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H p-Maximal Regularity and Operator
Valued Multipliers on Hardy Spaces

Shangquan Bu and Christian Le Merdy

Abstract. We consider maximal regularity in the H p sense for the Cauchy problem u′(t) + Au(t) =

f (t) (t ∈ R), where A is a closed operator on a Banach space X and f is an X-valued function defined

on R. We prove that if X is an AUMD Banach space, then A satisfies H p-maximal regularity if and

only if A is Rademacher sectorial of type < π
2

. Moreover we find an operator A with H p-maximal

regularity that does not have the classical Lp-maximal regularity. We prove a related Mikhlin type

theorem for operator valued Fourier multipliers on Hardy spaces H p(R; X), in the case when X is an

AUMD Banach space.

1 Introduction and Background

Let X be a complex Banach space. Let −A be the infinitesimal generator of a bounded
analytic semigroup on X. We consider the following Cauchy problem on R:

(1.1) u ′(t) + A(u(t)) = f (t), t ∈ R,

where f is an X-valued function defined on R.
Let D(A) denote the domain of A and let 1 < p < ∞. We let Al be the ten-

sor extension of A on Lp(R; X) given by (Alu)(t) = A(u(t)), with domain D(Al) =

Lp(R; D(A)). Then we let Bl be the derivation operator on Lp(R; X) given by
Blu = u ′, with domain the Sobolev space D(Bl) = W 1,p(R; X). We say that A has
Lp-maximal regularity if there exists a constant C > 0 such that

‖Alu‖p ≤ C‖Alu + Blu‖p, u ∈ D(Al) ∩ D(Bl).

Here ‖ · ‖p denotes the norm in Lp(R; X). It is well known that this property does
not depend on 1 < p < ∞. Moreover if A is invertible, this is equivalent to the
property that for any f ∈ Lp(R; X), there is a unique u ∈ D(Al) ∩ D(Bl) verifying

(1.1). Thus Lp-maximal regularity means that (1.1) can be solved in Lp(R; X). We
refer the reader to [2,11,17,18,21,25] for recent results and developments on abstract
Lp-maximal regularity and related topics. See also the excellent survey [19] and the
references therein.

The starting point of this work is the paper [25] by Lutz Weis giving a charac-
terization of Lp-maximal regularity in terms of the Rademacher boundedness of the
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resolvent of A, in the case when X is a UMD Banach space. Here is a brief presenta-
tion.

Let (εk)k≥1 be a Rademacher sequence on a probability space (Ω, P). That is to
say, the εk are {−1, 1}-valued, pairwise independent, random variables such that
P{εk = 1} = P{εk = −1} =

1
2

for any k ≥ 1. We let Rad be the linear span of
the signs εk. Then Rad⊗X is the space of all finite sums

∑
k≥1 εk xk, with xk ∈ X.

For any 1 ≤ p < ∞, we let Radp(X) be the closed subspace of Lp(Ω; X) spanned by
Rad⊗X, that we equip with the induced norm. We recall that for any 1 ≤ p, q <

∞, the two norms ‖ · ‖Radp(X) and ‖ · ‖Radq(X) are equivalent on Rad⊗X (see [23,
Theorem 1.e.13]).

Let L(X) denote the algebra of all bounded operators on X. We say that a subset
M of L(X) is Rademacher bounded if there exists a constant K ≥ 0 such that

∥∥∥
∑

k≥1

εkTk(xk)
∥∥∥

Radp(X)
≤ K

∥∥∥
∑

k≥1

εkxk

∥∥∥
Radp(X)

for any finite family (xk)k≥1 of X and for any finite family (Tk)k≥1 of M. We let Rp(M)
denote the smallest K verifying this property. The above property does not depend
on p, but the value of Rp(M) does.

Let ω ∈ (0, π), and let A be a closed and densely defined operator on X. We recall

that A is a sectorial operator of type ω if the spectrum of A is included in the closure
of the sector Σω = {z ∈ C

∗ : |Arg(z)| < ω}, and for any angle θ ∈ (ω, π), there is a
constant Kθ such that ‖λ(λ − A)−1‖ ≤ Kθ for any λ ∈ C \ Σθ. If further the set

{λ(λ − A)−1 : λ ∈ C \ Σθ } ⊂ L(X)

is Rademacher bounded for any θ ∈ (ω, π), then we say that A is Rademacher secto-
rial of type ω.

Recall that −A is the infinitesimal generator of a bounded analytic semigroup on
X if and only if A is a sectorial operator of type < π

2
. Then Weis’s characterization

theorem in [25] asserts that if X is a UMD Banach space, then A has Lp-maximal
regularity if and only if A is Rademacher sectorial of type < π

2
. There are two ap-

proaches to the “if” part of this statement. The original one [25] was to derive it from
a Mikhlin-type theorem for operator valued Fourier multipliers on Lp(R; X) satisfy-

ing certain Rademacher boundedness conditions. Later on, Kalton and Weis [18]
found a second proof based on H∞ functional calculus.

In this paper we introduce an analytic form of maximal regularity, called H p-max-
imal regularity. Instead of considering the Cauchy problem (1.1) on Lp(R; X), we

study it on the so-called conjugate Hardy space H
p
con(R; X). This notion will bring out

the role of analytic UMD spaces (AUMD in short). It will be clear from the definition
that Lp-maximal regularity implies H p-maximal regularity. We will show in Section 3
that the converse is false. More precisely we will provide an invertible operator A

which is sectorial of type ω for any ω > 0, such that A has H p-maximal regularity,
but A does not have Lp-maximal regularity. Also we will establish an analytic version
of Weis’s characterization of regularity for an AUMD space X: an operator A on X

has H p-maximal regularity if and only if it is Rademacher sectorial of type < π
2

. As
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for the classical case, the “if” part of this characterization theorem has two proofs.
One is based on H∞ functional calculus; the other is a consequence of an operator

valued Fourier multiplier theorem on X-valued Hardy spaces in the case when X is an
AUMD space. This result, which is of independent interest, is established in Section
2. It extends a remarkable scalar valued multiplier theorem due to Blower [7], and it
turns out to be an analytic version of Weis’s multiplier theorem in [25].

We refer the reader to [8] for some background on UMD Banach spaces, and
to [1, 19] for comprehensive information on sectorial operators, H∞ functional cal-

culus, Rademacher boundedness and abstract Lp-maximal regularity. We record for
further use the so-called contraction principle. For any 1 ≤ p < ∞, for any finite
family (xk)k≥1 in an arbitrary Banach space X, and for any bounded family (αk)k≥1

of complex numbers, we have

(1.2)
∥∥∥

∑

k≥1

αkεkxk

∥∥∥
Radp(X)

≤ 2 sup
k

|αk|
∥∥∥

∑

k≥1

εk xk

∥∥∥
Radp(X)

.

2 Operator Valued Multipliers on AUMD Banach Spaces

Let X be a Banach space. For any f ∈ L1(R; X), let F( f ) = f̂ : R → X be the Fourier

transform, defined by

f̂ (s) =

∫

R

f (t)e−ist dt, s ∈ R.

Then we let H1(R; X) be the space of all f ∈ L1(R; X) such that f̂ (s) = 0 for any
s ≤ 0.

We let 1 ≤ p < ∞. Unless stated otherwise, this condition will remain in force
throughout the paper. We let H p(R; X) be the closure in Lp(R; X) of the subspace

Lp(R; X) ∩ H1(R; X). In the case when X = C, this space coincides with the classical
Hardy space H p(R) (see [13]). The vector valued Hardy space H p(R; X) has several
equivalent definitions. First, H p(R; X) ⊂ Lp(R; X) is the subspace of all functions
whose Poisson integral on the upper half plane of C is analytic. Second, H p(R; X) is

the closure of H p(R) ⊗ X in Lp(R; X). Third, a function f ∈ Lp(R; X) belongs to
H p(R; X) if and only if the scalar valued function t 7→ 〈ϕ, f (t)〉 belongs to H p(R) for
any ϕ ∈ X∗. We refer to [22, §4] for more on these spaces.

We aim at defining Fourier multipliers on H p(R; X), so we introduce the space U

of all C∞ functions f : R → C belonging to H1(R) such that lim|t|→∞ |t2 f (t)| = 0.
By [13, Ch. II; Corollary 3.3], U is a dense subspace of H p(R). Thus U ⊗ X is dense
in H p(R; X).

Let M : R
∗
+ → L(X) be a bounded measurable function. For any f ∈ U ⊗ X, the

function f̂ belongs to L1(R) ⊗ X. Hence the vector-valued function M f̂ admits an
inverse Fourier transform given by

[
F
−1(M f̂ )

]
(t) =

1

2π

∫ ∞

0

M(s)
(

f̂ (s)
)

eits ds, t ∈ R.
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We say that M is a bounded Fourier multiplier on H p(R; X) if there is a constant
C ≥ 0 such that ∥∥F

−1(M f̂ )
∥∥

p
≤ C‖ f ‖p, f ∈ U ⊗ X.

In this case, F−1(M f̂ ) belongs to H p(R; X) for any f ∈ U ⊗ X, and the resulting

mapping f 7→ F−1(M f̂ ) uniquely extends to a bounded linear operator

TM : H p(R; X) −→ H p(R; X).

Moreover, the norm of TM is equal to the smallest possible C in the above inequality.
For simplicity, ‖TM‖ will also be called the norm of the multiplier M.

We will need a similar notion of Fourier multipliers for periodic functions. Let

T be the unit circle equipped with its normalized Haar measure, which we identify
with the interval [−π, π) equipped with the measure dt

2π
. For any f ∈ L1(T; X), the

X-valued Fourier coefficients are defined by

f̂ (k) =
1

2π

∫ π

−π

f (t)e−ikt dt, k ∈ Z.

We let H
p
0 (T; X) be the subspace of Lp(T; X) of all functions f such that f̂ (k) = 0 for

any k ≤ 0. Let ek(t) = eikt for any k ∈ Z and let A be the linear span of {ek ; k ≥ 1}.

Then A ⊗ X is a dense subspace of H
p
0 (T; X).

Let (Mk)k≥1 be a bounded sequence of L(X). We say that (Mk)k≥1 is a bounded
Fourier multiplier on H

p
0 (T; X) if there is a constant C ≥ 0 such that

∥∥∥
∑

k≥1

Mk

(
f̂ (k)

)
⊗ ek

∥∥∥
p
≤ C‖ f ‖p, f ∈ A ⊗ X.

In this case, there is a unique bounded linear operator H
p
0 (T; X) → H

p
0 (T; X) taking

any f =
∑

k≥1 f̂ (k) ⊗ ek in A ⊗ X to
∑

k≥1 Mk

(
f̂ (k)

)
⊗ ek, and its norm is equal to

the smallest possible C in the above inequality.

The following transfer result was established in [22, Proposition 4.3] for scalar
valued multipliers. It is easy to check that its proof works as well for operator valued
multipliers.

Lemma 2.1 Let M : R
∗
+ → L(X) be a bounded continuous function. Let 1 ≤ p < ∞

and let C > 0 be a constant. The following two assertions are equivalent.

(i) M is a bounded Fourier multiplier on H p(R; X) whose norm is less than or equal

to C.

(ii) For any ε > 0, the sequence (M(εk))k≥1 is a bounded Fourier multiplier on

H
p
0 (T; X) whose norm is less than or equal to C.

We shall now observe that Rademacher boundedness is a necessary condition for a
bounded Fourier multiplier on either H p(R; X) or H

p
0 (T; X). This is an easy variant of

analogous results which were proved for multipliers on Lp(R; X) [11] and on Lp(T; X)
[2]. See also [16] for related results.
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Proposition 2.2 Let 1 ≤ p < ∞.

(i) Let (Mk)k≥1 be a bounded sequence of L(X), and assume that it is a bounded

Fourier multiplier on H
p
0 (T; X). Then the set {Mk : k ≥ 1} ⊂ L(X) is Rademacher

bounded.

(ii) Let M : R
∗
+ → L(X) be a bounded continuous function, and assume that M is

a bounded Fourier multiplier on H p(R; X). Then the set {M(t) : t > 0} ⊂ L(X) is

Rademacher bounded.

Proof Assume that (Mk)k≥1 is a bounded Fourier multiplier on H
p
0 (T; X) and let

C ≥ 0 be its norm. Then arguing as in the proof of [2, Proposition 1.11] we obtain

that {Mk : k ≥ 1} ⊂ L(X) is Rademacher bounded, with Rp({Mk : k ≥ 1}) ≤ 4C .
Now let M : R

∗
+ → L(X) be a bounded continuous function which is a bounded

Fourier multiplier on H p(R; X), and let C ≥ 0 be its norm. According to Lemma 2.1,
the sequence (M(εk))k≥1 is a bounded Fourier multiplier on H

p
0 (T; X) for any ε > 0,

and its norm is ≤ C . Then by the first part of this proof, the sets

Mε = {M(εk) : k ≥ 1}

are Rademacher bounded and Rp(Mε) ≤ 4C for any ε > 0. Since M is continuous,
this implies that the set {M(t) : t > 0} is Rademacher bounded.

We review the definition of analytic martingales and AUMD spaces, and some of

their properties. We refer the reader to [12] and [8, §§7,8] for proofs and further
results (see also [7, 15, 22]). We consider the compact space T

N equipped with Haar
measure. We use the notation τ = (t1, . . . , tk, . . . ) for elements of T

N. For any integer

k ≥ 1, let Fk denote the σ-field generated by the first k variables t1, . . . , tk. Then
let F0 be the trivial σ-field. An X-valued martingale with respect to the filtration
(Fk)k≥1 is a sequence of functions gk : T

N → X, k ≥ 1 such that for any k ≥ 1, gk

is Fk-measurable and gk−1 = E(gk|Fk−1), with the convention that g0 = 0. We let

dgk = gk − gk−1 denote the martingale differences for any k ≥ 1.
Next, we say that the martingale (gk)k≥1 is analytic if for any k ≥ 1 there exists a

measurable function Φk : T
k−1 → X such that

(2.1) dgk(τ ) = Φk(t1, . . . , tk−1)eitk , τ = (t1, . . . , tk, . . . ) ∈ T
N.

By definition, X is an AUMD Banach space if there is a constant Kp > 0 such that
for any X-valued analytic martingale (gk)k≥1, for any bounded sequence (αk)k≥1 of

complex numbers and for any integer N ≥ 1, we have

(2.2)
∥∥∥

N∑

k=1

αkdgk

∥∥∥
p
≤ Kp sup

k≥1

|αk|
∥∥∥

N∑

k=1

dgk

∥∥∥
p
.

This property does not depend on 1 ≤ p < ∞, and any UMD Banach space is
AUMD. Indeed for any 1 < p < ∞, X is a UMD Banach space if and only if there
is a constant Kp > 0 such that (2.2) holds for any X-valued martingale with respect
to the filtration (Fk)k≥1. Any subspace of an AUMD Banach space is AUMD, and the

https://doi.org/10.4153/CJM-2007-051-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-051-5


1212 S. Bu and C. Le Merdy

class of AUMD spaces includes L1-spaces. Indeed, for any measure space Σ and for
any 1 ≤ q < ∞, the space Lq(Σ; X) is AUMD provided that X is AUMD.

The following observation will be useful. See [14] for related results.

Lemma 2.3 Let X be an AUMD Banach space and let M ⊂ L(X) be a Rademacher

bounded set. For any 1 ≤ p < ∞, there exists a constant C p > 0 such that for any

X-valued analytic martingale (gk)k≥1, and for any finite family (Tk)k≥1 of M, we have

∥∥∥
∑

k≥1

Tk(dgk)
∥∥∥

p
≤ C p

∥∥∥
∑

k≥1

dgk

∥∥∥
p
.

Proof Let (Tk)k≥1 be a finite family of M. If (gk)k≥1 satisfies (2.1), then we have

[Tk(dgk)](τ ) = Tk(Φk(t1, . . . , tk−1))eitk

for any τ = (t1, . . . , tk, . . . ) ∈ T
N. Hence the Tk(dgk)’s are the differences of an

X-valued analytic martingale. Hence (2.2) yields

∥∥∥
∑

k≥1

Tk(dgk)
∥∥∥

p
≤ Kp

∥∥∥
∑

k≥1

εk(λ)Tk(dgk)
∥∥∥

p

for any λ ∈ Ω. Integrating over Ω and applying Fubini’s theorem, we deduce that

∥∥∥
∑

k≥1

Tk(dgk)
∥∥∥

p

p
≤ K

p
p

∫

TN

∥∥∥
∑

k≥1

εk Tk(dgk(τ ))
∥∥∥

p

Radp(X)
dτ

≤ K
p
p Rp(M)p

∫

TN

∥∥∥
∑

k≥1

εk dgk(τ )
∥∥∥

p

Radp(X)
dτ

≤ K
p
p Rp(M)p

∫

Ω

∥∥∥
∑

k≥1

εk(λ) dgk

∥∥∥
p

p
dP(λ).

In turn, (2.2) yields

∥∥∥
∑

k≥1

εk(λ)dgk

∥∥∥
p
≤ Kp

∥∥∥
∑

k≥1

dgk

∥∥∥
p

for any λ ∈ Ω. Hence we finally obtain that

∥∥∥
∑

k≥1

Tk(dgk)
∥∥∥

p
≤ K2

pRp(M)
∥∥∥

∑

k≥1

dgk

∥∥∥
p
.

For any sequence (Mk)k≥1 in L(X), we set

∆Mk = Mk − Mk−1, k ≥ 2,

∆
2Mk = ∆∆Mk = Mk − 2Mk−1 + Mk−2, k ≥ 3.

Differences of this kind are used in classical Mikhlin type theorems.
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Theorem 2.4 Let X be an AUMD Banach space and let (Mk)k≥1 be a sequence of

bounded operators on X. Assume that the sets

(2.3) {Mk : k ≥ 1}, {k∆Mk : k ≥ 2}, and {k2
∆

2Mk : k ≥ 3}

are Rademacher bounded. Then (Mk)k≥1 is a bounded Fourier multiplier on H
p
0 (T; X)

for any 1 ≤ p < ∞.

This result is an extension of a remarkable theorem due to Blower [7]. Blower’s
theorem corresponds to the case when p = 1 and the Mk’s are scalars. Namely, he

shows that if X is an AUMD space, and if (Mk)k≥1 is a sequence of C such that the
three sets in (2.3) are bounded, then (Mk)k≥1 is a bounded Fourier multiplier on
H1

0 (T; X). A first observation is that with the same proof, one obtains that in this case
(Mk)k≥1 also is a bounded Fourier multiplier on H

p
0 (T; X) for any 1 ≤ p < ∞. The

proof of Theorem 2.4 is an adaptation of Blower’s proof. Indeed many of Blower’s
arguments work as well in the operator-valued setting and we will only indicate the
relevant modifications.

Proof of Theorem 2.4 Let (Mk)k≥1 be as in the statement. We may assume that we

have M1 = · · · = M7 = 0. Then we consider the power series

v(z) =

∑

k≥8

Mkzk, z ∈ C, |z| < 1.

We let v ′
r and v ′ ′

r be the first and second derivative of the function (r, t) 7→ v(reit )
with respect to the first variable, so that

(2.4) v ′
r (reit ) =

∑

k≥8

kMkrk−1 eikt and v ′ ′
r (reit ) =

∑

k≥8

k(k − 1)Mkrk−2 eikt

for any 0 < r < 1 and any t ∈ R. We let

Pr(t) =
1 − r2

1 + r2 − 2r cos(t)

denote the Poisson kernel and we set

h(r, t) =
(1 − r4)2

r7
Pr(t)−1(rv ′′

r (reit ) − 2v ′(reit )), 0 < r < 1, t ∈ R.

Below we will show that the set

(2.5)
{

h(r, t) : 0 < r < 1, t ∈ R
}
⊂ L(X) is Rademacher bounded.

Now as indicated before this proof, we follow Blower’s proof in [7]. A thorough
reading of that paper shows that Blower’s arguments [7, §§3,4] can be reproduced
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verbatim in our case. Next, using (2.5) in the place of [7, Lemma 4] together with
Lemma 2.3, the arguments in [7, §5] also carry over to the operator valued case.

Thus we only need to prove (2.5). We note that for any 0 < r < 1 and t ∈ R, we
have both

Pr(t)−1 ≤
1 + r2 − 2r cos(t)

1 − r
and 1 − r4

= (1 − r)(1 + r)(1 + r2) ≤ 4(1 − r).

Hence letting

h̃(r, t) =
1 − r

r7

(
1 + r2 − 2r cos(t)

)(
rv ′′

r (reit ) − 2v ′(reit )
)
,

we are reduced to showing that the set

(2.6) {h̃(r, t) : 0 < r < 1, t ∈ R} ⊂ L(X) is Rademacher bounded.

Applying (2.4), we find that

h̃(r, t) = (1 − r)
(

1 + r2 − 2r cos(t)
) ∑

k≥8

k(k − 3)Mkrk−8eikt .

Then, writing 1 + r2 − 2r cos(t) = 1 − reit − re−it + r2, we deduce that

h̃(r, t) = (1 − r)

[∑

k

k(k − 3)Mkrk−8eikt −
∑

k

k(k − 3)Mkrk−7ei(k+1)t

−
∑

k

k(k − 3)Mkrk−7ei(k−1)t +
∑

k

k(k − 3)Mkrk−6eikt

]

= (1 − r)

[∑

k

k(k − 3)Mkrk−8eikt −
∑

k

(k − 1)(k − 4)Mk−1rk−8eikt

−
∑

k

(k + 1)(k − 2)Mk+1rk−6eikt +
∑

k

k(k − 3)Mkrk−6eikt

]
.

For any k ≥ 8, let

Ak = 2k(k − 3)Mk − (k − 1)(k − 4)Mk−1 − (k + 1)(k − 2)Mk+1,

Bk = (k + 1)(k − 2)Mk+1 − k(k − 3)Mk.

Then the above decomposition of h̃(r, t) can be re-written as

h̃(r, t) = (1 − r)
∑

k≥8

Akrk−8eikt + (1 − r)(1 − r2)
∑

k≥8

Bkrk−8eikt .
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Now observe that there exists a constant K > 0 such that for any 0 < r < 1 and any
t ∈ R we have

∣∣ (1 − r)
∑

k≥8

rk−8eikt
∣∣ ≤ K and

∣∣ (1 − r)(1 − r2)
∑

k≥8

krk−8eikt
∣∣ ≤ K.

Hence it follows from the convexity lemma [10, Lemma 3.2] that (2.6) holds true

provided that the two sets

(2.7) {Ak : k ≥ 8} and {k−1Bk : k ≥ 8}

are Rademacher bounded. For any k ≥ 8, we have

Ak = k2(2Mk − Mk−1 − Mk+1) + k(−6Mk + 5Mk−1 + Mk+1) + (−4Mk−1 + 2Mk+1)

= −k2
∆

2Mk+1 − 5k∆k + k∆k+1 + 2Mk+1 − 4Mk−1.

We also have

k−1Bk = k−1
(

k2(Mk+1 − Mk) + k(−Mk+1 + 3Mk) − 2Mk+1

)

= k∆Mk+1 − Mk+1 + 3Mk − 2k−1Mk+1.

These decompositions show that the two sets in (2.7) are Rademacher bounded,
which completes the proof.

Corollary 2.5 Let X be an AUMD Banach space and let M : R
∗
+ → L(X) be a

C2-function. Assume that the sets

(2.8) {M(t) : t > 0}, {tM ′(t) : t > 0}, and {t2M ′′(t) : t > 0}

are Rademacher bounded. Then M is a bounded Fourier multiplier on H p(R; X) for any

1 ≤ p < ∞.

Proof Let M, M ′ and M ′ ′ be the three sets in (2.8). Then for any ε > 0 and k ≥ 1,

let Mε
k = M(εk), and consider the sets

M(ε) = {Mε
k : k ≥ 1}, M

′(ε) = {k∆Mε
k : k ≥ 2},

M
′ ′(ε) = {k2

∆
2Mε

k : k ≥ 3}.

Then M(ε), M ′(ε) and M ′ ′(ε) are subsets of the closed absolute convex hull of M,
M ′ and M ′ ′, respectively. Hence by [10, Lemma 3.2], these sets are Rademacher

bounded, and there is a constant K > 0 such that Rp(M(ε)), Rp(M ′(ε)), Rp(M ′ ′(ε))
are all less than or equal to K. Hence by Theorem 2.4 and its proof, the sequences
(M(εk))k≥1 are bounded multipliers on H

p
0 (T; X), and their multiplier norms are

uniformly bounded. The result therefore follows from Lemma 2.1.
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The paper [4] contains several characterizations of Hilbert spaces in terms of
bounded Fourier multipliers on Lp-spaces. These results have simple analogs for

bounded Fourier multipliers on H p-spaces, as follows.

Proposition 2.6 Let X be a Banach space and let 1 ≤ p < ∞. The following assertions

are equivalent.

(i) X is isomorphic to a Hilbert space.

(ii) Any sequence (Mk)k≥1 of L(X) such that the three sets in (2.3) are bounded is a

bounded Fourier multiplier on H
p
0 (T; X).

(iii) Any C2-function M : R
∗
+ → L(X) such that the three sets in (2.8) are bounded is

a bounded Fourier multiplier on H p(R; X).

Proof If X is isomorphic to a Hilbert space, then every bounded subset of L(X)
is Rademacher bounded, hence (i) implies (ii) and (iii) by Theorem 2.4 and Corol-
lary 2.5. The proofs of the implications (ii)⇒ (i) and (iii)⇒ (i) are similar to those

of [4, Theorem 1] and [4, Theorem 3], respectively. We skip the details.

3 H p-Maximal Regularity

Let X be a Banach space. For any 1 ≤ p < ∞, we let H
p
−(R; X) be the space of all f

in Lp(R; X) such that the function t 7→ f (−t) belongs to H p(R; X). It is clear that

(3.1) H p(R; X) ∩ H
p
−(R; X) = {0}.

We let H
p
con(R; X) be the domain of the Hilbert transform H on Lp(R; X), equipped

with the graph norm ‖ f ‖con = ‖ f ‖p + ‖H( f )‖p. Using (3.1), we see that there is a
canonical Banach space identification

(3.2) H p
con(R; X) ≈ H p(R; X) ⊕1 H

p
−(R; X).

Indeed the linear map taking any pair ( f1, f2) ∈ H p(R; X)⊕H
p
−(R; X) to the function

f1 + f2 ∈ Lp(R; X) is an isomorphism. (The notation ⊕1 means that the norm on the
right-hand side of (3.2) is given by ‖( f1, f2)‖ = ‖ f1‖p +‖ f ‖p, but this choice does not
play any special role.) One of the equivalent definitions of the UMD property is that
for any 1 < p < ∞, X is UMD if and only if H

p
con(R; X) = Lp(R; X) (see [8]). Also,

X is UMD if and only if the H1
con(R; X) coincides with the so-called atomic H1-space

H1
at(R; X) [5].
Let 1 ≤ p < ∞. As in Section 1, we let Bl be the derivation operator on Lp(R; X).

Then we let Bl+ be the restriction of Bl to H p(R; X). More precisely, we let

H1,p(R; X) = W 1,p(R; X) ∩ H p(R; X).

Then we observe that u ′ belongs to H p(R; X) for any u ∈ H1,p(R; X) and we define
Bl+ as the derivation operator u 7→ u ′ with domain D(Bl+) = H1,p(R; X). Likewise,

we let Bl− be the restriction of Bl to H
p
−(R; X), with domain equal to H

1,p
− (R; X) =

W 1,p(R; X)∩H
p
−(R; X). Next, we define Bh as the derivation operator on H

p
con(R; X),
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with domain equal to the space of all u ∈ H
p
con(R; X) such that u ′ ∈ H

p
con(R; X).

Through the identification (3.2), Bh is simply the direct sum of Bl+ and Bl−, and

D(Bh) = H1,p(R; X) ⊕ H
1,p
− (R; X).

Let −A be the infinitesimal generator of a bounded analytic semigroup on X. As

before, we let Al be the tensor extension of A to Lp(R; X), and we let Al+ and Al− be
the restrictions of Al to H p(R; X) and H

p
−(R; X), respectively. Then we let Ah be the

tensor extension of A on H
p
con(R; X). Again, this can be regarded as the direct sum

of Al+ and Al−, with domain D(Ah) = H p(R; D(A)) ⊕ H
p
−(R; D(A)). Of course, the

operators considered above depend on p, although it is not visible on the notation.

Definition 3.1 We say that A has H p-maximal regularity if there exists a constant
C > 0 such that

(3.3) ‖Ahu‖p ≤ C‖Ahu + Bhu‖p, u ∈ D(Ah) ∩ D(Bh).

It should be noticed that the value p = 1 is included in this definition.

Remark 3.2 We wish to record several simple facts on H p-maximal regularity.
Consider A as above.

(i) By construction, Ah is a sectorial operator of type < π
2

, Bh is a sectorial opera-
tor of type π

2
, and Ah and Bh commute. As is well known, this implies that

Ah + Bh : D(Ah) ∩ D(Bh) −→ H p
con(R; X)

is densely defined. Furthermore Bh is one-to-one and has dense range, which implies
that Ah + Bh is one-to-one and has dense range (see [20, Proposition 2.6]). Then
the operator Ah(Ah + Bh)−1 is densely defined on H

p
con(R; X) and a reformulation of

(3.3) is that A has H p-maximal regularity if and only if Ah(Ah + Bh)−1 is bounded on
H

p
con(R; X).

This is the analog of the fact that if p > 1, A has Lp-maximal regularity if and only if
Al(Al + Bl)

−1 is bounded on Lp(R; X).

(ii) As in (i), we can consider the operators Al+(Al++Bl+)−1 and Al−(Al−+Bl−)−1.
Clearly they are the restrictions of Al(Al + Bl)

−1 to H p(R; X) and H
p
−(R; X), respec-

tively. Then it follows from our discussion preceding Definition 3.1 and from (i)
above that A has H p-maximal regularity if and only if Al+(Al+ + Bl+)−1 and

Al−(Al− + Bl−)−1 are both bounded.
(iii) Let M : R

∗ → L(X) be a bounded measurable function. We say that M is a
bounded Fourier multiplier on H

p
con(R; X) if the two functions t ∈ R

∗
+ 7→ M(t) and

t ∈ R
∗
+ 7→ M(−t) are bounded Fourier multipliers on H p(R; X).

Consider the special function MA : R
∗ → L(X) defined by

MA(t) = it(it + A)−1, t ∈ R
∗.

It is well known that MA is a bounded Fourier multiplier on Lp(R; X) if and only if
the operator Al(Al + Bl)

−1 is bounded on Lp(R; X) (see [25, §4]). Using (ii) above,
we deduce that A has H p-maximal regularity if and only if MA is a bounded Fourier
multiplier on H

p
con(R; X).
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We do not know whether H p-maximal regularity is independent of p on general
Banach spaces. Parts (b) and (c) of the next statement show that this is the case on

AUMD Banach spaces.

Theorem 3.3

(i) Let −A be the infinitesimal generator of a bounded analytic semigroup on X.

(a) If A has Lp-maximal regularity for any 1 < p < ∞ (equivalently, for some

1 < p < ∞), then A has H p-maximal regularity for any 1 ≤ p < ∞.

(b) If A has H p-maximal regularity for some 1 ≤ p < ∞, then A is Rademacher

sectorial of type < π
2

.

(c) Assume that X is AUMD. If A is Rademacher sectorial of type < π
2

, then A has

H p-maximal regularity for any 1 ≤ p < ∞.

(ii) There exists an invertible operator A on some AUMD Banach space, which has H p-

maximal regularity for any 1 ≤ p < ∞, although A does not have Lp-maximal

regularity.

Proof (i) Let 1 < p < ∞ and assume that A has Lp-maximal regularity. Then
by Remark 3.2 (ii), A has H p-maximal regularity for any 1 < p < ∞. Further,

the operator Al(Al + Bl)
−1 : Lp(R; X) → Lp(R; X) extends to a bounded operator on

the atomic H1-space H1
at (R; X), by [16, Theorem 1.4]. By a theorem of Bourgain and

Garcia-Cuerva, the norms induced by L1(R; X) and H1
at (R; X) coincide on H1(R)⊗X,

and hence H1(R; X) is (isomorphic to) a subspace of H1
at (R; X) (see [6, Theorem

1.1]). We deduce that the restriction of Al(Al + Bl)
−1 to H1(R; X) is bounded. Like-

wise, the restriction of Al(Al + Bl)
−1 to H1

−(R; X) is bounded. According to Remark
3.2(ii), this means that A has H1-maximal regularity.

Part (b) is a combination of Remark 3.2 (iii) and Proposition 2.2.

We give two proofs of (c). Assume that X is AUMD, and let 1 ≤ p < ∞. By [22,

Theorem 1.2], the derivation operator Bh has a bounded H∞(Σθ) functional calculus
for any θ > π

2
. Hence by [18, Theorem 6.3], A has H p-maximal regularity provided

that it is Rademacher sectorial of type < π
2

.

Another proof follows from Corollary 2.5. Indeed, assume that A is Rademacher
sectorial of type < π

2
, and let MA be given by Remark 3.2 (iii). Arguing as in [25,

Example 2.9], it is not hard to show that MA satisfies the assumptions of Corollary 2.5.
Hence if X is AUMD, the function MA is a bounded Fourier multiplier on H

p
con(R; X),

and hence A has H p-maximal regularity.

(ii) Throughout we assume that Y is an AUMD Banach space, that Y has an un-
conditional basis and a finite cotype, and that Y is not UMD. The space Y = ℓ1

fulfills these geometric conditions. We let D be the derivation operator on L2(R; Y ),
with domain equal to the Sobolev space W 1,p(R; Y ). According to a forthcoming
paper by Kalton and Weis,1 this operator is not Rademacher sectorial. In fact the set

(3.4) {s(s + D)−1 : s ∈ R, s ≥ 1} ⊂ L(L2(R; Y ))

1Euclidean structures, in preparation.
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is not Rademacher bounded. Indeed, assume that it is Rademacher bounded and
let K be its Rademacher constant. For any µ > 0, let Tµ be the operator on L2(R; Y )

defined by (Tµu)(t) = µ
1
2 u(µt). Then Tµ is a surjective isometry and T−1

µ DTµ = µD.

Hence the set Mµ = {s(s + µD)−1 : s ∈ R, s ≥ 1} is Rademacher bounded and
R2(Mµ) ≤ K for any µ > 0. This readily implies that the set {s(s + D)−1 : s > 0} is
Rademacher bounded, a contradiction.

Let X = Rad2(Y ). We recall that

Rad2(Y ) =

{ ∞∑

k=1

εkxk : the series

∞∑

k=1

εkxk converges in L2(Ω; X)
}

.

Following an idea from [3], we let (λk)k≥1 be a dense sequence of the interval [1,∞),
and we define an operator A on X as follows. We set

D(A) =

{ ∞∑

k=1

εk xk ∈ Rad2(Y ) : the series

∞∑

k=1

λkεkxk converges in L2(Ω; X)
}

,

and we let

A
( ∞∑

k=1

εk xk

)
=

∞∑

k=1

λk εk xk

for any
∑∞

k=1 εkxk ∈ D(A). It is clear that A is closed and densely defined.

Using (1.2), it is easy to see that A is sectorial of type ω for any ω > 0, and that
A admits a bounded H∞(Σθ) functional calculus for any θ > 0. Indeed for any
f ∈ H∞(Σθ), we have

f (A)
( ∞∑

k=1

εk xk

)
=

∞∑

k=1

f (λk) εk xk

for any
∑∞

k=1 εk xk in D(A), and ‖ f (A)‖ ≤ 2‖ f ‖∞,θ , where ‖ f ‖∞,θ = sup{| f (z)| :
z ∈ Σθ}. Since Y is AUMD, the space X ⊂ L2(Ω; Y ) is AUMD as well. It therefore
follows from [18, Proposition 3.2 and Theorem 5.3] that A is Rademacher sectorial
of type ω for any ω > 0. By part (i)(c) of this theorem, this implies that A has

H p-maximal regularity (for any 1 ≤ p < ∞).
Recall that λk ≥ 1 for any k ≥ 1. Hence using (1.2) again, one obtains that A is

invertible with A−1 sending any
∑

k≥1 εk xk in X to
∑

k≥1 λ−1
k εk xk.

Suppose now that A has L2-maximal regularity. As before, we let Bl (resp. Al) be
the derivation operator (resp. the tensor extension of A) on L2(R; X). Our hypothe-
sis means that the operator T = Al(Al + Bl)

−1 : L2(R; Rad2(Y )) → L2(R; Rad2(Y )) is

bounded (see Remark 3.2(ii)). By Fubini’s theorem, we have an isometric identifica-
tion L2(R; Rad2(Y )) ≃ Rad2(L2(R; Y )). Let (zk)k≥1 be a finite sequence of L2(R; Y ).
It is clear that under the above identification, we have

T
(∑

k≥1

εk zk

)
=

∑

k≥1

εk λk(λk + D)−1zk.
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Hence we have

∥∥∥
∑

k≥1

εk λk(λk + D)−1zk

∥∥∥
2
≤ ‖T‖

∥∥∥
∑

k≥1

εk zk

∥∥∥
2
.

This shows that the set {λk(λk + D)−1 : k ≥ 1} is Rademacher sectorial. Since
the sequence (λk)k≥1 is dense sequence in [1,∞), this implies that the set (3.4) is
Rademacher bounded, which is a contradiction.

As far as we know, the operator A in Theorem 3.3(ii) is the first example of an
operator A which is Rademacher sectorial of type < π

2
without having Lp-maximal

regularity.

Remark 3.4 Let −A be the infinitesimal generator of a bounded analytic semigroup

on X and assume that A is invertible. Let 1 ≤ p < ∞ and consider Ah, Bh on
H

p
con(R; X). Then Ah also is invertible, hence Ah(Ah + Bh)−1 is bounded if and only

if (Ah + Bh)−1 is bounded. Thus A has H p-maximal regularity if and only if for any
f ∈ H

p
con(R; X), there is a (necessarily unique) u ∈ D(Ah) ∩ D(Bh) such that (1.1)

holds true.
Thus Theorem 3.3(ii) provides an operator A with the following property: for any

1 ≤ p < ∞ and for any f ∈ H
p
con(R; X), (1.1) can be solved with u ′ belonging

to H
p
con(R; X), hence a fortiori to Lp(R; X), but for any 1 < p < ∞, one can find

f ∈ Lp(R; X) such that (1.1) has no solution with u ′ belonging to Lp(R; X).

The results discussed so far in this section have analogs for periodic functions that
we shall now indicate. We let L

p
0 (T; X) ⊂ Lp(T; X) be the space of all f ∈ Lp(T; X)

such that f̂ (0) = 0 and we let H
p
0−(T; X) be the space of all f ∈ Lp(T; X) such that

f̂ (k) = 0 for any k ≥ 0. Then the conjugate Hardy space H
p
con(T; X) is defined as

the space of all f ∈ L
p
0 (T; X) whose Hilbert transform belongs to Lp(T; X) and we

have a Banach space identification H
p
con(T; X) ≈ H

p
0 (T; X) ⊕1 H

p
0−(T; X). We let B̃l

be the derivation operator on L
p
0 (T; X). Its domain is the Sobolev space W

1,p
0 (T; X)

of all u ∈ L
p
0 (T; X) such that there exists v ∈ L

p
0 (T; X) verifying v̂(k) = ikû(k) for

any k ∈ Z
∗. This v is necessarily unique and we have u ′

= B̃l(u) = v in this case
(see [2, Lemma 2.1] for more on this).

Let A be a closed and densely defined operator on X. We do not assume that A

is sectorial in this context. Then we let Ãl be the tensor extension of A on L
p
0 (T; X),

with domain L
p
0 (T; D(A)). We consider the following Cauchy problem:

(3.5)
u ′(t) + Au(t) = f (t), 0 ≤ t < 2π;

u(0) = u(2π).

We say that A has L
p
per-maximal regularity if for any f ∈ L

p
0 (T; X), there exists a

(necessarily unique) u ∈ D(Ãl)∩D(B̃l) verifying (3.5). According to [2, Theorem 2.3]
and its proof, this holds true if and only if iZ

∗ is included in the resolvent set of A,
and the sequence (ik(ik + A)−1)k∈Z∗ is a bounded Fourier multiplier on L

p
0 (T; X).
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Note that our notion of L
p
per-maximal regularity is slightly different from the one

considered in [2, Section 2]. Indeed an operator A has the periodic Lp-maximal

regularity considered in that paper if and only if A is invertible and has L
p
per-maximal

regularity in our sense.

It is unclear whether L
p
per-maximal regularity is independent of p in general (al-

though [3, Theorem 2.3] shows that it is the case when X is a UMD Banach space).

Now we consider the derivation operator B̃h and the tensor extension Ãh on
H

p
con(T; X). Namely, B̃h is the direct sum of the restrictions of B̃l to H

p
0 (T; X) and

H
p
0−(T; X), respectively. The definition of Ãh is similar. Then we say that A has

H
p
per-maximal regularity if for any f ∈ H

p
con(T; X), there exists a (necessarily unique)

u ∈ D(Ãh) ∩ D(B̃h) verifying (3.5). Arguing as in [2, §2], one obtains that A has

H
p
per-maximal regularity if and only if iZ

∗ is included in the resolvent set of A, and the
sequence (ik(ik + A)−1)k∈Z∗ is a bounded Fourier multiplier on H

p
con(T; X). Equiv-

alently, the two sequences l(ik(ik + A)−1)k≥1 and (ik(ik − A)−1)k≥1 are bounded

Fourier multipliers on H
p
0 (T; X).

Then we have the following analog of Theorem 3.3.

Theorem 3.5

(i) Let A be a closed and densely defined operator on X. Assume that iZ
∗ is included

in the resolvent set of A and let M = {k(ik + A)−1 : k ∈ Z
∗} ⊂ L(X).

(a) Let 1 < p < ∞. If A has L
p
per-maximal regularity, then A has H

p
per-maximal

regularity.

(b) If A has H
p
per-maximal regularity for some 1 ≤ p < ∞, then M is Rade-

macher bounded.

(c) Assume that X is AUMD. If the set M is Rademacher bounded, then A has

H
p
per-maximal regularity for any 1 ≤ p < ∞.

(ii) There exists an operator A on some AUMD Banach space, which has H
p
per-maxi-

mal regularity for any 1 ≤ p < ∞, although it has L
p
per-maximal regularity for

no 1 < p < ∞.

Proof Arguing as in the proof of Theorem 3.3, part (i) follows from Proposition 2.2
and Theorem 2.4. We skip the details.

To prove (ii), consider the operator A given by Theorem 3.3(ii). This operator is

Rademacher sectorial of type < π
2

, hence the set M is Rademacher bounded. Thus A

has H
p
per-maximal regularity for any 1 ≤ p < ∞. Now assume that A has L

p
per-maxi-

mal regularity for some 1 < p < ∞. Since −A generates a bounded analytic semi-
group and A is invertible, it follows from [9, §3] that A also has Lp-maximal regular-
ity, a contradiction.
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