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Abstract

Given a finite graph H and G, a subgraph of it, we define o(G, ff) to be the largest integer such that
every pair of subgraphs of H, both isomorphic to G, has at least a(G, H) edges in common;
furthermore, R(G, H) is defined to be the maximum number of subgraphs of H, all isomorphic to G,
such that any two of them have a(G, H) edges common between them. We are interested in the values
of a(G, H) and R(G, H) for general H and G. A number of combinatorial problems can be
considered as special cases of this question; for example, the classical set-packing problem is
equivalent to evaluating R(G, H) where G is a complete subgraph of the complete graph H and
a(G, H) = 0, and the decomposition of H into subgraphs isomorphic to G is equivalent to showing
that a(G, H) = 0 and R(G, H) = e(H)/e(G) where e(H), e(G) are the number of edges in H, G
respectively.

A result of S. M. Johnson (1962) gives an upper bound for R(G, H) in terms of a(G, / / ) . As a
corollary of Johnson's result, we obtain the upper bound of McCarthy and van Rees (1977) for the
Cordes problem. The remainder of the paper is a study of a(G, H) and R(G, H) for special classes of
graphs; in particular, H is a complete graph and G is, in most instances, a union of disjoint complete
subgraphs.

1. Introduction

Let H be any finite graph and let G be any subgraph of H. We are interested in
two integer-valued functions of G and H, a{G, H) and R(G, H). The function
o(G, H) is defined to be the largest integer such that every pair of subgraphs of
H, say G, and G2, both isomorphic to G, has at least a(G, H) edges in common.
This means that each pair of such subgraphs has at least a(G, H) common edges
and some pair of them has precisely a{G, H) common edges. If the graph H
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under consideration is clear from the discussion, we will refer to o(G, H) simply
as o(G) or, still more simply, as a, in the event that there is no ambiguity about
the subgraph G either. The function R(G, H) is defined to be the largest integer r
such that there exist r subgraphs of H, say G,, G2, . . . ,Gr, each isomorphic to G,
with the property that each pair of them has a common edges. When appropriate,
we will refer to R(G, H) as R(G) or R.

It is interesting to note that the classical set-packing problem is a special case of
this problem. The object in the packing problem is to determine the maximum
number of /c-subsets of an w-set such that any pair of elements from the «-set is in
at most one of the A:-subsets. This is equivalent to the determination of R(G, H)
where H is the complete graph Kn, G is Kk and a = 0.

Cordes (1978)* considered the problem of determining R(G, H) and a(G, H)
in the special case where H is the graph Kmn (the complete graph on mn vertices)
and G is the union of n disjoint complete graphs, each on m vertices. Since then,
others have considered this problem, including Mullin and Stanton (1978),
McCarthy and van Rees (1977), and Nemeth (1976). Nemeth was the first to
consider the more general problem described above.

For any graph H, let e(H) denote the number of edges in H. In Section 2, we
observe that a result of Johnson (1962) gives

R(G,H)<Ele-«G'H»
e2 - Ea(G,H)

where E = e(H) and e = e(G). This bound gives the upper bound for R(G, H)
obtained by McCarthy and van Rees (1977) in the special case where H = Kmn

and G is the disjoint union of n Km's.
In Section 3, we consider lower bounds for R(G, K2n) where G is the disjoint

union of 2 Kn's; in Section 4, we study R(G, Kn) where G is the disjoint union of
two complete graphs Km and Kn_m\ and in Section 5, we consider R(G, Kn)
where G is a double-cone (see Section 5) on n vertices. For G a double-cone on n
vertices, where n 3= 8, it is shown that o(G, Kn) — 8 and R(G, Kn) — 2.

We conclude the introduction by describing some notation to be used in later
sections. For any graph G, F(G) is the set of vertices of G and E(G) is the set of
edges; furthermore, v(G) = | K(G) | and e(G) =\E(G) | .

2. The Cordes problem

Though Cordes (1978) originally phrases this problem in the language of
combinatorial designs, we will use the graph theoretical language employed in

Though the paper by Cordes was published in 1978, he introduced the problem in 1976.
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Section 1. As mentioned in the introduction, Cordes investigated a(G, H) and

R(G, H) in the special case where H is a complete graph on mn vertices and G is

the union of n disjoint complete subgraphs, each on m vertices. In this special

case, we denote o(G, H) by a(m") and R(G, H) by R(m").
Let us consider the more general situation where G is the union of disjoint

complete subgraphs of H, but the complete subgraphs need not all have the same
cardinality. We begin by looking at o(G, H). The following result (see Hartman,
Mullin and Stinson (1980)) plays a significant role in several of the proofs given
below.

LEMMA 2.1. For any b non-negative integers kx, k2,...,kh, let

b

2 kt = qb + r, -where 0 < r < b.

If q + 1 s* u, then

with equality if and only if r of the kt's are equal to q + 1 and the remaining b — r

are equal toq.Ifq+ 1 < u, then

with equality if and only if each k: < u.

We are now in a position to prove

THEOREM 2.2. For m, n and s positive integers such that m, n > I, 0 *£ s < n, let

H = Kt where t = mn + s; that is, let H be a complete graph on t vertices. Let G be

the union of n disjoint complete subgraphs of H, s of which have m + 1 vertices and

n — s of which have m vertices. Let m — kn + I, where 0 < / < n. Then

a(G, H) = (ln + s)(k+l)+ (n2 - / „ -

furthermore, whenever two subgraphs isomorphic to G, say G, and G2, intersect in a
edges, then each connected component of G, intersects each connected component of
G2 in k or k + 1 vertices.

PROOF. Label the connected components of Gt, i £ {1,2}, by C,1, Cf,...,C".

Let x,j - v(C[ Pi C{). Clearly

xtJ = nm + s = kn2 + In + s.
i.j

https://doi.org/10.1017/S1446788700026987 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026987


290 R. C. Mullin, B. K. Roy and P. J. Schellenberg [4]

The number of edges common to both G, and G2 is given by

We can apply Lemma 2.1 to the xt/s with b — n2, q — k, r = In + s and u = 2.
Thus

>J

with equality if and only if each xtj is either k + 1 or A;. We conclude that

o(G, H) = (In + s)(k + 1 ) + ( n 2 - In - * ) ( * )

and Gu G2 have a edges common if and only if each connected component of G,
intersects each connected component of G2 in k or k + 1 vertices.

If s — 0, we have

a(G,H) = n\l[k+
1 *) + ( " - 0 ( 2 ) ]

which was first established by Cordes (1978).

We now turn our attention to the function R(G, H). The more general
graph-theoretic formulation of Cordes' problem permits us to employ an elegant
result of S. M. Johnson (1962) to obtain an upper bound for R(G, H). For the
sake of completeness, we include the proof of Johnson's Theorem.

As usual, we let | A' | denote the cardinality of the set X.

THEOREM 2.3 (1962). Let H be a finite set of cardinality E and let G,, G2,. . . ,GS

be subsets of H such that
(i) I G,, I = e for 1 < / < 8, and
(ii) I G, n Gj. | < 0 for 1 < / <j =£ S.

Then, for e2 > Ed,

8 ^ \
e2- E0

PROOF. Let A be the multi-set of set intersections

(G, n Gj\ 1 < / < y * s S ) .

Define a bipartite graph, with bipartition {A, H), as follows: a vertex h E H is
joined to a vertex G, D Gj £ A if and only if the element h G H is in the
intersection G, D Gj. In order to count the edges of this graph, for each h G H,
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we define kh to be the number of G,'s which contain the element h. Clearly, the
number of edges incident with the vertex set H is

hEH

The number of edges incident with the vertex set A is at most (1)6 since
| G, n Gj• I =£ 0. Hence

(i) 2

It is immediate from the definition of the kh's that

(ii) 2 ** = «*•

Combining (I) and (II), we have

(III) 2 k2
h^8(8- 1)0 +fie.

By the Cauchy-Schwarz inequality,

applied with a, = kh and bt:— 1, we obtain

fiV<(fi(8- \)0 + 8e)E,

which simplifies to give

8 < —; ,
e2 - E6

under the hypothesis that e2 > Ed.

Johnson also observed that given any upper bound for 8, one can readily
obtain a second inequality which must be satisfied. Let q — [8e/E] and let
r = 8e — qE. Applying Lemma 2.1 with q — q, r — r, b = E and u = 2, we
obtain that

Combining this with inequality (I) of the above theorem, we obtain
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Thus, we have established

LEMMA 2.4. Under the hypothesis of Theorem 2.3,

I 2 / " rq \ 2 /
where q = [Se/E] and r = Se — qE.

This result will occasionally permit us to obtain an improved value for S; for
example, if we have an upper bound for S and if the inequality of Lemma 2.4 is
not satisfied, then S — 1 is a better upper bound.

In the generalized graph-theoretical formulation of the Cordes problem, the
graphs G and H are completely determined by their edge-sets E{G) and E(H),
respectively. Thus, if we apply Johnson's Theorem to these two edge-sets, we
immediately obtain

COROLLARY 2.5. Let H be a graph with E edges and let G be a subgraph with e
edges. Then for a — a(G, H),

' e2-Eo '

Combining Theorem 2.2 in the special case when s — 0 and Corollary 2.5, we
obtain the following result of McCarthy and van Rees.

LEMMA 2.6. For the classical Cordes problem,

, „,. (mn — l)\m(m — 1) — k(m + I — n)]

m(m — 1) — k(mn — \)(m + I — n)

where m = kn + I and 0 < / < n.

PROOF. This follows immediately from Corollary 2.5 when we set

E = (
nm\ lm
2 ) [

and from Theorem 2.2, with s — 0,

I 'M \llk+ 1\ -L{ l\lk\]
a(m") = «[ / [ 2 | + (« - l ' \ 2 } \ '

One can also find an upper bound for R(G, H), with G and H as defined in
Theorem 2.2, since

and a(G, H) is as given in Theorem 2.2.
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We now use Lemma 2.4 to establish the following improved upper bound of
McCarthy and van Rees (1977).

THEOREM 2.7. R((2m + I)2) < Am + 4, provided m 3= 2.

PROOF. From Lemma 2.6, we get R((2m + I)2) < 4m + 5. Now let S = 4m +
5. For this case,

= ( 4 w + 2 ) = 8m2 + 6 « + 1, e = 2 • ( 2m + ] ) = 4m2 + 2m,E

and

Then q - 2m + \,r= 8m2 + 2m - 1, and hence,

rq + E-(q\ = 16m4 + 36m3 + 20m2 + w - 1,

( 2 ) 0 = 16m4 + 36m3 + 20m2.

Hence S *£ 4m + 4.

When / / = A:4m and G is the union of two disjoint K2m\, Cordes (1978)
established

THEOREM 2.8. R((2m)2) < 4m — 1 w/f/i equality if and only if there exists a
Hadamard matrix of order 4m.

3. Some lower bounds for R((2m + 1 )2)

McCarthy and van Rees (1977) establish a number of results on R{{2m + I)2).

LEMMA 3.1. R((2m + I)2) > R((2m)2).

LEMMA 3.2. R((4n + I)2) s* 2min[/?((2«)2), /?((2n + I)2)] + 1.

LEMMA 3.3. R((4n - I)2) > 2min[R((2n - I)2), J?((2n)2)] + 1.

LEMMA 3.4. 2"+ 1 - 1 =£ R((2" - I)2) < 2"+lforn^ 3.

LEMMA 3.5. If pa = 4n + 1, where p is a prime, then 4n + 1 < /?((2n + I)2) <
4« + 4.
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McCarthy and van Rees also demonstrate that R(52) = 12 and determine
upper and lower bounds for R((2m + I)2) for 2m + 1 £ {7,9,11,13}. Cordes
(1978) shows that R(32) = 10.

In this section, we show that R((4m + 3)2) s* 8m + 7 where 4m + 3 is a prime
or a power of a prime. Combining this result with Lemma 3.3, we show that
8m + 7 < R((4m + 3)2) < 8m + 8 for many non-prime powers 4m + 3.

We proceed, now, using the language of combinatorial designs rather than
graphs. Let V be a set of cardinality mn. An (m")-round, 91, is a partition of V
into n sets, called blocks, each of cardinality m. The pairs of an {m")-round 91 are
precisely those pairs {a, b) C V, a ¥= b, such that, for some block B G 91,
{a, b) Q B. Then o(m") is the largest integer such that any two (m")-rounds of B
have at least a{m") common pairs. Also, R(m") is the largest integer r such that
there exist r (m")-rounds of V, say "31,, 912 , . . . ,91,., with the property that each
pair of these rounds have a{m") common pairs. Throughout the remainder of this
section, we investigate R((2m + I)2).

We now consider the problem of constructing two ((2m + l)2)-rounds having
a((2m + I)2) common pairs.

LEMMA 3.6. Let V be a set of cardinality Am + 2. Constructing two ((2m + l)2)-
rounds of V having a((2m + I)2) common pairs is equivalent to constructing two
blocks (subsets) of V, say A and B, both of cardinality 2m + 1, such that

\A n B\ — m or m + 1.

PROOF. Clearly, if 91, and <3l2 are ((2m + l)2)-rounds containing o((2m + I)2)
= 2m2 common pairs, then by Theorem 2.2, each block of (3ll intersects each
block of 912 in m or m + 1 elements. Hence, we can take either block of 91, to be
A and either block of 912 to be B.

Conversely, let A and B be blocks of V, each of cardinality 2m + 1, such that
\A n B |= m or m + 1. Let A = V\A and B = V\B. It is an easy matter to
check that 91, = {A, A} and 9l2 = {B, B} are ((2m + l)2)-rounds such that
each block of 91, intersects each block of 912 in m or m + 1 elements. Hence by
Lemma 2.2, 91, and 9l2 have a((2m + I)2) common pairs.

We are now in a position to prove

THEOREM 3.7. If pa = 4m + 3, where p is a prime and a is a positive integer,
then R((4m + 3)2) > 8m + 7.

PROOF. Bose (1947) has established that the set of quadratic residues, say Q of
the Galois field of order 4m + 3, G = GF(4m + 3), is a difference set (M. Hall,
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Jr. (1967)) of index m, as is the set of quadratic nonresidues, say N. That is, the

multi-set

(a-b\a,b &Q,a¥^b)

contains each element g G G\{0} precisely m times, as does the multi-set
(a - b\a,b G N, a ¥= b). Furthermore, Q' = QU {0} and JV' = JVU {0} are
both difference sets of index m + 1.

For any g G G and for any subset S C G, define

Now, for a G Q and g G G\{0}, a G Q D (Q + g) if and only if there is an
element b G Q such that a = b + g or, equivalently, a — b = g. Since 5 is a

difference set of index m, it follows that, for any g G G\{0}, | Q D (Q + g) | = m
and hence, for any {g, h) Q G, g ¥= h,

Similarly, for any (g, A) C G, g ¥* h, | (N + gj n (JV + A) | = w, | (g ' + g) n
(Q' + h)\=m+ l , a n d | ( ^ ' + g ) D(N' + h)\=m+ 1.

We make use of the following notation. For / G {1,2} and for any subset
S C G, let St• = S X {/}: furthermore, for any g E G, let g,. = (g,/') £ G X {;}.
For any g, G G, and any h & G, define

g, + * = (* + *),

and, for any subset S C G, U G2, define S + h = {j + A | i' G 5}.
Now, let E = Q\ U Q2 and let F = N{ U (32. Then, for {g, h] CG,g^h,

\(E + g)n(E + h)\ = \(Q\ + g)n ( g ; + A)| + | ( g 2 + g) n ( g 2 + A ) |

= (m + 1) + m = 2w + 1.

Similarly, j ( F + g) D (E + A) | = 2m + 1. Also,

g ) n ( F + h)\ = \(Q[ + g ) n (N{ + h)\ + \(Q2 + g ) n ( Q 2 + h)\

g)\(Gi +h)\

Now g, G QK + h if and only if g — h G £?. Hence,

,_ (2m + I if g - / t G Q,
' ~ { 2 m + 2 ifg-AGTV.
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For any g G G,

\{E + g ) n ( F + g ) \ = \(Q[ + g ) n (N[ + g ) \ + \ ( Q 2 + g ) n ( Q 2 + g ) |

= (1) + (2m + l) = 2m + 2.

Finally,

|G, n (E + g) |= |G, n(F + g ) |= 2m + 2.

Thus, we have shown that

® = U {£ + g , F + g } U {G,}

is a set of 8m + 7 blocks of G, U G2 such that any two of these blocks intersect
in 2m + 1 or 2m + 2 elements. By Lemma 3.6, there exist 8m + 7 {{Am + 3)2)-
rounds of G, U G2 having o((4m + 3)2) common pairs and hence <3l((4m + 3)2)
> 8m + 7, as required.

We conclude this section by observing that Lemma 3.3 and Theorem 3.7 imply

R((4m + 3)2) > 8m + 7

for some integers 4m + 3 which are not primes nor powers of primes, for
example, when 4m + 3 G {15,39,55,63}.

4. a(mn) and R(mn)

In this section, we continue our investigation of a{G, H) and R{G, H) using
the language of combinatorial designs.

Let kx, k2,...,ks be distinct positive integers and let il,i2,...,is be positive
integers. Let

5 S

2 ij — t and 2 ijkj — v.
7 = 1 7 = 1

For

r ls>\V'l . lr>
I K 1 A. -) A. „/,

a k\'k'2
2 • • • A^-round, or more briefly, an /--round, say 61 = {Bx, B2,.. .,B,}, is a

partition of some u-set, say V, into t blocks such that /', of the blocks have
cardinality kt, i2 have cardinality k2, and so on until is have cardinality ks. As in
Section 3, the pairs of 61 are all the pairs {a, b) C V, a ¥= b, such that, for some
block B G 61, (a, b) C B. We define a{k['k2

2 • • • kj
s*) = a{r) to be the largest

integer such that any two r-rounds of V contain at least a{r) common pairs and
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define R(r) to be the largest integer / such that there are / /--rounds, say
<51,,<!R,2,.. .,"31/, any two of which have a(r) common pairs. If no such largest
integer / exists, then we say R(r) = oo.

In this section we study R(r) in the special case where r = m'w1 or more
simply, r = mn. Since we have considered r = m2 in Section 3, we further assume
that m> n.

LEMMA 4.1. (i) For m 3* 3« — 1, two mn-rounds have a(mn) common pairs if and
only if the two blocks of size m intersect in p = m — n elements.

For n < m < 3n — 1, let p = [(3m — n + l ) /4] , the integer part of (3m — n +
l ) /4 . Two mn-rounds have a(mn) common pairs if and only if the two blocks of size
m

(ii) intersect in p elements when m + n s 2(mod 4) and
(iii) intersect in p or p + 1 elements when m + n = 2(mod 4).

PROOF. Let one round consist of blocks A and A and another of B and B,
where |y4| = | .B|= m and | /4 | = | 5 | = n ; furthermore, let \A n B\ = x. Then
\A n B\= m - x, \BnA\=m — x and \A D B\= n — (m — x) — n — m + x.
Clearly, w — m + x>0oix>m — n: hence, m — n < x < m.

The number of pairs common between these two rounds is given by

m — x \ ( m — x \ ( n — m + x \
2 ) + ( 2 ) + l 2 )

3w2 — 2mn + n2 — m — n
= 2x2 + (n - 3m)x

It can readily be shown that N(x) has a minimum at x — (3m — n)/4 and that it
is symmetric about the line x = (3m — n)/4.

If m — n > (3m — n — l ) /4 , or equivalently, if m ^ 3n - 1, then N(x) is
strictly increasing for integers x in the admissible interval m — n < * < m; hence,
a(mn) — N(m — n). This establishes (i).

Otherwise, n<m<3n — 1. Since x =\A C\ B\ is an integer, it follows that
a(mn) — N(p) where/? = [(3m — n + l) /4] , the integer part of (3m — n + l ) /4 .
For m + n e 2(mod4), N(p) < N(q) for any integer q ¥= p, and, for m + n =
2(mod4), N(p) = N(p + 1) and, for any integer q $ {p, p + 1}, N(p) < N(q).
Hence, we have parts (ii) and (iii).

Before stating a useful corollary of this lemma we require a definition. An
(r, Xydesign is a pair (X, &) where X is a set and & is a collection of (not
necessarily distinct) subsets of X, called blocks, with the following two properties:
(i) any element of X is contained in precisely r blocks of & and (ii) any pair of
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distinct elements of X is contained in precisely X blocks of &. Note that blocks of
cardinality one are permitted.

COROLLARY 4.2. If m + n ^ 2(mod 4), then the existence of t mn-rounds, each
pair of them having o(mn) common pairs, is equivalent to the existence of an
(r, X)-design, (X, &), with (r, X) = (w, p), \ X\= t and | <£|< m + n.

PROOF. Let there be t wn-rounds of the (m + «)-set such that any two of these
mw-rounds have a{mn) common pairs. Let Bx, B2,...,Bl be the blocks of cardi-
nality m from these / mn-rounds and let V — B{ U B 2 U • • • UB,. The dual (see,
for example, M. Hall, Jr. (1967)) of the design (V, {£,, B2,...,B,}) is an (r, X)-
design, say (X, &), having (r, A) = (m, p), \ X\= t and \&\*z m + n.

It follows readily that the converse also holds.

Since Fisher's inequality (M. Hall, Jr. (1967)) holds for (r, \)-designs, we
immediately have

LEMMA 4.3. R(mn) < m + n, provided m + n z 2(mod4).

For certain values of the parameters m and n, we can obtain a sharper upper
bound.

LEMMA 4.4. Ifp(m + n — 1) ¥= m(m — 1), andm + s 2(mod4) then

R(mn) < m + n.

PROOF. By hypothesis, p(m + n — I) ¥= m(m — 1). To obtain a contradiction,
assume R(mn) — m + n. By Lemma 4.2, there exists an (r, A)-design, with
(r, X) = (m, p), s a y (X, &), h a v i n g \X\= m + n=\&\. R y s e r ( 1950 ) h a s s h o w n

that such an (r, X)-design is, in fact, a symmetric balanced incomplete block
design with parameters (v, b, r, k,X) = (m + n, m + n, m, m, p) and hence
X(v — 1) = r(k — 1) orp{m + n — 1) = m(m — 1). From this contradiction, we
conclude that R(mn) ¥= m + n, which, by Lemma 4.3, implies R(mn) < m + n.

Obviously, if A and B are two w-subsets of an (m + n)-set which intersect in p
elements, then their complements, A and B, are two ̂ -subsets which intersect in
n — m+ p elements. Hence, it is easy to determine R(mn) when the w-subsets
intersect in m — n elements: in this case, R(mn) is the maximum number of
disjoint n-subsets that can be selected from an (m + n)-set. Now by Lemma
4.1(i), the w-subsets of two w«-rounds having a(mn) common pairs intersect in
m — n elements whenever m > 2>n — 1. Thus we have
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LEMMA 4.5. Ifm > 3n — I, then

R(mn) =[(m + n)/n],

the integer part of(m + n)/n.

It now follows from the above lemma that R(m\) — m + 1.
We now consider the case where n = m — 1. For results on Hadamard matrices,

the reader is referred to Wallis, Street, Wallis (1972). Note that in this case
m + n z 2(mod 4).

THEOREM 4.6. If there is a Hadamard matrix of order 4k, then

R((2k)(2k- 1)) = 4k- 1.

PROOF. The existence of a Hadamard matrix of order 4n implies the existence
of a symmetric balanced incomplete block design with parameters (v, b, r, k,\)
= (4k- \,4k- 1,2k,2k, k) (M. Hall, Jr. (1967)). Hence, by Corollary 4.2,
R(r)> 4k — 1 and, consequently, R = 4k — 1, as required.

We next establish a lower bound for R((2k + l)(2k)).

LEMMA 4.7. If there is an Hadamard matrix of order 4k, then

R((2k+ \)(2k)) >4k-\.

PROOF. The existence of a Hadamard matrix of order 4k is equivalent to the
existence of a symmetric balanced, incomplete block design with parameters
(v, b, r, k, X) = (4k - \,4k - \,2k - \,2k - 1, k - 1) (M. Hall, Jr. (1967)).

Adjoin two addditional blocks, both containing all 4k — 1 elements. We obtain
an (r, X)-design (X, &) having (r, X) = (2k + 1, k + 1), \X\= 4k - I and \&\
= 4k+ 1. Hence, by Corollary 4.2, R > 4k - 1.

For p = p((2k + l)(2k)), p(m + n - 1) = (k 4- 1)4A: ¥- (2k + 1)2A:
= m(m - 1) and, consequently, by Lemma 4.4, R((2k + \)(2k)) < 4k + 1. Thus
we have

THEOREM 4.8. If there is a Hadamard matrix of order 4k then,

4k - 1 < R((2k + \)(2k)) < 4k.

The following four 3'2'-rounds demonstrate that /?(3'2') = 4:

123 45
124 35
234 15
134 25
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Also, R(4]2l) = 15 by Lemma 4.13 below. These results, together with Lemma
4.5, immediately determine i ? ( w ' 2 ' ) . R(3]2l) = 4 and i?(4 '2 ' ) = 15: for m > 4,
m > 3M — 1 = 4 which implies R = [(m + 2 ) / 2 ] , the integer part of ( w + 2 ) / 2 .

We conclude this section by considering R(m(m — 2)). We investigate the cases
R((2k + \)(2k - 1)) and R((2k + 2)(2A:)) separately.

LEMMA 4.9. R((2k + l)(2/c - 1)) s* R((2k)(2k - 1)).

P R O O F . Let R((2k)(2k - 1)) = /. By Lemma 4.1, p = k, and by Corollary 4.2,
there is a (2k, &)-design (X, &), having | X\ = t and | & | < 4k - 1. Let &' - & U
{*} . Then (X, « ' ) is a (2k + I, k + l)-design having | A"|= / and | &' | = 4k
which, by Corollary 4.2, implies that

R((2k + l)(2k -l))>t = R((2k)(2k - 1)).

THEOREM 4.10. If there is a Hadamard matrix of order 4k, then

R((2k+ l)(2k- l))=4k- 1.

PROOF. By Lemma 4.4, R((2k + \)(2k - 1)) < 4k, and by Lemma 4.6 and 4.9,
R^4k- 1.

We now consider R((2k + 2)(2k)). In this case, m + n = 4k + 2 = 2(mod4)
and Lemma 4.1(iii) implies that two (2k + 2)(2k)-rounds have a common pairs if
and only if blocks of size 2k + 2 intersect in k + 1 or k + 2 elements, or
equivalently, if and only if the blocks of size 2k intersect in k or k — 1 elements.
Thus we have

LEMMA 4.11. R((2k + 2)(2k)) is equal to the number of 2k-subsets which may be
selected from a 4k + 2-set such that any two of the 2k-subsets intersect in k or
k — \ elements.

LEMMA 4.12. R((2k + 2)(2k)) ^ 4k + 5 provided k > 4 and

' ) < 18.

PROOF. This follows directly from Theorem 2.3 when we assume
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THEOREM 4.13. R(4' 2 ' ) = 15.

PROOF. By virtue of Lemma 4.12, it is enough to construct 15 blocks of size 2
such that any two of them intersect in 0 or 1 element. This is easily done by
taking all ( | ) = 15 pairs from the 6 elements.

Now we look to get some lower bounds for the R((2k + 2)(2k)) value. In this
context we use the following result of Bose.

LEMMA 4.14 (1947). Let pa = 4k + 1 where p is a prime. Then among the totality
of differences of the quadratic residues of GF(pa), every quadratic residue occurs
(k — 1) times and every quadratic nonresidue occurs k times.

LEMMA 4.15. If4k+ 1 is a prime power, then R((2k + 2)(2A:)) > 4k + \.

PROOF. Let the element-set be GF(4k + 1) U {oo} and let x be a primitive
element of GF(4k + 1). The set of quadratic residues is

B={x\x\...,x^}.

Consider the set of blocks {B + y: y E GF(4k + 1)}. It follows from Lemma
4.14 that

k — \ if y — w is a quadratic residue,
k if y — w is a non-residue.

Hence, Lemma 4.11 implies R((2k + 2)(2k)) > 4k + 1.

LEMMA 4.16. R [(4k + 4)(4k + 2)] > 8A: + 7 provided 4k + 3 is a prime power.

PROOF. We apply the same technique that we use in proving Theorem 3.7. Let
G be the Galois field with 4k + 3 elements and let

Our element set is G, U G2 so that | G, U G2 | = 8/fc + 6.
Q is the set of quadratic residues in G and N is the set of quadratic

non-residues in G. Let E - £), U Q2 and F = Nx U Q2. Then, as in Theorem 3.7,
one can show that

B= U {E + g,F + g}u(
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is a set of &k + 7 blocks of G, U G2 such that any two of these blocks intersect in
2 k or 2 k + 1 elements. Hence Lemma 4.11 implies

R[(4k + 4)(4k + 2)] > 8* + 7.

LEMMA 4.17. R((4k + 2)(4A)) >2nun{R((2k + 2)(2k)), R((2k)2)} + 1.

PROOF. Let min{R((2k + 2)(2k)\ R((2k)2)} = t. Let * be a set with 4k + 2
elements. Then there are t subsets of X say, Bx, B2,... ,Bn such that \Bt\ — 2k
and \Bi n BJ | = k or k - 1 for all /', j = l,...,t. Also let F b e a set with 4k
elements such that Y n X = 0 . Then there are t subsets of Y, say, CUC2,...,C,,
such that | C, | = 2k and | C, n Cj \ - k for all /, j - 1,2,..., t. Now let

Z>,. = 2?,UC,, i=l,...,t,

Et = B, U q , i=\,...,t where C; = y \ C ; .

Then

U {A, Et) u y

is a set of 2? + 1 blocks of X U Y such that each has cardinality 4k and any two
of these blocks intersect in 2k or 2k — 1 elements.

LEMMA 4.18. R[(4k + 4)(4A: + 2)] > 2min{R((2k + 2)(2A:)), R((2k + 2)2)} +
1.

PROOF. Let min{R((2k + 2)(2k)), R{(2k + 2)2)} = t. Let I b e a set having
4k + 2 elements. Then, there are ? subsets of X, say, 5 , , B2,...,Bn such that
| 5 , | = 2A:and | B,, D 5,.|= ^ or A: - 1 for all /, j = 1,2,...,?. Also, let Y be a set
having 4A: + 4 elements, Y H X = 0 . Then, there are t subsets of Y, say,
C{,C2,--,C, such that |C,-|=2Jfc + 2 and | C; D C, | = A: + 1 for all i, j =
1,2,...,?. Now let

Z), = 5 , U C , , / = l ,2 , . . . , r ,

£, = 5, U C~, / = 1,2,. . . , r where C; = y \ C , .

Then

U (A, £,} u y
/ = i

is a set of 2t + 1 blocks of X U Y such that each has cardinality 4k + 2 and any
two of them intersect in 2 A or 2 A; + 1 elements.

Hence, the result follows by Lemma 4.11.
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5. Double-cones

303

In this section we consider o(G, H) and R(G, H) where H is a complete graph
and G is a graph having v(G) = v{H). In the preceding sections, we have
considered the case where G is the union of disjoint complete subgraphs of H.
Nemeth (1976) has considered the cases where G is a star, a cycle, a wheel, a
rim-deleted wheel, and a spoke-deleted wheel. We now consider the case where G
is a double-cone.

A double-cone on n + 2 vertices consists of a circuit of length n, together with
two independent vertices, say s and /, which are adjacent to each vertex of the
circuit. Observe that s and t each have valence n and all the other vertices have
valence 4. We call the circuit of length n the rim of the double-cone and, for
n > 4, the rim is uniquely determined by the vertices of valence 4. We will
represent a double-cone as shown below.

THEOREM 5.1. Let H be a complete graph and let G be a double-cone {having
v(G) = v{H)). For v{H) 3= 8, a = a{G, H) = 8 and R = R(G, H) = 2.

PROOF. We begin by showing a — 8.
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Let G be a subgraph of H which is a double-cone and let G' be a subgraph of H
isomorphic to G. Label the vertices of H with the symbols of {1,2,. . . ,«} U {s, t)
so that the rim of G has 1,2,... ,n as its vertices.

If the isomorphism 0: G -» G' maps either of s or t into {s, t), then it can be
shown that e(G D G') > n + 3 > 9. Hence, we consider an isomorphism 6: G -> G'
such that

6 ( s ) = k , 0 ( t ) = l, O l ( s ) = i, O \ t ) = j

where {/", _/, A:, /} C {1,2, . . . ,«}.

1. Vertices / andy are not adjacent in G.

9(1)

Clearly the 4 edges on s and the 4 edges on t in C are also in E(G);
furthermore, at least one additional edge on k in G' and at least one additional
edge on / in G' are in E(G). Therefore e(G n G') s* 10.

Case 2. Vertices k and / are not adjacent in G. As in Case 1, it can be shown
that e(G D G') > 10.

Case 3. Vertices / andy are adjacent in G and vertices k and / are adjacent in G.
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9(n)

Then three of the edges incident with s in G' are in E(G), as are three of the edges
incident with /. Precisely one additional edge incident with k in G' is in E(G), as
is one additional edge on / in G. Hence, e(G D G') s* 8. In addition, if the rims of
G and G' are edge disjoint, then it follows that e(G n G') = 8. If v(H) > 8, then
it is possible to obtain G and G' such that their rims are edge-disjoint. This can be
shown by Dirac's Theorem on Hamiltonian circuits (Bondy & Murty (1976)).
Thus a - 8.

To obtain a contradiction, suppose G" is a third subgraph of H isomorphic to
G such that any pair of G, G', G" have precisely 8 edges in common. By the above
argument, s and t must be adjacent on the rims of G' and G". Since the rims of G'
and G" are not edge-disjoint, e(G' D G") > 8, a contradiction. Hence, R — 2.

LEMMA 5.2. If Dn represents a double-cone on n vertices, then

o(D5,K5) = 8 and R(D5, K5) = 10,

a(D6,K6) = 9 and R(D6, K6) = 5,

a(Z)7,AT7) = 9 and R{Dn, K7) = 3.
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