICA study’s
participants according to the Cardiometabolic Health Score tertiles*
(Numbers and percentages; mean values and standard deviations)

Cardiometabolic Health Score tertiles

Overall (n 2020) 1st – ‘bad health’ (n 654) 2nd – ‘moderate health’ (n 658) 3rd – ‘good health’ (n 708)

Variables n % n % n % n %

Age (years)
Mean 45 50 42 43
SD 14 13 15 13

Male sex 1006 50 332 51 316 48 358 51
BMI (kg/m2)

Mean 26·3 27·4 25·4 26·2
SD 4·5 4·6 4·3 4·4

Smoking 1107 54 362 55 342 51 406 57
Physically active 825 40 245 37 299 45 281 39
Family history of type 2 diabetes mellitus 145 7·2 51 7·0 51 7·5 43 6·0
Family history of hypertension 598 29 171 26 146 22 281 39
Family history of hypercholesterolaemia 860 42 258 39 242 36 360 50
Cardiometabolic Health Score (0–100)

Mean 60·5 14·2 65·5 98·6
SD 36·0 11·0 11·4 3·3
10-year incidence of type 2 diabetes mellitus† 155 14·1 155 0 0
10-year incidence of hypertension‡ 253 29·2 253 0 0
10-year incidence of hypercholesterolaemia§ 291 39·0 291 0 0
10-year incidence of CVD 317 15·7 208 109 0

* The calculated percentages refer to the actual number of participants for each variable; therefore, in some cases they may decline from the total sample owing to missing
information).

† Incidence of type 2 diabetes mellitus was calculated based on 1096 participants who were free of diabetes at baseline with available blood glucose measurements or medication
use at follow-up.

‡ Incidence of hypertension was calculated based on 866 participants who were free of hypertension at baseline with available blood pressure measurements or medication use at
follow-up.

§ Incidence of hypercholesterolaemia was calculated based on 746 participants who were free of hypercholesterolaemia at baseline with available total cholesterol measurements
or medication use at follow-up.
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the total variation in intake (Table 2). The predominant nutri-
ents for each derived factor were the following:

∙ Factor 1: higher intake of SFA and protein.
∙ Factor 2: higher intake of MUFA and PUFA, but lower intake

of carbohydrates.
∙ Factor 3: higher intake of ethanol and total fat.

Specifically, factor 1 was the most dominant nutrient pattern
and explained 26% of the total variation in intake, whereas factors
2 and 3 explained 23 and 16% of variation, respectively. Similarly
with regression analysis of foods, in this case as well, only age
and BMI were inversely associated with Cardiometabolic Health
Score (Table 3). From the regression analysis, it was also revealed
that both models (using food or nutrient patterns) were similar in
terms of their explanatory ability (adjusted R2= 9·6% v. adjusted
R2= 8·3%, P< 0·01). In addition, the AIC, which was used to
evaluate models’ predictive accuracy, was almost equal in both
models (AIC= 20 102 v. AIC= 20 105, respectively).

Machine learning (k-NN v. random forest methods) and
cardiometabolic risk estimation

Using the Cardiometabolic Health Score as the outcome, the
two different ML classifiers of k-NN and RF were tested against

all samples, twice (i.e. using as input data set the dominant food
factors and once more using the nutrient factors). The mean
accuracy for the k-NN model based on food patterns was 40%
(i.e. 40% of the members of the evaluation subset were
assigned by the ML classifier the same tertile as the one
assigned by the Cardiometabolic Health Score) (Fig. 1). The
mean accuracy using the RF classifier was 41%. For models
based on nutrient patterns, k-NN model was 37% accurate and
the RF was 38% accurate, respectively (Fig. 2). Moreover, the
true positive scores, as a percent of the total population, for the
food patterns were 39% for the k-NN model and 40% for the RF
classifier, whereas for the nutrient patterns they were 37% for
the k-NN model and 37% for the RF classifier. The true negative
scores for the food patterns were 82% for the k-NN model and
82% for the RF classifier, and for the nutrient patterns they were
79% for the k-NN model and 79% RF classifier.

Linear regression v. machine learning and cardiometabolic
risk estimation

The comparison between linear regression and ML was based
on the accuracy of the derived models using the tertiles of the
Cardiometabolic Health Score. Specifically, each individual was
assigned to a tertile according to the predicted Health Score

Table 2. Factor loadings of foods and nutrients consumed by the ATTICA study participants (n 2020) as derived
from the factor analysis using the principal component method

Factor*

1 2 3 4 5

Foods/food groups
Vegetables 0·75† 0·10 −0·08 −0·01 −0·05
Fruit 0·66† −0·04 0·19 −0·04 −0·03
Cereals 0·62† 0·09 0·16 0·01 −0·02
Legumes (lentils, beans, etc.) 0·61† 0·01 0·07 0·02 0·03
Fish 0·47† 0·03 −0·06 0·02 −0·01
Total meat 0·06 0·90† 0·34 0·00 0·02
Red meat 0·00 0·75† 0·42 −0·02 0·04
Poultry 0·13 0·75† −0·16 0·00 −0·04
Sweets 0·23 −0·05 0·71† −0·01 −0·04
Soft drinks −0·18 0·15 −0·65† 0·00 −0·08
Potatoes 0·06 0·37 0·57† 0·00 −0·01
Dairy products (milk, yogurt) 0·44 0·01 0·44† 0·01 0·08
Eggs 0·27 0·10 0·37† 0·04 0·19
Butter 0·02 0·00 0·00 0·89† −0·19
Other added fat −0·03 −0·03 0·01 −0·85† 0·22
Alcohol −0·02 −0·02 0·02 0·55† 0·13
Olive oil 0·02 0·01 0·00 0·07 −0·82†
Seed oil −0·02 0·00 −0·01 −0·08 0·79†

Nutrients as % of total energy intake
SFA 0·86† 0·08 −0·07
Protein 0·81† −0·26 −0·03
MUFA −0·02 0·81† −0·14
Carbohydrates −0·59 −0·75† −0·21
PUFA −0·15 0·50† 0·01
Ethanol −0·14 0·17 0·80†
Total fat 0·06 −0·19 0·64†

* Loadings are similar to the correlation coefficients, with higher absolute values indicative of higher correlation between the (food) variable and
the respective factor. According to the calculated loadings of each factor, the food patterns were mainly characterised by increased
consumption of fruit, vegetables, cereals, legumes and fish (factor 1); increased consumption of total meat, red meat and poultry (factor 2);
increased consumption of sweets, dairy products, potatoes and eggs and decreased soft drinks consumption (factor 3); increased
consumption of butter and alcohol, but decreased consumption of other added fat (i.e. margarine) (factor 4); increased seed oil, but decreased
olive oil consumption (factor 5). The nutrient patterns were mainly characterised by increased intake of SFA and protein (factor 1), increased
intake of MUFA and PUFA, but decreased intake of carbohydrates (factor 2), and increased intake of ethanol and total fat (factor 3).

† Values with loadings >0·3 represent the foods/food groups that correlate most with each factor.
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values derived from the two linear regression models (the one
that was based on the food patterns and the other that was
based on the nutrient patterns), as well as through the ML

methods. The accuracy (i.e. classification of an individual to the
correct Cardiometabolic Health Score tertile) of each regression
model was 22% for the food patterns and 16% for the nutrient
patterns model, which was much lower as compared with the
aforementioned accuracy rates (i.e. 37–41%) observed using
the ML methods.

Discussion

In this work, the 10-year combined cardiometabolic risk was
evaluated in relation to dietary patterns, using both statistical
and ML methodologies. On the basis of factor analysis, food and
nutrient pattern were derived and showed similar accuracy in
correctly classifying the individuals at CVD risk classes, sug-
gesting that either approach is suitable and can be used
depending on each study’s goals. The comparison of the two
ML methodologies (k-NN and RF) also yielded similar results
about the predictive accuracy of diet-pattern approaches.
However, the between-method comparison (statistical v. ML
techniques) revealed that the computer intelligence method
(i.e. ML) surpasses that of the typical linear regression in cor-
rectly classifying individuals to the cardiometabolic risk score
class. This can be attributed to the fact that ML techniques create
more ‘complex’ models, as they take into consideration all
available information from a part of the data, understand more
adequately their intra-relationships and more accurately predict
information about the remaining data. Despite the limitations of
the present observational study, the large, representative sam-
ple, the prospective design and follow-up of 10 years, as well as
the detailed assessment of dietary and other lifestyle and clinical
information, may guarantee that the reported findings are
robust, and of considerable public health and clinical impor-
tance, as they shed light into different methodologies that are
used or may be used in diet pattern analysis and health risk
evaluation.

Applying factor analysis, separately for foods and nutrients,
five and three factors were derived, respectively, which were

Accuracy for ML classifiers using food factors
and 10-fold cross-validation

Accuracy for ML classifiers using nutrition factors
and 10-fold cross-validation
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Fig. 1. Accuracy for the two different classifiers presented (k-NN and random
forest (RF)), using as input for the model construction (a) the food factors and
(b) the nutrition factors. ML, machine learning.
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Fig. 2. A typical tree created by the random forest (RF) method for the model using the food factors. RF creates an ensemble of trees and each one has one vote and
the model decides on the classification of each sample using the majority rule.
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studied in relation to the overall cardiometabolic risk of the
participants. The derived patterns highlighted common dietary
habits of people, like for example the food pattern that described
factor 1, which reflected a ‘healthy’ diet rich in fruit, vegetables,
legumes, cereals and fish, or the food pattern of factor 5 that
characterised individuals who preferred to use seed oil instead of
olive oil, which is also a common dietary behaviour. As regards
nutrients, the pattern that described factor 1 highlighted another
common dietary behaviour – that of increased SFA and increased
protein intake too (Table 2). However, in this work no significant
associations were revealed for any of the derived food/nutrient
factors, a fact that may be attributed to the synergies that
occurred of foods and nutrients on the combined cardiometa-
bolic risk when building the factors. Generally, dietary pattern
approach has been suggested as superior compared with single-
food/nutrient approach, by capturing overall dietary habits and
potential synergistic/antagonistic effects of foods and nutrients,
and by this way for giving the true ‘picture’ about the diet–
disease association(21–23). To the best of our knowledge, this
is the first comparative analysis regarding the predictive
accuracy of nutrient and food patterns on a health outcome, with
the two models – that is, the one used food patterns v. the other
used nutrient patterns – showing similar ability to predict
cardiometabolic risk. Similar predictive accuracy between the
two diet pattern approaches was also reported for the ML
methodologies.
With regard to the comparison between the different metho-

dologies (regression models v. ML), ML methods outperformed
the statistical methods in terms of correct classification. Similar to

our findings, Kim et al.(24) found ML techniques more accurate
than benchmark ASA scores for identifying risk factors of
developing complications following posterior lumbar spine
fusion. The two approaches, statistical and ML, can be con-
sidered somehow as the two sides of the same coin, as they both
aim at classifying data (i.e. individuals in health status classes).
However, the underlying models are different. In the statistical
approach, a probabilistic model is built, based on the assumption
that the provided data are a subset of a larger population that can
be described by a model. First, a simple model is preferred over a
complex one as long as there is an acceptable performance.
Moreover, human intervention is considered essential in every
stage of the overall build of the model. On the other hand, ML
emphasises more on predictions, and thus the efficiency is
evaluated by prediction performance. The main target of ML is to
create a model, usually more complex compared with statistical
approaches, that can be used to classify the data. However, in
ML, the model construction and overall operation is assumed to
be as ‘free’ as possible from human intervention. Unfortunately,
ML methodology does not provide any statistical metrics of
significance in order to evaluate the association of the input
variables with the outcome (e.g. the combined cardiometabolic
score), such as in the regression analysis. The input variables,
that is, food/nutrient patterns, entered in the ML classifiers and
each individual were classified into one of the Cardiometabolic
Health Score classes, but no indication of the role of each input
variable on the outcome could be provided.

However, some limitations of the study should be acknowl-
edged. The baseline nutritional evaluation was performed once

Table 3. Results from multiple linear regression models that evaluated the associations between food and nutrient factors and
the 10-year Cardiometabolic Health Score (the higher the score the better the health status), among the 2020 ATTICA study
participants

Independent variables b-Coefficient SE Standardised coefficient (β) P

Food patterns*
Factor 1 0·93 0·59 0·001 0·23
Factor 2 − 0·69 0·59 0·001 0·93
Factor 3 0·10 0·59 0·02 0·18
Factor 4 0·34 0·60 0·07 0·60
Factor 5 − 2·73 0·59 −0·02 0·41
Sex: male v. female 0·62 1·23 −0·10 0·71
Age (per 1 year) − 0·56 0·06 −0·43 <0·01
Physical activity: active v. inactive 0·55 1·23 0·01 0·41
Smoking: yes v. no 0·18 1·22 0·001 0·79
BMI (per 1 kg/m2) − 0·55 0·18 −0·16 0·003

Model’s R2=9·6%, AIC=20 105
Nutrient patterns

Factor 1 0·75 0·78 0·02 0·33
Factor 2 − 0·72 0·78 −0·02 0·35
Factor 3 1·10 0·81 0·03 0·17
Sex: male v. female 0·23 1·68 0·003 0·89
Age (per 1 year) − 0·56 0·04 −0·22 <0·001
Physical activity: active v. inactive 1·10 1·61 0·01 0·49
Smoking: yes v. no − 0·54 1·63 −0·007 0·74
BMI (per 1 kg/m2) − 0·54 0·19 −0·07 <0·001

Model’s R2=8·3%, AIC=20 102

AIC, Akaike information criterion.
*Food patterns were mainly characterised by increased consumption of fruit, vegetables, cereals, legumes and fish (factor 1); increased
consumption of total meat, red meat and poultry (factor 2); increased consumption of sweets, dairy products, potatoes and eggs and decreased
soft drinks consumption (factor 3); increased consumption of butter and alcohol, but decreased consumption of other added fat (i.e. margarine)
(factor 4); increased seed oil, but decreased olive oil consumption (factor 5). The nutrient patterns were mainly characterised by increased intake
of SFA and protein (factor 1), increased intake of MUFA and PUFA, but decreased intake of carbohydrates (factor 2), and increased intake of
ethanol and total fat (factor 3).

332 D. Panaretos et al.

https://doi.org/10.1017/S0007114518001150  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114518001150


and may be prone to measurement error or influenced by sea-
sonal variation and reproducibility of the collected information.
However, the FFQ has been found reproducible and
reliable, while the sampling took over a year, and therefore
included, on average, food choices during all seasons. The
rate of loss to follow-up was about 15% and mainly attributed to
the wrong or missing contact information at baseline, which,
however, has not influenced the findings (no significant
differences in the baseline characteristics were observed
between those who participated in the 10-year follow-up and
those who were lost). The lack of a direct statistical comparison
between statistical v. ML techniques may also limit the
interpretation and generalisation of the results. Finally, residual
confounding owing to unmeasured factors always exists in
epidemiological analyses.

Conclusion

In nutritional epidemiology, food or nutrient pattern recognition
analysis has emerged as a cornerstone method when examining
the relationship between diet and disease, taking into con-
sideration the impact of diet as a whole. With respect to the
predictive accuracy of the two dietary assessment approaches,
they were found equal in cardiometabolic risk estimation. The
same was reported when comparing ML methodologies using
both food and nutrient factors; however, when ML approaches
were compared with benchmark statistical techniques, they
achieved better accuracy in sample classification, suggesting
that ML methods may emerge as a valuable and helpful tool in
the field of nutritional epidemiology, leading to a more accurate
disease risk estimation, the first and most important step before
intervention.
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